
10. Reflection

Birds-eye view

© Oscar Nierstrasz

ST — Reflection

1.2

Reflection allows you to
both examine and alter the
meta-objects of a system.

Using reflection to modify
a running system
requires some care.

© Oscar Nierstrasz

ST — Reflection

10.3

Roadmap

>  Reification and reflection
>  Introspection

—  Inspecting objects
—  Querying code
—  Accessing run-time contexts

>  Intercession
—  Overriding doesNotUnderstand:
—  Anonymous classes
—  Method wrappers

Selected material by Marcus Denker and Stéphane Ducasse

© Oscar Nierstrasz

ST — Reflection

10.4

Roadmap

>  Reification and reflection
>  Introspection

—  Inspecting objects
—  Querying code
—  Accessing run-time contexts

>  Intercession
—  Overriding doesNotUnderstand:
—  Anonymous classes
—  Method wrappers

Selected material by Marcus Denker and Stéphane Ducasse

Why we need reflection

© Oscar Nierstrasz

ST — Reflection

10.5

As a programming language becomes higher and
higher level, its implementation in terms of
underlying machine involves more and more
tradeoffs, on the part of the implementor, about what
cases to optimize at the expense of what other
cases. … the ability to cleanly integrate something
outside of the languageʼs scope becomes more and
more limited

Kiczales, in Paepcke 1993

© Oscar Nierstrasz

ST — Reflection

10.6

What is are Reflection and Reification?

>  Reflection is the ability of a program to manipulate as
data something representing the state of the program
during its own execution.
—  Introspection is the ability for a program to observe and

therefore reason about its own state.
—  Intercession is the ability for a program to modify its own

execution state or alter its own interpretation or meaning.

>  Reification is the mechanism for encoding execution
state as data

—  Bobrow, Gabriel & White, 1993

Reflection and Reification

© Oscar Nierstrasz

ST — Reflection

7

© Oscar Nierstrasz

ST — Reflection

10.8

Consequences

>  “A system having itself as application domain and that is
causally connected with this domain can be qualified as
a reflective system”

—  Maes, OOPSLA 1987

—  A reflective system has an internal representation of itself.
—  A reflective system is able to act on itself with the ensurance

that its representation will be causally connected (up to date).
—  A reflective system has some static capacity of self-

representation and dynamic self-modification in constant
synchronization

© Oscar Nierstrasz

ST — Reflection

10.9

Metaprogramming in Programming Languages

>  The meta-language and the language can be different:
—  Scheme and an OO language

>  The meta-language and the language can be same:
—  Smalltalk, CLOS
—  In such a case this is a metacircular architecture

© Oscar Nierstrasz

ST — Reflection

10.10

Structural and behavioral reflection

>  Structural reflection is concerned with the ability of the
language to provide a complete reification of both
—  the program currently executed
—  as well as its abstract data types.

>  Behavioral reflection is concerned with the ability of the
language to provide a complete reification of
—  its own semantics and implementation (processor)
—  as well as the data and implementation of the run-time system.

Malenfant et al., A Tutorial on Behavioral
Reflection and its Implementation, 1996

© Oscar Nierstrasz

ST — Reflection

10.11

Roadmap

>  Reification and reflection
>  Introspection

—  Inspecting objects
—  Querying code
—  Accessing run-time contexts

>  Intercession
—  Overriding doesNotUnderstand:
—  Anonymous classes
—  Method wrappers

Selected material by Marcus Denker and Stéphane Ducasse

© Oscar Nierstrasz

ST — Reflection

10.12

The Essence of a Class

1.  A format
—  I.e., a number of instance variables and types

2.  A superclass
3.  A method dictionary

© Oscar Nierstrasz

ST — Reflection

10.13

Behavior class>> new

>  In Pharo:

Behavior class>>new
| classInstance |
classInstance := self basicNew.
classInstance methodDictionary:
 classInstance emptyMethodDictionary.
classInstance superclass: Object.
classInstance setFormat: Object format.
^ classInstance

NB: not to be confused with Behavior>>new!

© Oscar Nierstrasz

ST — Reflection

10.14

The Essence of an Object

1.  Class pointer
2.  Values

>  Can be special:
—  SmallInteger
—  Indexed rather than pointer values
—  Compact classes (CompiledMethod, Array …)

© Oscar Nierstrasz

ST — Reflection

10.15

Metaobjects vs metaclasses

>  Need distinction between metaclass and metaobject!
—  A metaclass is a class whose instances are classes
—  A metaobject is an object that describes or manipulates other

objects
–  Different metaobjects can control different aspects of objects

© Oscar Nierstrasz

ST — Reflection

10.16

Some MetaObjects

>  Structure:
—  Behavior, ClassDescription, Class, Metaclass, ClassBuilder

>  Semantics:
—  Compiler, Decompiler, IRBuilder

>  Behavior:
—  CompiledMethod, BlockContext, Message, Exception

>  ControlState:
—  BlockContext, Process, ProcessorScheduler

>  Resources:
—  WeakArray

>  Naming:
—  SystemDictionary

>  Libraries:
—  MethodDictionary, ClassOrganizer

Meta-Operations

© Oscar Nierstrasz

ST — Reflection

10.17

“Meta-operations are operations that
provide information about an object as
opposed to information directly
contained by the object ...They permit
things to be done that are not normally
possible”

Inside Smalltalk

© Oscar Nierstrasz

ST — Reflection

10.18

pt := 10@3.
pt instVarNamed: 'x'.
pt instVarNamed: 'x' put: 33.
pt

10

33@3

Accessing state

>  Object>>instVarAt: aNumber
>  Object>>instVarNamed: aString
>  Object>>instVarAt: aNumber put: anObject

© Oscar Nierstrasz

ST — Reflection

10.19

'hello' class
(10@3) class
Smalltalk class
Class class
Class class class
Class class class class

'hello' identityHash
Object identityHash
5 identityHash

ByteString
Point
SystemDictionary
Class class
Metaclass
Metaclass class

2664
2274
5

Accessing meta-information

>  Object>>class
>  Object>>identityHash

© Oscar Nierstrasz

ST — Reflection

10.20

Changes

>  Object>>primitiveChangeClassTo: anObject
—  both classes should have the same format, i.e., the same

physical structure of their instances
–  “Not for casual use”

>  Object>>become: anotherObject
—  Swap the object pointers of the receiver and the argument.
—  All variables in the entire system that used to point to the

receiver now point to the argument, and vice-versa.
—  Fails if either object is a SmallInteger

>  Object>>becomeForward: anotherObject
—  Like become: but only in one direction.

© Oscar Nierstrasz

ST — Reflection

10.21

Implementing Instance Specific Methods

ReflectionTest>>testPrimitiveChangeClassTo
| behavior browser |

behavior := Behavior new.
behavior superclass: Browser.
behavior setFormat: Browser format.
browser := Browser new.

browser primitiveChangeClassTo: behavior new.
behavior compile: 'thisIsATest ^ 2'.

self assert: browser thisIsATest = 2.
self should: [Browser new thisIsATest]
 raise: MessageNotUnderstood.

© Oscar Nierstrasz

ST — Reflection

10.22

become:

>  Swap all the pointers from one object to the other and
back (symmetric)

ReflectionTest>>testBecome
| pt1 pt2 pt3 |

pt1 := 0@0.
pt2 := pt1.
pt3 := 100@100.
pt1 become: pt3.

self assert: pt1 = (100@100).
self assert: pt1 == pt2.
self assert: pt3 = (0@0).

© Oscar Nierstrasz

ST — Reflection

10.23

becomeForward:

>  Swap all the pointers from one object to the other
(asymmetric)

ReflectionTest>>testBecomeForward
| pt1 pt2 pt3 |

pt1 := 0@0.
pt2 := pt1.
pt3 := 100@100.
pt1 becomeForward: pt3.

self assert: pt1 = (100@100).
self assert: pt1 == pt2.
self assert: pt2 == pt3.

© Oscar Nierstrasz

ST — Reflection

10.24

Roadmap

>  Reification and reflection
>  Introspection

—  Inspecting objects
—  Querying code
—  Accessing run-time contexts

>  Intercession
—  Overriding doesNotUnderstand:
—  Anonymous classes
—  Method wrappers

Selected material by Marcus Denker and Stéphane Ducasse

Code metrics

© Oscar Nierstrasz

ST — Reflection

25

Collection allSuperclasses size.
Collection allSelectors size.
Collection allInstVarNames size.
Collection selectors size.
Collection instVarNames size.
Collection subclasses size.
Collection allSubclasses size.
Collection linesOfCode.

2
610
0
163
0
9
101
864

SystemNavigation

© Oscar Nierstrasz

ST — Reflection

26

SystemNavigation default browseAllImplementorsOf: #,

© Oscar Nierstrasz

ST — Reflection

10.27

Recap: Classes are objects too

>  Object
—  Root of inheritance
—  Default Behavior
—  Minimal Behavior

>  Behavior
—  Essence of a class
—  Anonymous class
—  Format, methodDict, superclass

>  ClassDescription
—  Human representation and organization

>  Metaclass
—  Sole instance

© Oscar Nierstrasz

ST — Reflection

10.28

Classes are Holders of CompiledMethods

© Oscar Nierstrasz

ST — Reflection

10.29

Invoking a message by its name

>  Asks an object to execute a message
—  Normal method lookup is performed

Object>>perform: aSymbol
Object>>perform: aSymbol with: arg

5 factorial
5 perform: #factorial

120
120

© Oscar Nierstrasz

ST — Reflection

10.30

Executing a compiled method

>  No lookup is performed!

CompiledMethod>>valueWithReceiver:arguments:

(SmallInteger>>#factorial)
valueWithReceiver: 5
arguments: #()

(Integer>>#factorial)
valueWithReceiver: 5
arguments: #()

Error: key not found
120

MethodReference

© Oscar Nierstrasz

ST — Reflection

31

Finding super-sends within a hierarchy

© Oscar Nierstrasz

ST — Reflection

32

class := Collection.
SystemNavigation default
 browseMessageList: (class withAllSubclasses gather: [:each |
 each methodDict associations
 select: [:assoc | assoc value sendsToSuper]
 thenCollect: [:assoc | MethodReference class: each selector: assoc key]])
 name: 'Supersends of ' , class name , ' and its subclasses'

© Oscar Nierstrasz

ST — Reflection

10.33

Roadmap

>  Reification and reflection
>  Introspection

—  Inspecting objects
—  Querying code
—  Accessing run-time contexts

>  Intercession
—  Overriding doesNotUnderstand:
—  Anonymous classes
—  Method wrappers

Selected material by Marcus Denker and Stéphane Ducasse

© Oscar Nierstrasz

ST — Reflection

10.34

Accessing the run-time stack

>  The execution stack can be reified and manipulated on
demand
—  thisContext is a pseudo-variable which gives access to the stack

© Oscar Nierstrasz

ST — Reflection

10.35

What happens when a method is executed?

>  We need space for:
—  The temporary variables
—  Remembering where to return to

>  Everything is an Object!
—  So: we model this space with objects
—  Class MethodContext

ContextPart variableSubclass: #MethodContext
instanceVariableNames: 'method closureOrNil receiver'
classVariableNames: ''
poolDictionaries: ''
category: 'Kernel-Methods'

© Oscar Nierstrasz

ST — Reflection

10.36

MethodContext

>  MethodContext holds all state associated with the
execution of a CompiledMethod
—  Program Counter (pc, from ContextPart)
—  the Method itself (method)
—  Receiver (receiver) and the Sender (sender)

>  The sender is the previous MethodContext
—  (or BlockContext)
—  The chain of senders is a stack
—  It grows and shrinks on activation and return

© Oscar Nierstrasz

ST — Reflection

10.37

Contextual halting

>  You canʼt put a halt in methods that are called often
—  e.g., OrderedCollection>>add:
—  Idea: only halt if called from a method with a certain name

HaltDemo>>haltIf: aSelector
| context |
context := thisContext.
[context sender isNil]
 whileFalse:
 [context := context sender.
 (context selector = aSelector)
 ifTrue: [Halt signal]].

NB: Object>>haltIf: in Pharo is similar

© Oscar Nierstrasz

ST — Reflection

10.38

HaltDemo

HaltDemo>>foo
self haltIf: #bar.
^ 'foo'

HaltDemo>>bar
^ (self foo), 'bar'

'foo'HaltDemo new foo

HaltDemo new bar

© Oscar Nierstrasz

ST — Reflection

10.39

Roadmap

>  Reification and reflection
>  Introspection

—  Inspecting objects
—  Querying code
—  Accessing run-time contexts

>  Intercession
—  Overriding doesNotUnderstand:
—  Anonymous classes
—  Method wrappers

Selected material by Marcus Denker and Stéphane Ducasse

© Oscar Nierstrasz

ST — Reflection

10.40

Overriding doesNotUnderstand:

>  Introduce a Minimal Object
—  Wraps a normal object
—  Does not understand very much
—  Redefines doesNotUnderstand:
—  Superclass is nil or ProtoObject
—  Uses becomeForward: to substitute the object to control

© Oscar Nierstrasz

ST — Reflection

10.41

Minimal Object at Work

Logging message sends with a minimal object

© Oscar Nierstrasz

ST — Reflection

42

ProtoObject subclass: #LoggingProxy
instanceVariableNames: 'subject invocationCount'
classVariableNames: ''
poolDictionaries: ''
category: 'PBE-Reflection' LoggingProxy>>initialize

invocationCount := 0.
subject := self.

LoggingProxy>>doesNotUnderstand: aMessage
Transcript show: 'performing ', aMessage printString; cr.
invocationCount := invocationCount + 1.
^ aMessage sendTo: subject

Message>>sendTo: receiver
^ receiver perform: selector withArguments: args

Using become: to install a proxy

© Oscar Nierstrasz

ST — Reflection

43

testDelegation
| point |
point := 1@2.
LoggingProxy new become: point.
self assert: point invocationCount = 0.
self assert: point + (3@4) = (4@6).
self assert: point invocationCount = 1.

NB: become: will swap the subject variable of the proxy

© Oscar Nierstrasz

ST — Reflection

10.44

Limitations

>  self problem
—  Messages sent by the object to itself are not trapped!

>  Class control is impossible
—  Canʼt swap classes

>  Interpretation of minimal protocol
—  What to do with messages that are understood by both the

MinimalObject and its subject?

Using minimal objects to dynamically generate
code

© Oscar Nierstrasz

ST — Reflection

45

DynamicAccessors>>doesNotUnderstand: aMessage
| messageName |
messageName := aMessage selector asString.
(self class instVarNames includes: messageName)
 ifTrue: [self class compile:
 messageName , String cr , ' ^ ' , messageName.
 ^ aMessage sendTo: self].
super doesNotUnderstand: aMessage

A minimal object can be used to dynamically
generate or lazily load code that does not yet exist.

© Oscar Nierstrasz

ST — Reflection

10.46

Roadmap

>  Reification and reflection
>  Introspection

—  Inspecting objects
—  Querying code
—  Accessing run-time contexts

>  Intercession
—  Overriding doesNotUnderstand:
—  Anonymous classes
—  Method wrappers

Selected material by Marcus Denker and Stéphane Ducasse

© Oscar Nierstrasz

ST — Reflection

10.47

Message control with anonymous classes

>  Create an anonymous class
—  Instance of Behavior
—  Define controlling methods
—  Interpose it between the instance and its class

© Oscar Nierstrasz

ST — Reflection

10.48

Selective control

© Oscar Nierstrasz

ST — Reflection

10.49

Anonymous class in Pharo

| anonClass set |
anonClass := Behavior new.
anonClass superclass: Set;
setFormat: Set format.

anonClass compile:
'add: anObject
 Transcript show: ''adding '', anObject printString; cr.
 ^ super add: anObject'.

set := Set new.
set add: 1.

set primitiveChangeClassTo: anonClass basicNew.
set add: 2.

© Oscar Nierstrasz

ST — Reflection

10.50

Evaluation

>  Either instance-based or group-based
>  Selective control
>  No self-send problem
>  Good performance
>  Transparent to the user
>  Requires a bit of compilation

—  (could be avoided using clone as in Method Wrapper)

© Oscar Nierstrasz

ST — Reflection

10.51

Roadmap

>  Reification and reflection
>  Introspection

—  Inspecting objects
—  Querying code
—  Accessing run-time contexts

>  Intercession
—  Overriding doesNotUnderstand:
—  Anonymous classes
—  Method wrappers

Selected material by Marcus Denker and Stéphane Ducasse

© Oscar Nierstrasz

ST — Reflection

10.52

Method Substitution

First approach:
>  Add methods with mangled names

—  but the user can see them

Second approach:
>  Wrap the methods without polluting the interface

—  replace the method by an object that implements
run:with:in:

© Oscar Nierstrasz

ST — Reflection

10.53

MethodWrapper before and after methods

A MethodWrapper replaces an original CompiledMethod
in the method dictionary of a class and wraps it by
performing some before and after actions.

A LoggingMethodWrapper

© Oscar Nierstrasz

ST — Reflection

54

LoggingMethodWrapper>>initializeOn: aCompiledMethod
method := aCompiledMethod.
reference := aCompiledMethod methodReference.
invocationCount := 0

LoggingMethodWrapper>>install
reference actualClass methodDictionary
 at: reference methodSymbol
 put: self

LoggingMethodWrapper>>run: aSelector with: anArray in: aReceiver
invocationCount := invocationCount + 1.
^ aReceiver withArgs: anArray executeMethod: method

NB: Duck-typing also requires (empty) flushCache,
methodClass:, and selector: methods

uninstall is similar …

Installing a LoggingMethodWrapper

© Oscar Nierstrasz

ST — Reflection

55

logger := LoggingMethodWrapper on:
Integer>>#factorial.

logger invocationCount.
5 factorial.
logger invocationCount.

logger install.
[5 factorial] ensure: [logger uninstall].
logger invocationCount.

10 factorial.
logger invocationCount.

0

0

6

6

Checking Test Coverage

© Oscar Nierstrasz

ST — Reflection

56

TestCoverage>>run: aSelector with: anArray in: aReceiver
self mark; uninstall.
^ aReceiver withArgs: anArray executeMethod: method

TestCoverage>>mark
hasRun := true

© Oscar Nierstrasz

ST — Reflection

10.57

Evaluation

>  Class based:
—  all instances are controlled

>  Only known messages intercepted
>  A single method can be controlled
>  Does not require compilation for installation/removal

© Oscar Nierstrasz

ST — Reflection

10.58

What you should know!

✎  What is the difference between introspection and
intercession?

✎  What is the difference between structural and
Behavioral reflection?

✎  What is an object? What is a class?
✎  What is the difference between performing a message

send and simply evaluating a method looked up in a
MethodDictionary?

✎  In what way does thisContext represent the run-time
stack?

✎  What different techniques can you use to intercept and
control message sends?

© Oscar Nierstrasz

ST — Reflection

10.59

Can you answer these questions?

✎  What form of “reflection” is supported by Java?
✎  What can you do with a metacircular architecture?
✎  Why are Behavior and Class different classes?
✎  What is the class ProtoObject good for?
✎  Why is it not possible to become: a SmallInteger?
✎  What happens to the stack returned by thisContext if you

proceed from the self halt?
✎  What is the metaclass of an anonymous class?

© Oscar Nierstrasz

ST — Reflection

1.60

Attribution-ShareAlike 3.0 Unported
You are free:

to Share — to copy, distribute and transmit the work
to Remix — to adapt the work

Under the following conditions:
Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).
Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this work. The
best way to do this is with a link to this web page.

Any of the above conditions can be waived if you get permission from the copyright holder.
Nothing in this license impairs or restricts the author's moral rights.

License

http://creativecommons.org/licenses/by-sa/3.0/	

