
7. Best Practice Patterns

Birds-eye view

© Oscar Nierstrasz

ST — Introduction

1.2

Let your code talk — Names matter. Let the code
say what it means.
Introduce a method for everything that needs to be
done. Donʼt be afraid to delegate, even to yourself.

© Oscar Nierstrasz

ST — Best Practice Patterns

7.3

Roadmap

>  Naming conventions
>  Delegation and Double Dispatch
>  Conversion and Extension
>  Being Lazy
>  Collections, Intervals and Streams

Selected material based on: Kent Beck, Smalltalk Best Practice Patterns, Prentice-Hall, 1997.

© Oscar Nierstrasz

ST — Best Practice Patterns

7.4

Roadmap

>  Naming conventions
>  Delegation and Double Dispatch
>  Conversion and Extension
>  Being Lazy
>  Collections, Intervals and Streams

© Oscar Nierstrasz

ST — Best Practice Patterns

7.5

Simple Superclass Name

What should we call the root of a hierarchy?

>  Use a single word that conveys its purpose in the design
—  Number
—  Collection
—  VisualComponent
—  BoardSquare

© Oscar Nierstrasz

ST — Best Practice Patterns

7.6

Qualified Subclass Name

What should you call a subclass that plays a role
similar to its superclass?

>  Use names that indicate the distinct role. Otherwise
prepend an adjective that communicates the relationship
—  OrderedCollection (vs. Array)
—  UndefinedObject
—  FirstSquare (vs. Snake and Ladder)

© Oscar Nierstrasz

ST — Best Practice Patterns

7.7

Naming methods and variables

>  Choose method and variable names so that expressions
can be read like (pidgin) sentences.
—  Spell out names in full

–  Avoid abbreviations!

players do: [:each | each moveTo: self firstSquare].

© Oscar Nierstrasz

ST — Best Practice Patterns

7.8

Intention Revealing Selector

What do you name a method?
>  Name methods after what they accomplish, not how.

—  Change state of the receiver:
–  translateBy:, add: …

—  Change state of the argument:
–  displayOn:, addTo:, printOn:

—  Return value from receiver:
–  translatedBy:, size, topLeft

© Oscar Nierstrasz

ST — Best Practice Patterns

7.9

Role Suggesting Instance Variable Name

What do you name an instance variable?

>  Name instance variables for the role they play in the
computation.
—  Make the name plural if the variable will hold a Collection

Object subclass: #SnakesAndLadders
instanceVariableNames: 'players squares turn die over'
…

© Oscar Nierstrasz

ST — Best Practice Patterns

7.10

Type Suggesting Parameter Name

What do you call a method parameter?

>  Name parameters according to their most general
expected class, preceded by “a” or “an”.
—  Donʼt need to do this if the method name already specifies the

type, or if the type is obvious.
—  If there is more than one argument with the same expected

type, precede the type with its role.
BoardSquare>>setPosition: aNumber board: aBoard
position := aNumber.
board := aBoard

Collection>>reject: rejectBlock thenDo: doBlock
"Utility method to improve readability."
^ (self reject: rejectBlock) do: doBlock

© Oscar Nierstrasz

ST — Best Practice Patterns

7.11

Role Suggesting Temporary Variable Name

What do you call a temporary variable?

>  Name a temporary variable for the role it plays in the
computation.
—  Use temporaries to:

–  collect intermediate results
–  reuse the result of an expression
–  name the result of an expression

—  Methods are often simpler when they donʼt use temporaries!

GamePlayer>>moveWith: aDie
| roll destination |
roll := aDie roll.
destination := square forwardBy: roll.
self moveTo: destination.
^ name, ' rolls ', roll asString

© Oscar Nierstrasz

ST — Best Practice Patterns

7.12

Methods from Comments

>  Be suspicious of comments
—  If you feel the need to comment your code, try instead to introduce a

new method
—  “Do not comment bad code — rewrite it”

–  Kernighan ʼ78
GamePlayer>>moveTo: aSquare
square notNil ifTrue: [square remove: self].
 "leave the current square"
square := aSquare landHere: self.

GamePlayer>>moveTo: aSquare
self leaveCurrentSquare.
square := aSquare landHere: self.

GamePlayer>>leaveCurrentSquare
square notNil ifTrue: [square remove: self].

Exception: always write class comments!

© Oscar Nierstrasz

ST — Best Practice Patterns

7.13

Roadmap

>  Naming conventions
>  Delegation and Double Dispatch
>  Conversion and Extension
>  Being Lazy
>  Collections, Intervals and Streams

© Oscar Nierstrasz

ST — Best Practice Patterns

7.14

Delegation

How does an object share implementation without
inheritance?

>  Pass part of its work on to another object
—  Many objects need to display, all objects delegate to a brush-

like object (Pen in VisualSmalltalk, GraphicsContext in
VisualAge and VisualWorks)

—  All the detailed code is concentrated in a single class and the
rest of the system has a simplified view of the displaying.

© Oscar Nierstrasz

ST — Best Practice Patterns

7.15

Simple Delegation

How do you invoke a disinterested delegate?

>  Delegate messages unchanged
—  Is the identity of the delegating object important?

–  No
—  Is the state of the delegating object important?

–  No
—  Use simple delegation!

SnakesAndLadders>>at: position
^ squares at: position

© Oscar Nierstrasz

ST — Best Practice Patterns

7.16

Self Delegation

How do you implement delegation to an object that
needs reference to the delegating object?

>  Pass along the delegating object (i.e., self) in an
additional parameter.
—  Commonly called “for:”

GamePlayer>>moveTo: aSquare
self leaveCurrentSquare.
square := aSquare landHere: self.

© Oscar Nierstrasz

ST — Best Practice Patterns

7.17

Reversing Method

How do you code a smooth flow of messages?

>  Code a method on the parameter.
—  Derive its name form the original message.
—  Take the original receiver as a parameter to the new method.
—  Implement the method by sending the original message to the original

receiver.

Point>>printOn: aStream
x printOn: aStream
aStream nextPutAll: '@'.
y printOn: aStream

Stream>>print: anObject
anObject printOn: self

Point>>printOn: aStream
aStream print: x; nextPutAll: '@'; print: y

Caveat: Creating new selectors just
for fun is not a good idea. Each
selector must justify its existence.

© Oscar Nierstrasz

ST — Best Practice Patterns

7.18

Execute Around Method

How do you represent pairs of actions that have to be taken
together?

>  Code a method that takes a Block as an argument.
—  Name the method by appending “During: aBlock” to the name of

the first method to be invoked.
—  In the body, invoke the first method, evaluate the block, then invoke the

second method.

File>>openDuring: aBlock
self open.
aBlock value.
self close

File>>openDuring: aBlock
self open.
[aBlock value]
ensure: [self close]

Or better:

© Oscar Nierstrasz

ST — Best Practice Patterns

7.19

Method Object

How do you break up a method where many lines of
code share many arguments and temporary
variables?

>  Create a class named after the method.
—  Give it an instance variable for the receiver of the original

method, each argument and each temporary.
—  Give it a Constructor Method that takes the original receiver and

method arguments.
—  Give it one method, compute, implemented by the original

method body.
—  Replace the original method with a call to an instance of the

new class.
—  Refactor the compute method into lots of little methods.

© Oscar Nierstrasz

ST — Best Practice Patterns

7.20

Method Object

Obligation>>sendTask: aTask job: aJob
| notprocessed processed copied executed |
... 150 lines of heavily commented code

Object subclass: #TaskSender
instanceVariableNames: 'obligation task job
 notprocessed processed copied executed'
...

TaskSender class>>obligation: anObligation task: aTask job: aJob
^ self new
 setObligation: anObligation task: aTask job: aJob

TaskSender>>compute
... 150 lines of heavily commented code (to be refactored)

Obligation>>sendTask: aTask job: aJob
(TaskSender obligation: self task: aTask job: aJob) compute

© Oscar Nierstrasz

ST — Best Practice Patterns

7.21

Choosing Object

How do you execute one of several alternatives?

>  Send a message to one of several different kinds of
objects, each of which executes one alternative.

© Oscar Nierstrasz

ST — Best Practice Patterns

7.22

Choosing Object

square destinationBoardSquare>>destination
^ self

LadderSquare>>destination
^ self forwardBy: forward

SnakeSquare>>destination
^ self backwardBy: back

square isSnake
ifTrue: [
 destination := square backwardBy: square back]
ifFalse: [
 square isLadder
 ifTrue: [destination := square forwardBy: square forward]
 ifFalse: [destination := square]]

© Oscar Nierstrasz

ST — Best Practice Patterns

7.23

Double Dispatch

>  How can you code a computation that has many cases,
the cross product of two families of classes?

>  Send a message to the argument.
—  Append the class or “species” name of the receiver to the

selector.
—  Pass the receiver as an argument.
—  Caveat: Can lead to a proliferation of messages

© Oscar Nierstrasz

ST — Best Practice Patterns

7.24

Maresey Doats

Mares eat oats and does eat oats,
And little lambs eat ivy,
A kid will eat ivy too,
Wouldn't you?

MareTest>>testEating
self assert:
 ((mare eats: oats)
 and: [doe eats: oats]
 and: [lamb eats: ivy]
 and: [kid eats: ivy]
).

© Oscar Nierstrasz

ST — Best Practice Patterns

7.25

Bad Solutions

Mare>>eats: aFood
^ aFood class = Oats

•  Breaks encapsulation
•  Hard to extend
•  Fragile with respect to changes

Mare>>eats: aFood
^ aFood isGoodForMares

Food>>isGoodForMares
^ false

Oats>>isGoodForMares
^ true

Better, but:
•  Mixes responsibilities
•  Still hard to extend

© Oscar Nierstrasz

ST — Best Practice Patterns

7.26

Double Dispatch — Interaction

•  Separates responsibilities
•  Easy to extend
•  Handles multiple kinds of food

© Oscar Nierstrasz

ST — Best Practice Patterns

7.27

Double Dispatch — Hierarchy

© Oscar Nierstrasz

ST — Best Practice Patterns

7.28

Roadmap

>  Naming conventions
>  Delegation and Double Dispatch
>  Conversion and Extension
>  Being Lazy
>  Collections, Intervals and Streams

© Oscar Nierstrasz

ST — Best Practice Patterns

7.29

 Converter Method

How do you convert an object of one class to that of
another that supports the same protocol?

>  Provide a converter method in the interface of the object
to be converted.
—  Name it by prepending “as” to the class of the object returned
—  E.g., asArray, asSet, asOrderedCollection etc.

© Oscar Nierstrasz

ST — Best Practice Patterns

7.30

 Converter Constructor Method

How do you convert an object of one class to that of
another that supports a different protocol?

>  Introduce a Constructor Method that takes the object to
be converted as an argument
—  Name it by prepending “from” to the class of the object to be

converted

Date class>>fromString:
…

Date fromString: "Jan 1, 2006"

String>>asDate
…

"Jan 1, 2006" asDate

Donʼt confuse responsibilities!

© Oscar Nierstrasz

ST — Best Practice Patterns

7.31

Shortcut Constructor Method

What is the external interface for creating a new object
when a Constructor Method is too wordy?

>  Represent object creation as a message to one of the
arguments of the Constructor Method.
—  Add no more than three of these methods per system you

develop!

Point x: 3 y: 5

3@5

© Oscar Nierstrasz

ST — Best Practice Patterns

7.32

Modifying Super

>  How do you change part of the behaviour of a super
class method without modifying it?

>  Override the method and invoke super.
—  Then execute the code to modify the results.

SnakesAndLadders>>initialize
die := Die new.
…

ScriptedSnakesAndLadders>>initialize
super initialize
die := LoadedDie new.
…

© Oscar Nierstrasz

ST — Best Practice Patterns

7.33

Roadmap

>  Naming conventions
>  Delegation and Double Dispatch
>  Conversion and Extension
>  Being Lazy
>  Collections, Intervals and Streams

© Oscar Nierstrasz

ST — Best Practice Patterns

7.34

Default Value Method

How do you represent the default value of a variable?

>  Create a method that returns the value.
—  Prepend “default” to the name of the variable as the name of the

method

DisplayScanner>>defaultFont
^ TextStyle defaultFont

© Oscar Nierstrasz

ST — Best Practice Patterns

7.35

Constant Method

How do you code a constant?

>  Create a method that returns the constant

Fraction>>one
^ self numerator: 1 denominator: 1

© Oscar Nierstrasz

ST — Best Practice Patterns

7.36

Lazy Initialization

How do you initialize an instance variable to its default value?

>  Write a Getting Method for the variable.
—  Initialize it if necessary with a Default Value Method
—  Useful if:

–  The variable is not always needed
–  The variable consumes expensive resources (e.g., space)
–  Initialization is expensive.

XWindows>>windowManager
windowManager isNil ifTrue: [
 windowManager := self defaultWindowManager].
^ windowManager

© Oscar Nierstrasz

ST — Best Practice Patterns

7.37

Lookup Cache

>  How do you optimize repeated access to objects that are
expensive to compute?

>  Cache the values of the computation
—  Prepend “lookup” to the name of the expensive method
—  Add an instance variable holding a Dictionary to cache the

results.
—  Make the parameters of the method be the search keys of the

dictionary and the results be its values.

© Oscar Nierstrasz

ST — Best Practice Patterns

7.38

Slow Fibonacci

Fibs>>at: anIndex
self assert: anIndex >= 1.
anIndex = 1 ifTrue: [^ 1].
anIndex = 2 ifTrue: [^ 1].
^ (self at: anIndex - 1) + (self at: anIndex - 2)

Fibs new at: 35 9227465

Takes 8 seconds.
Forget about larger values!

© Oscar Nierstrasz

ST — Best Practice Patterns

7.39

Cacheing Fibonacci

Object subclass: #Fibs
instanceVariableNames: 'fibCache'
classVariableNames: ''
poolDictionaries: ''
category: 'Misc'

Fibs>>initialize
fibCache := Dictionary new

Fibs>>fibCache
^ fibCache

Introduce the cache …

© Oscar Nierstrasz

ST — Best Practice Patterns

7.40

Cacheing Fibonacci

Fibs>>lookup: anIndex
^ self fibCache at: anIndex ifAbsentPut: [self at: anIndex]

Fibs>>at: anIndex
self assert: anIndex >= 1.
anIndex = 1 ifTrue: [^ 1].
anIndex = 2 ifTrue: [^ 1].
^ (self lookup: anIndex - 1) + (self lookup: anIndex - 2)

Now we introduce the lookup method, and
redirect all accesses to use the cache lookup

Fibs new at: 100 354224848179261915075

… is virtually instantaneous!

© Oscar Nierstrasz

ST — Best Practice Patterns

7.41

Roadmap

>  Naming conventions
>  Delegation and Double Dispatch
>  Conversion and Extension
>  Being Lazy
>  Collections, Intervals and Streams

© Oscar Nierstrasz

ST — Best Practice Patterns

7.42

Comparing Method

How do you order objects with respect to each other?

>  Implement <= to return true if the receiver should be
ordered before the argument
—  <,<=,>,>= are defined for Magnitude and its subclasses.
—  Implement <= in the “comparing” protocol

© Oscar Nierstrasz

ST — Best Practice Patterns

7.43

Sorted Collection

How do you sort a collection?

>  Use a Sorted Collection.
—  Set its sort block if you want to sort by some other criterion than

<=
#('Snakes' 'Ladders') asSortedCollection

a SortedCollection('Snakes' 'Ladders')

#('Snakes' 'Ladders') asSortedCollection: [:a :b | b<=a]

a SortedCollection('Ladders' 'Snakes')

a SortedCollection('Snakes' 'Ladders')

#('Snakes' 'Ladders') asSortedCollection
sortBlock: [:a :b | b<=a]

© Oscar Nierstrasz

ST — Best Practice Patterns

7.44

Interval

How do you code a collection of numbers in a
sequence?

>  Use an Interval with start, stop and optional step
value.
—  Use the Shortcut Constructor methods Number>>to: and

Number>>to:by: to build intervals

1 to: 5
(1 to: 5) asSet
(10 to: 100 by: 20) asOrderedCollection

(1 to: 5)
a Set(1 2 3 4 5)
an OrderedCollection(10 30 50 70 90)

© Oscar Nierstrasz

ST — Best Practice Patterns

7.45

Duplicate Removing Set

How do you remove the duplicates from a Collection?

>  Send asSet to the collection

'hello world' asSet

a Set(Character space $r $d $e $w $h $l $o)

© Oscar Nierstrasz

ST — Best Practice Patterns

7.46

Searching Literal

How do you test if an object is equal to one of several
literal values?

>  Ask a literal Collection if it includes the element you
seek

'aeiou' includes: char asLowercase

char = $a | char = $e | char = $i | char = $o | char = $u |
char = $A | char = $E | char = $I | char = $O | char = $U

© Oscar Nierstrasz

ST — Best Practice Patterns

7.47

Concatenation

How do you put two collections together?

>  Send “,” to the first with the second as argument

(1 to: 3), (4 to: 6)

a Dictionary(#a->1 #b->2)

(Dictionary newFrom: { #a -> 1}), (Dictionary newFrom: { #b -> 2})

#(1 2 3 4 5 6)

© Oscar Nierstrasz

ST — Best Practice Patterns

7.48

Concatenating Stream

How do you concatenate several Collections?

>  Use a Stream on a new collection of the result type.

writer := WriteStream on: String new.
Smalltalk keys do: [: each | writer nextPutAll: each, '::'].
writer contents

Can be vastly more efficient than building a
new collection with each concatenation.

© Oscar Nierstrasz

ST — Best Practice Patterns

7.49

What you should know!

✎  How should you name instance variables?
✎  Why should you be suspicious of comments?
✎  How does Simple Delegation differ from Self

Delegation?
✎  When would you use Double Dispatch?
✎  Why should you avoid introducing a Converter Method

for an object supporting a different protocol?
✎  How do you sort a Collection?
✎  When should you use Lazy Initialization?

© Oscar Nierstrasz

ST — Best Practice Patterns

7.50

Can you answer these questions?

✎  Which patterns would you use to implement a
transactional interface?

✎  How can Method Object help you to decompose long
methods?

✎  Why is it a bad idea to query an object for its class?
✎  Why are you less likely to see Double Dispatch in a

statically-typed language?
✎  How can you avoid Modifying Super?
✎  How can you avoid writing case statements?
✎  What pattern does Object>>-> illustrate?

© Oscar Nierstrasz

ST — Introduction

1.51

Attribution-ShareAlike 3.0 Unported
You are free:

to Share — to copy, distribute and transmit the work
to Remix — to adapt the work

Under the following conditions:
Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).
Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this work. The
best way to do this is with a link to this web page.

Any of the above conditions can be waived if you get permission from the copyright holder.
Nothing in this license impairs or restricts the author's moral rights.

License

http://creativecommons.org/licenses/by-sa/3.0/	

