Dynamic Object-Oriented Programming with Smalltalk Prof. O. Nierstrasz
HS 2009 Lukas Renggli, David Réthlisberger, Timur Altun

7. Exemplary Solutions: Seaside: Composition

Exercise 7.1

STMainFrame class >> canBeRoot
“true

STMainFrame >> renderContentOn: html
html div class: #header; with: [
html div class: #theater; with: [
html text: STTheater default name].
html div class: #season; with: [
html text: STTheater default season]].
html div class: #headerLine; with: [html break].
html div class: #menu; with: [html break].

STMainFrame >> style

“’ .theater {
font-size: 30px;
font-weight: bold;
color: #FFCCO0O0;

}

.season {
font-size: 18px;
font-weight: bold;
padding-bottom: 5px;

}

.header {
padding: 8px;
background-color: #006699;

}

.headerLine {
background-color: #000066;

}

.menu {
position: absolute;
top: 110px;
left: 20px;
width: 120px;
padding: 5px;
border-wdith: lpx;
border-style: dotted;
}
.main {
position: absolute;

Dynamic Object-Oriented Programming with Smalltalk
HS 2009

Prof. O. Nierstrasz
Lukas Renggli, David Rothlisberger, Timur Altun

top: 110px;
left: 180px;
width: 80%;

padding: 5px;

Exercise 7.2

#STMainFrame
"child’

WAComponent subclass:
instanceVariableNames:
classVariableNames: '’
poolDictionaries: '’
category: ’'Tutorial-Theater-View’

STMainFrame >> initialize
super initialize.
self buyTicket.

STMainFrame >> buyTicket
child := STBuyTicketTask new.

STMainFrame >> children
Array with: child

STMainFrame >> renderContentOn: html

html div class: #menu; with: [
html anchor callback:

with:

html div class: #main;

[self buyTicket];
child.

with: 'Buy ticket’].

Exercise 7.3

When using the back button after clicking on Buy Ticket, the application wants to go back to a state in
which the child component, STBuyTicketTask, has not yet been registered. Thus Seaside cannot locate
this child component and raises an error as the two components, the main frame and the buying ticket
component are not in sync. To synchronize them, you can answer in the #states method a list of com-
ponents that should be in sync. For more information, visit http://book.seaside.st/book/

components/calling/back-button.

STMainFrame >> states
"Array with: self

http://book.seaside.st/book/components/calling/back-button
http://book.seaside.st/book/components/calling/back-button

Dynamic Object-Oriented Programming with Smalltalk Prof. O. Nierstrasz
HS 2009 Lukas Renggli, David Réthlisberger, Timur Altun

Exercise 7.4

A very simple solution is to use the play and show chooser to select from which play and show the
customer wants to change tickets. Then we can use the ticket printer to select all the tickets sold for this
specific show. For this we have to extend the ticket printer with check boxes allowing the customer to
select the right tickets. Finally, we again use the show chooser to select another show of the previously
selected play and move the selected tickets there. Of course we do not pass the show to the show chooser
from which we want to move tickets. Also we just allow the user to select shows that have enough seats
available to move all the selected tickets to that show. Note that in this exercise we assume that tickets
are not directly assigned to a specific customer; in reality this would be different of course.

In the model we just add a method #removeTicket: to class STShow. Very important, we also write a
test for this method, #testShowRemoveTicket.

Please find in the following the respective code in STChangeTicketTask and in the model. We also
show the adaptations in the STTicketPrinter.

WATask subclass: #STChangeTicketTask
instanceVariableNames: 'tickets fromShow toShow’
classVariableNames: '’
poolDictionaries: '’
category: ’'Tutorial-Theater-View’

STChangeTicketTask >> go

| play |
play := self call: (STPlayChooser new plays: STTheater default plays).
fromShow := self call: (STShowChooser new shows: play shows).
tickets := self call: (STTicketPrinter new tickets:

(fromShow tickets asSortedCollection: [:a :b | a id <= b id])).
toShow := self call: (STShowChooser new shows:

(play shows reject: [:s |

s = fromShow and: [s placesFree < tickets size]])).

self moveTickets.

STChangeTicketTask >> moveTickets
self tickets do: [:ticket |
self fromShow removeTicket: ticket.
self toShow addTicket: ticket]

STTicketPrinter >> renderContentOn: html
html form: [
self tickets withIndexDo: [:ticket :i |
html checkbox onTrue: [self addTicket: ticket] onFalse: [].
html div class: #ticket; with: [
R
html submitButton wvalue: ’'0Ok’; callback:
[self answer: selectedTickets]].

Dynamic Object-Oriented Programming with Smalltalk

Prof. O. Nierstrasz

HS 2009 Lukas Renggli, David Rothlisberger, Timur Altun

STShow >> removeTicket: aTicket
aTicket setShow: nil.
" self tickets remove: aTicket.

STModelTests >> testShowRemoveTicket
self assert: (show addTicket: ticket) = ticket.
self assert: ticket show = show.
self assert: show placesSold = 1.
self assert: show placesFree + show placesSold =

self assert: ticket show isNil.
self assert: show placesSold = 0.
self assert: show placesFree + show placesSold =

show placesTotal.
self assert: (show removeTicket: ticket) = ticket.

show placesTotal.

Exercise 7.5

WAComponent subclass: #STShowReport
instanceVariableNames: ’"batchedList table’
classVariableNames: '’
poolDictionaries: '’
category: ’'Tutorial-Theater-View’

STShowReport >> initialize
super initialize.
self initializeBatchedList.
self createTable.

STShowReport >> initializeBatchedList
batchedList := WABatchedList new
items: self allShows;
batchSize: 10;
yourself

STShowReport >> allShows
"STTheater default shows asSortedCollection:

[ta b | a timestamp <= b timestamp]

STShowReport >> children
Array with: table with: batchedList

STShowReport >> createTable
table := WATableReport new
rowPeriod: 1;
rowColors: #(’lightgrey’ ’'white’);

Dynamic Object-Oriented Programming with Smalltalk Prof. O. Nierstrasz
HS 2009 Lukas Renggli, David Réthlisberger, Timur Altun

columns: (OrderedCollection new
add: (WAReportColumn renderBlock:
[:e | e play title] title: ’'Play’);
add: (WAReportColumn renderBlock:
[:e | e play kind] title: ’'Kind');
add: (WAReportColumn renderBlock:
[:e | e play author] title: "Author’);

add: ((WAReportColumn renderBlock: [:e | e] title: ’'Timestamp’)
formatBlock: [:e | e date asString, ' ', e time asString];
sortBlock: [:a :b | a timestamp <= b timestamp]);

add: (WAReportColumn selector: #placesFree title: ’'Free’);
add: (WAReportColumn selector: #placesSold title: ’Sold’);
add: (WAReportColumn selector: #placesTotal title: ’'Total’);
yourself);

yourself.

STShowReport >> renderContentOn: html
table rows: batchedList batch.
html render: table.
html break.
html render: batchedList.

