
Dynamic Object-Oriented Programming with Smalltalk
HS 2009

Prof. O. Nierstrasz
David Röthlisberger, Timur Altun

12. Exemplary Solutions: Virtual Machines and Repetition

Exercise 12.1:

markAndSweepGC
self mark.
self sweep.
self removeMarks.

mark
SystemNavigation default allObjectsDo: [:obj | self markObject: obj].

markObject: anObject
anObject mark.
1 to: (self numberOfFieldsOf: anObject) do: [:index |

self markObject: (self fetchPointer: indes ofObject at: anObject)]

sweep
SystemNavigation default allObjectsDo: [:obj |

obj isMarked ifFalse: [self releaseObject: obj]]

removeMarks
SystemNavigation default allObjectsDo: [:obj | obj unmark].

Exercise 12.2:

Object subclass: #LoadAverageSampler
instanceVariableNames: ’loads index process’
classVariableNames: ’’
poolDictionaries: ’’
category: ’LoadAvg’

LoadAverageSampler >> open
self isStarted ifFalse: [self start].
(RectangleMorph new)

layoutPolicy: TableLayout new;
layoutInset: 10;
listDirection: #topToBottom;
hResizing: #shrinkWrap;
vResizing: #shrinkWrap;
addMorphBack: ((UpdatingStringMorph on: [self printString]

selector: #value)
stepTime: 1000;
minimumWidth: 170;
growable: true);

1

Dynamic Object-Oriented Programming with Smalltalk
HS 2009

Prof. O. Nierstrasz
David Röthlisberger, Timur Altun

color: Color white;
borderColor: Color black;
openInWindowLabeled: ’Load Avg’.

LoadAverageSampler >> start
self stop.
loads := IntegerArray new: self defaultNumberOfMeasurements.
index := 0.
process := [self sampleBlock repeat] forkAt: self defaultPriority.

LoadAverageSampler >> stop
process isNil ifFalse: [process terminate]

LoadAverageSampler >> loadAverageForMinutes: aNumber
| size measurements |
aNumber > self defaultTotalSamplingMinutes

ifTrue: [self error: ’Out of bounds’].

size := aNumber * 60 / self defaultSamplingPeriod.
measurements := self lastLoads: size.
ˆ measurements average roundTo: 0.01

LoadAverageSampler >> printString
ˆ String streamContents: [:stream |

#(1 5 15)
do: [:each |

stream nextPutAll: ((self loadAverageForMinutes: each)
printShowingDecimalPlaces: 2)]

separatedBy: [stream nextPutAll: ’, ’]]

LoadAverageSampler >> isStarted
ˆ process notNil

LoadAverageSampler >> lastLoads: aNumber
ˆ (index - aNumber to: index) collect: [:each |

loads atWrap: each]

LoadAverageSampler >> recordLoad: aNumber
loads atWrap: (index := index + 1) put: aNumber

LoadAverageSampler >> sampleBlock
ˆ [

(Delay forSeconds: 5) wait.
self recordLoad: Processor currentLoad]

2

Dynamic Object-Oriented Programming with Smalltalk
HS 2009

Prof. O. Nierstrasz
David Röthlisberger, Timur Altun

LoadAverageSampler >> defaultNumberOfMeasurements
"We take 1 measurement every defaultSamplingPeriod seconds for
defaultTotalSamplingMinutes"

ˆ self defaultTotalSamplingMinutes * 60 / self defaultSamplingPeriod

LoadAverageSampler >> defaultPriority
ˆ Processor userInterruptPriority

LoadAverageSampler >> defaultSamplingPeriod
ˆ 5

LoadAverageSampler >> defaultTotalSamplingMinutes
ˆ 15

Exercise 12.3:

1. A class instance variable is like an instance variable, but on the class side. Thus with a class
instance variable, we model the private state of this class. Instances of this class do not see this pri-
vate state. As for instance variable, a class instance variable is also shared among sub(meta)classes.
A class variable, however, is shared among all instances of a class and subclasses and can be read
in instance- and class-side methods of all these classes.

2. self is dynamically bound to the receiver of a message send, super is statically bound to the
method in which it is written, independently from the receiver. Thus with super you always
directly point to the superclass of the class in which you use super while with self you point
to the current receiver object of a message send, which might be an instance of sub-classes of the
class in which you write self.

3. thisContext provides a reification to the stack, that is, the execution flow up to the current
method in which thisContext is evaluated. Concretely thisContext points to the current
stack frame from which we can go back to previous stack frames using #sender.

4. A metaclass is the class of a class. Each class has exactly one associated metaclass created au-
tomatically and transparently by the system. The so-called class-side method are actually just
methods of this anonymous metaclass. As each class is an object, a metaclass is an object too.
Thus Metaclass inherits from Object.

5. A good example for double dispatch can be found when considering Integer and Float:

Integer >> + aNumber
ˆ aNumber sumFromInteger: self

Float >> + aNumber
ˆ aNumber sumFromFloat: self

Integer >> sumFromInteger: anInteger
<primitive: 40>

3

Dynamic Object-Oriented Programming with Smalltalk
HS 2009

Prof. O. Nierstrasz
David Röthlisberger, Timur Altun

Float >> sumFromInteger: anInteger
ˆ anInteger asFloat + self

Integer >> sumFromFloat: aFloat
ˆ aFloat + self asFloat

Float >> sumFromFloat: aFloat
<primitive: 41>

6. A Feature Envy is a code smell, for instance a method or parts of a method which accesses too
much information from one or several external objects. Thus this methods is tightly coupled to
other external objects, which make the method hard to understand, maintain and evolve. This
undesirable situation can be tackled by moving either functionality from this method to the other
objects or from the other objects directly to this method, if appropriate.

Exercise 12.4:

What are the results of the following expressions?

1. ’Hello’
2. 42
3. 6

Exercise 12.5:

1.

#(3.4 5)

is also answered by

#(1 2 3.4 5) reject: [:each | each <= 3]

2.

detect: aBlock ifNone: exceptionBlock
"Evaluate aBlock with each of the receiver’s elements as the argument.
Answer the first element for which aBlock evaluates to true. If none
evaluate to true, then evaluate the argument, exceptionBlock."

self do: [:each | (aBlock value: each) ifTrue: [ˆ each]].
ˆ exceptionBlock value.

3.

#(3 5 7 9)

4

Dynamic Object-Oriented Programming with Smalltalk
HS 2009

Prof. O. Nierstrasz
David Röthlisberger, Timur Altun

Exercise 12.6:

1. We simply implement two methods isBehavior, one in Object and one in Behavior:

Object >> isBehavior
ˆ false

Behavior >> isBehavior
ˆ true

2. #new is implemented in Behavior, Behavior >> new

3.

• Integer class class => Metaclass

• Metaclass superclass => ClassDescription

• Class isKindOf: Object => true

Exercise 12.7:

Answer the following questions:

1. Press on ’++’: The counter increases by one, that is, ’1’ is shown.

2. Back button: ’0’ is shown again.

3. Press on ’++’ again: ’2’ is shown.

4. Fix for for back button: Implement a #states methods to answer an array with self as its sole
value.

Exercise 12.8: Bytecode

tt: aPoint
ˆ aPoint extent: 4@3.

5

