
9. Understanding Classes and Metaclasses

Birds-eye view

© Oscar Nierstrasz

ST — Introduction

1.2

Reify your metamodel — A fully reflective system
models its own metamodel.

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.3

Roadmap

>  Metaclasses in 7 points
>  Indexed Classes
>  Class Instance Variables
>  Class Variables
>  Pool Dictionaries

Selected material courtesy Stéphane Ducasse

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.4

Roadmap

>  Metaclasses in 7 points
>  Indexed Classes
>  Class Instance Variables
>  Class Variables
>  Pool Dictionaries

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.5

Metaclasses in 7 points

1.  Every object is an instance of a class
2.  Every class eventually inherits from Object
3.  Every class is an instance of a metaclass
4.  The metaclass hierarchy parallels the class hierarchy
5.  Every metaclass inherits from Class and Behavior
6.  Every metaclass is an instance of Metaclass
7.  The metaclass of Metaclass is an instance of Metaclass

Adapted from Goldberg & Robson, Smalltalk-80 — The Language

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.6

Metaclasses in 7 points

1.  Every object is an instance of a class
2.  Every class eventually inherits from Object
3.  Every class is an instance of a metaclass
4.  The metaclass hierarchy parallels the class hierarchy
5.  Every metaclass inherits from Class and Behavior
6.  Every metaclass is an instance of Metaclass
7.  The metaclass of Metaclass is an instance of Metaclass

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.7

1. Every object is an instance of a class

Remember the Snakes and Ladders Board Game …

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.8

Metaclasses in 7 points

1.  Every object is an instance of a class
2.  Every class eventually inherits from Object
3.  Every class is an instance of a metaclass
4.  The metaclass hierarchy parallels the class hierarchy
5.  Every metaclass inherits from Class and Behavior
6.  Every metaclass is an instance of Metaclass
7.  The metaclass of Metaclass is an instance of Metaclass

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.9

2. Every class inherits from Object 

>  Every object is-an Object =
—  The class of every object

ultimately inherits from Object

Caveat: in Pharo, Object has a superclass called ProtoObject

aSnakeSquare is-a SnakeSquare
and is-a BoardSquare
and is-an Object

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.10

The Meaning of is-a

>  When an object receives a message, the method is
looked up in the method dictionary of its class, and, if
necessary, its superclasses, up to Object

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.11

Responsibilities of Object

>  Object
—  represents the common object behavior

–  error-handling, halting …
—  all classes should inherit ultimately from Object

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.12

Metaclasses in 7 points

1.  Every object is an instance of a class
2.  Every class eventually inherits from Object
3.  Every class is an instance of a metaclass
4.  The metaclass hierarchy parallels the class hierarchy
5.  Every metaclass inherits from Class and Behavior
6.  Every metaclass is an instance of Metaclass
7.  The metaclass of Metaclass is an instance of Metaclass

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.13

3. Every class is an instance of a metaclass

>  Classes are objects too!
—  Every class X is the unique instance of its metaclass, called X

class

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.14

Metaclasses are implicit

>  There are no explicit metaclasses
—  Metaclasses are created implicitly when classes are created
—  No sharing of metaclasses (unique metaclass per class)

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.15

Metaclasses by Example

BoardSquare allSubclasses
SnakeSquare allSubclasses

SnakeSquare allInstances
SnakeSquare instVarNames

SnakeSquare back: 5

SnakeSquare selectors

SnakeSquare canUnderstand: #new
SnakeSquare canUnderstand: #setBack:

a Set(SnakeSquare FirstSquare LadderSquare)
a Set()

an Array(<-2[6] <-4[11] <-6[11])
#('back')

<-5[nil]

an IdentitySet(#setBack:
#printOn: #destination)

false
true

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.16

Metaclasses in 7 points

1.  Every object is an instance of a class
2.  Every class eventually inherits from Object
3.  Every class is an instance of a metaclass
4.  The metaclass hierarchy parallels the class

hierarchy
5.  Every metaclass inherits from Class and Behavior
6.  Every metaclass is an instance of Metaclass
7.  The metaclass of Metaclass is an instance of Metaclass

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.17

4. The metaclass hierarchy parallels the class
hierarchy

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.18

Uniformity between Classes and Objects

>  Classes are objects too, so …
—  Everything that holds for objects holds for classes as well
—  Same method lookup strategy

–  Look up in the method dictionary of the metaclass

back: is a Snake constructor method

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.19

About the Buttons

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.20

Metaclasses in 7 points

1.  Every object is an instance of a class
2.  Every class eventually inherits from Object
3.  Every class is an instance of a metaclass
4.  The metaclass hierarchy parallels the class hierarchy
5.  Every metaclass inherits from Class and Behavior
6.  Every metaclass is an instance of Metaclass
7.  The metaclass of Metaclass is an instance of Metaclass

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.21

5. Every metaclass inherits from Class and
Behavior 

Every class is-a Class =
— The metaclass of every
class inherits from Class

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.22

Where is new defined?

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.23

Responsibilities of Behavior

>  Behavior
—  Minimum state necessary for objects that have instances.
—  Basic interface to the compiler.
—  State:

–  class hierarchy link, method dictionary, description of instances
(representation and number)

—  Methods:
–  creating a method dictionary, compiling method
–  instance creation (new, basicNew, new:, basicNew:)
–  class hierarchy manipulation (superclass:, addSubclass:)
–  accessing (selectors, allSelectors, compiledMethodAt:)
–  accessing instances and variables (allInstances, instVarNames)
–  accessing class hierarchy (superclass, subclasses)
–  testing (hasMethods, includesSelector, canUnderstand:,

inheritsFrom:, isVariable)

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.24

Responsibilities of ClassDescription

>  ClassDescription
—  adds a number of facilities to basic Behavior:

–  named instance variables
–  category organization for methods
–  the notion of a name (abstract)
–  maintenance of Change sets and logging changes
–  most of the mechanisms needed for fileOut

—  ClassDescription is an abstract class: its facilities are
intended for inheritance by the two subclasses, Class and
Metaclass.

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.25

Responsibilities of Class

>  Class
—  represents the common behavior of all classes

–  name, compilation, method storing, instance variables …
—  representation for classVariable names and shared pool

variables (addClassVarName:, addSharedPool:,
initialize)

—  Class inherits from Object because Class is an Object
–  Class knows how to create instances, so all metaclasses should

inherit ultimately from Class

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.26

Metaclasses in 7 points

1.  Every object is an instance of a class
2.  Every class eventually inherits from Object
3.  Every class is an instance of a metaclass
4.  The metaclass hierarchy parallels the class hierarchy
5.  Every metaclass inherits from Class and Behavior
6.  Every metaclass is an instance of Metaclass
7.  The metaclass of Metaclass is an instance of Metaclass

6. Every metaclass is an instance of Metaclass  

© Oscar Nierstrasz

LECTURE TITLE

27

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.28

Metaclass Responsibilities

>  Metaclass
—  Represents common metaclass Behavior

–  instance creation (subclassOf:)
–  creating initialized instances of the metaclassʼs sole instance
–  initialization of class variables
–  metaclass instance protocol (name:inEnvironment:subclassOf:....)
–  method compilation (different semantics can be introduced)
–  class information (inheritance link, instance variable, ...)

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.29

Metaclasses in 7 points

1.  Every object is an instance of a class
2.  Every class eventually inherits from Object
3.  Every class is an instance of a metaclass
4.  The metaclass hierarchy parallels the class hierarchy
5.  Every metaclass inherits from Class and Behavior
6.  Every metaclass is an instance of Metaclass
7.  The metaclass of Metaclass is an instance of

Metaclass

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.30

7. The metaclass of Metaclass is an instance of
Metaclass 

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.31

Navigating the metaclass hierarchy

MetaclassHierarchyTest>>testHierarchy
"The class hierarchy"
self assert: SnakeSquare superclass = BoardSquare.
self assert: BoardSquare superclass = Object.
self assert: Object superclass superclass = nil.
"The parallel metaclass hierarchy"
self assert: SnakeSquare class name = 'SnakeSquare class'.
self assert: SnakeSquare class superclass = BoardSquare class.
self assert: BoardSquare class superclass = Object class.
self assert: Object class superclass superclass = Class.
self assert: Class superclass = ClassDescription.
self assert: ClassDescription superclass = Behavior.
self assert: Behavior superclass = Object.
"The Metaclass hierarchy"
self assert: SnakeSquare class class = Metaclass.
self assert: BoardSquare class class = Metaclass.
self assert: Object class class = Metaclass.
self assert: Class class class = Metaclass.
self assert: ClassDescription class class = Metaclass.
self assert: Behavior class class = Metaclass.
self assert: Metaclass superclass = ClassDescription.
"The fixpoint"
self assert: Metaclass class class = Metaclass

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.32

Roadmap

>  Metaclasses in 7 points
>  Indexed Classes
>  Class Instance Variables
>  Class Variables
>  Pool Dictionaries

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.33

Two ways to represent objects

>  Named or indexed instance variables
—  Named: name of GamePlayer
—  Indexed: #(Jack Jill) at: 1

>  Or looking at them in another way:
—  Objects with pointers to other objects
—  Objects with arrays of bytes (word, long)
—  Difference for efficiency reasons:

–  arrays of bytes (like C strings) are faster than storing an array of
pointers, each pointing to a single byte.

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.34

Different methods to create classes

Indexed Named Instance
Variables Definition Method

No Yes #subclass: …

Yes Yes #variableSubclass: …

Yes No #variableByteSubclass: …

>  See the subclass creation protocol of Class

>  Constraints
—  Pointer classes defined using #subclass: support any kind of subclasses
—  Byte classes defined using #variableSubclass: can only have:

variableSubclass: or variableByteSubclass: subclasses

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.35

Testing methods

>  See testing protocols of Behavior:
—  #isPointers, #isBits, #isBytes, #isFixed, #isVariable
—  #kindOfSubclass

Object allSubclasses select: [:class | class isBytes]

a Set(ByteArray MwSynchronizationWrapper
MwBlockMethodWrapper ExternalAddress MCMockClassH
LargeNegativeInteger LargePositiveInteger
ByteSymbol MwCountMethodWrapper MwTimeMethodWrapper
MwMethodWrapper MwBlockHandlerMethodWrapper
ByteString MwCalledMethodWrapper UUID
CompiledMethod)

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.36

Defining Indexed Classes

>  Example — instantiating an Array:

ArrayedCollection variableSubclass: #Array
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'Collections-Arrayed'

Array new: 4
#(nil nil nil nil)

#(1 2 3 4) class isVariable
true

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.37

Defining an Indexed Class

Object variableSubclass: #IndexedObject
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: ''

(IndexedObject new: 2)
at: 1 put: 'Jack';
at: 2 put: 'Jill';
at: 1

'Jack'

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.38

Indexed Classes / Instance Variables

>  An indexed variable is implicitly added to the list of
instance variables
—  Only one indexed instance variable per class
—  Access with at: and at:put:

–  NB: answers the value, not the receiver

>  Subclasses should also be indexed

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.39

Roadmap

>  Metaclasses in 7 points
>  Indexed Classes
>  Class Instance Variables
>  Class Variables
>  Pool Dictionaries

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.40

Class Instance Variables

>  Class are objects too
—  Instances of their metaclass

–  Methods looked up in the method dictionary of their metaclass
—  Can also define instance variables

>  When a metaclass defines a new instance variable, then
its instance (a Class) gets a new variable
—  I.e., in addition to subclass, superclasses, methodDict…

>  Use class instance variables to represent the private
state of the class
—  E.g., number of instances, superclass etc.

–  Not to represent information shared by all instances!

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.41

Example: the Singleton Pattern

>  A class with only one instance
—  We keep the unique instance created in an instance variable

WebServer class
instanceVariableNames: 'uniqueInstance’

WebServer class>>new
self error: 'Use uniqueInstance to get the unique instance'

WebServer class>>uniqueInstance
 uniqueInstance isNil
 ifTrue: [uniqueInstance := self basicNew initialize].

 ^ uniqueInstance

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.42

Roadmap

>  Metaclasses in 7 points
>  Indexed Classes
>  Class Instance Variables
>  Class Variables
>  Pool Dictionaries

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.43

Class Variable = Shared Variable

>  To share information amongst all instances of a class,
use a “class variable”
—  Shared and directly accessible by all the instances of the class

and subclasses
—  Accessible to both instance and class methods
—  Begins with an uppercase letter

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.44

Initializing class variables

>  Class variables should be initialized by an initialize
method on the class side, or by lazy initialization

Magnitude subclass: #DateAndTime
instanceVariableNames: 'seconds offset jdn nanos'
classVariableNames: 'LocalTimeZone'
poolDictionaries: 'ChronologyConstants'
category: 'Kernel-Chronology’

Date class>>localTimeZone
"Answer the local time zone"

^ LocalTimeZone ifNil: [LocalTimeZone := TimeZone default]

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.45

ClassVariables vs. Instance Variables

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.46

Roadmap

>  Metaclasses in 7 points
>  Indexed Classes
>  Class Instance Variables
>  Class Variables
>  Pool Dictionaries

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.47

Pool Dictionaries

>  A Pool Dictionary is a shared variable
—  Begins with a uppercase letter.
—  Shared by a group of classes not linked by inheritance.

>  Each class possesses its own pool dictionary (containing
pool variables).
—  They are not inherited.

>  Donʼt use them!

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.48

Examples of Pool Dictionaries

ArrayedCollection subclass: #Text
instanceVariableNames: 'string runs'
classVariableNames: ''
poolDictionaries: 'TextConstants'
category: 'Collections-Text'

>  Elements stored into TextConstants
like Ctrl, CR, ESC, Space can be
directly accessed from all the
classes like ParagraphEditor....

>  Hint: You can inspect any Pool
Dictionary

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.49

Smalltalk System Dictionary

>  Pool Dictionaries are stored in the Smalltalk system
dictionary

Smalltalk inspect

(Smalltalk at: #TextConstants) at: #ESC $

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.50

Accessing globals

>  Use message-sending instead of directly accessing pool
variables

stream nextPut: Lf "A pool variable visible to the class"

stream nextPut: Character lfvs.

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.51

What you should know!

✎  What does is-a mean?
✎  What is the difference between sending a message to

an object and to its class?
✎  What are the responsibilities of a metaclass?
✎  What is the superclass of Object class?
✎  Where is new defined?
✎  What is the difference between class variables and

class instance variables?

© Oscar Nierstrasz

ST — Understanding Classes and Metaclasses

9.52

Can you answer these questions?

✎  Why are there no explicit metaclasses?
✎  When should you override new?
✎  Why donʼt metaclasses inherit from Class?
✎  Are there any classes that donʼt inherit from Object?
✎  Is Metaclass a Class? Why or why not?
✎  Where are the methods class and superclass defined?
✎  When should you define an indexed class?
✎  Are Java static variables just like class variables or class instance

variables?
✎  Where is the SystemDictionary Smalltalk defined?

© Oscar Nierstrasz

ST — Introduction

1.53

Attribution-ShareAlike 3.0 Unported
You are free:

to Share — to copy, distribute and transmit the work
to Remix — to adapt the work

Under the following conditions:
Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).
Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this work. The
best way to do this is with a link to this web page.

Any of the above conditions can be waived if you get permission from the copyright holder.
Nothing in this license impairs or restricts the author's moral rights.

License

http://creativecommons.org/licenses/by-sa/3.0/	

