
Dynamic Object-Oriented Programming with Smalltalk
HS 2009

Prof. O. Nierstrasz
David Röthlisberger, Timur Altun

11. Bytecode
Generating bytecode is the job of IRBuilder. This class is part of the NewCompiler package. There is a pre-build
Pharo image available at

http://www.iam.unibe.ch/∼scg/Research/NewCompiler/.

Here one example as seen in the lecture:

irMethod:= IRBuilder new
numRargs: 1;
addTemps: #(self);
pushTemp: #self;
send: #truncated;
returnTop;
ir.

aCompiledMethod := irMethod compiledMethod.

The variable aCompiledMethod now contains the generated compiled method. This method can be executed:

aCompiledMethod valueWithReceiver: 3.5 arguments: #()

Exercise 11.1: Expressions
With the help of IRBuilder, generate a method that calculates the expression (3 + 2*2) factorial and
returns the result.

Exercise 11.2: Parameters
Change the code that you wrote for the first exercise to use parameters instead of hard coded numbers: (a + b)
factorial. If executed with

aCompiledMethod valueWithReceiver: nil arguments: #(3 4)

it should print 5040.

Exercise 11.3: Instance Variables
Generate a method that adds two instance variables and returns the result. Test the code by running it on a Point,
e.g., 3@4.

Exercise 11.4: Closure Bytecodes
Provide two generated bytecodes for the next fragment of code. One with closure specific bytecodes and the other
without them. You can generated the two different bytecode by using two different VMs for Pharo, one with
closure support and one without, as discussed in the lecture.

test
| temp block |
temp := 0.
block := [[temp]].
temp := 1.
block := block value.
temp := 2.
ˆblock value

1

http://www.iam.unibe.ch/~scg/Research/NewCompiler/

Dynamic Object-Oriented Programming with Smalltalk
HS 2009

Prof. O. Nierstrasz
David Röthlisberger, Timur Altun

Exercise 11.5: Loops *1

The Squeak bytecode has support for jumps. Jumps are used to implement conditionals and loops in an efficient
way. Generate a compiledMethod with IRBuilder that outputs the numbers 1 to 10 on the Transcript window.

Static Bytecode Analysis

With the help of InstructionStream and InstructionClient, we can easily interpret the code of a method. As an
example, see class InstructionPrinter.

Exercise 11.6: Counting Bytecodes

Implement a class that counts the message send bytecodes of a method. The code

SendCounter on: (Object compiledMethodAt: #halt)

should return 1.

Runtime Bytecode Analysis

Look at the method tallyInstructions: in the class ContextPart (class-side):

"This method uses the simulator to count the number of occurrences of
each of the Smalltalk instructions executed during evaluation of aBlock.
Results appear in order of the byteCode set."
| tallies |
tallies := Bag new.
thisContext sender

runSimulated: aBlock
contextAtEachStep: [:current | tallies add: current nextByte].

ˆtallies sortedElements

The method runSimulated: aBlock contextAtEachStep: [:current ...] executes aBlock and for each bytecode
executed, the second argument block is evaluated with an instance of one of the subclasses of ContextPart as the
argument.

ContextPart tallyInstructions: [3.14159 printString]

Exercise 11.7: Counting Number of Executed Bytecodes

Write a similar method named numberOfBytecodeExecuted: aBlock that returns the number of bytecode exe-
cuted when evaluating the provided block. For instance:

ContextPart numberOfBytecodeExecuted: [3.14159 printString]

In total, the expression 3.14159 printString is evaluated by executing around 1000 bytecodes.

1The starred exercises are optional

2

Dynamic Object-Oriented Programming with Smalltalk
HS 2009

Prof. O. Nierstrasz
David Röthlisberger, Timur Altun

Exercise 11.8: Bytecode Covered *
When a method is invoked, not all the bytecode contained in this method are executed. For instance, when exe-
cuting 3.14159 printString the method on: defined in the class WriteStream is executed, but only 90% of its
bytecode are executed.

ContextPart bytecodeCovered: [3.14159 printString]
==> #(
#(’WriteStream>>on:’ 90)
#(’LimitedWriteStream>>nextPut:’ 69)
#(’Object>>species’ 100)
...)

Write the method bytecodeCovered: aBlock that answers an array of all the methods executed when evaluating
the passed block. For all executed methods, an inner array first contains the qualified method name and second the
percentage of executed bytecode compared to the total number of bytecode the method contains. The array should
look like in the example above.

Please save the code and send it by mail to st-staff@iam.unibe.ch. Attach your written solutions that are
not part of the source-code to the mail or hand them in as hardcopy at the beginning of the next exercise
session. Your mail and solutions should be clearly marked with names and matrikel numbers of the solution
authors.

3

mailto:st-staff@iam.unibe.ch

