
Dynamic Object-Oriented Programming with Smalltalk
HS 2009

Prof. O. Nierstrasz
David Röthlisberger, Timur Altun

2. Exemplary Solutions: Objects and Expressions

Exercise 2.1: Simple Expressions

Table 1: Solution exercise 2.1
Expression Receiver Selector Arguments Result
3 + 4 3 + 4 7
Date today Date (class!) today None. (current date)
anArray at: 1 anArray at:put: 1 and ’hello’ an Array with ’hello’
put: ’hello’ as first element
25@50 25 @ 50 a Point: 25@50

Exercise 2.2: Some Questions

• Objects described by the following expressions are:

1. ’Hello, Dave’
is a String

2. #Node1
is a Symbol

3. #(1 2 3)
is an Array with 1, 2, and 3 as elements

• The following code:

| anArray |
anArray := #(’first’ ’second’ ’third’ ’fourth’).
ˆanArray at: 2

yields the String ’second’ when evaluated.

Exercise 2.3:

• Minimal number of parentheses for the following expressions:

1. 3 + 4 + (2 * 2) + (2 * 3)
2. x isZero ifTrue: [....].

(x includes: y) ifTrue: [....].

• Results of the following expressions

6 + 4 / 2 = 5
1 + 3 negated = -2
1 + (3 negated) = -2
2 raisedTo: 3 + 2 = 32
2 negated raisedTo: 3 + 2 = -32

1

Dynamic Object-Oriented Programming with Smalltalk
HS 2009

Prof. O. Nierstrasz
David Röthlisberger, Timur Altun

Exercise 2.4:

• Sequence of executions steps for the following expressions:

1. Date today daysInMonth

(a) sending message today to class Date, resulting in the current date.
(b) sending message daysInMonth to this current date object, resulting in the number of

days in this month (eg. 30 for September).

2. #(1 2 3) size + 7

(a) creating an array with elements 1, 2 and 3. Internally, the Smalltalk compiler translates
the expression #(1 2 3) to Array with: 1 with: 2 with: 3

(b) sending message size to this array object, resulting in the SmallInteger 3.
(c) sending message + with argument 7 to 3, resulting in the SmallInteger 10.

3. 5@5 extent: 6.0 truncated @ 7

(a) sending message @ to 5 with argument 5, resulting in the point 5@5.
(b) sending message extent: to this point. But now Smalltalk will first evaluate the

argument expression passed to extent::
(c) sending message truncated to 6.0 (a float), resulting in the SmallInteger 6.
(d) sending message @ to 6 with argument 7, resulting in the point 6@7.
(e) Now the argument for extent: has been completely evaluated, thus Smalltalk sends

the message extent: to point 5@5 with argument point 6@7, resulting in a rectangle
with origin 5@5 and corner 11@12.

• Transcript show: 34 + 89 printString

prints the sum of 34 + 89 (that is, 123) on the Transcript.

2

