

Workshop Co-Chairs

Sushil Bajracharya University of California, Irvine, USA

Adrian Kuhn University of Bern, Switzerland

Yunwen Ye SRA, Inc, Japan

Program Committee

Andrew Begel Microsoft Research, USA

Harald Gall University of Zurich, Switzerland

Mark Grechanik Accenture Technology Labs, USA

Reid Holmes University of Washington, USA

Einar Høst Norsk Regnesentral, Norway

Toshihiro Kamiya National Institute of Advanced Industrial

Science and Technology, Japan

Andrew Ko University of Washington, USA

Ken Krugler Krugle, USA

Cristina Lopes University of California, Irvine, USA

Andrian Marcus Wayne State University, USA

Kumiyo Nakakoji University of Tokyo & SRA, Japan

Oscar Nierstrasz University of Bern, Switzerland

Lori Pollock University of Delaware, USA

Romain Robbes University of Lugano, Switzerland

Susan Sim University of California, Irvine, USA

Janice Singer NRC, Canada

Suresh Thummalapenta North Carolina State University, USA

Andreas Zeller Saarland University, Germany

© 2009 IEEE. Personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or for creating new

collective works for resale or redistribution to servers or lists, or to reuse any copyrighted

component of this work in other works must be obtained from the IEEE.

Workshop Extended Abstract

WS_0824 SUITE 2009: First International Workshop

on Search-Driven Development– Users,

Infrastructure, Tools and Evaluation

Sushil Bajracharya

Adrian Kuhn

Yunwen Ye

List of Papers

SUITE_3123 Sourcerer: An Internet-Scale Software

Repository

Sushil Bajracharya

Joel Ossher

Cristina Lopes

SUITE_3113 Characterizing Example Embedment as a

Software Activity

Ohad Barzilay

Orit Hazzan

Amiram Yehudai

SUITE_3117 Search, Stitch, View: Easing Information

Integration in an IDE

Thomas Fritz

Gail C. Murphy

SUITE_3121 Do developers search for source code

examples using multiple facts?

 Reid Holmes

SUITE_3119 Software Component Recommendation

Based on User Collaborations

Makoto Ichii

Yasuhiro Hayase

Reishi Yokomori

Tetsuo Yamamoto

Katsuro Inoue

SUITE_3115 Lowering the Barrier to Reuse through

Test-Driven Search

Werner Janjic

Dietmar Stoll

Philipp Bostan

Colin Atkinson

SUITE_3111 Programmable Queries or a New Design

of Search Tools

Toshihiro Kamiya

SUITE_3110 Exploring Java Software Vocabulary: A

Search and Mining Perspective

Erik Linstead

Lindsey Hughes

Cristina Lopes

Pierre Baldi

SUITE_3118 Improving Software Quality Via Code

Searching and Mining

Madhuri Marri

Suresh Thummalapenta

Tao Xie

SUITE_3122 Hybrid Storage for Enabling Fully-

Featured Text Search and Fine-Grained

Structural Search over Source Code

Oleksandr Panchenko

SUITE_3114 What to Search For Steven Reiss

SUITE_3112 On the Evaluation of Recommender

Systems with Recorded Interactions

Romain Robbes

SUITE_3116 Internet-Scale Code Search Susan E. Sim

Rosalva E. Gallardo-

Valencia

SUITE_3120 Working with Search Results Jamie Starke

Chris Luce

Jonathan Sillito

SUITE 2009: First International Workshop on Search-Driven Development
– Users, Infrastructure, Tools and Evaluation

Sushil Bajracharya
University of California, Irvine

sbajrach@ics.uci.edu

Adrian Kuhn
University of Bern

akuhn@iam.unibe.ch

Yunwen Ye
Software Research Associates, Inc.

ye@sra.co.jp

Abstract

SUITE is a new workshop series that specifically focuses
on exploring the notion of search as a fundamental activity
during software development. The goal of the workshop is
to bring researchers and practitioners with special interest
on search technology for software developers together. Par-
ticipants will have broad range of expertise in topics rang-
ing from building software tools and infrastructure, Infor-
mation Retrieval, user studies and Human-computer inter-
action, benchmarking and evaluation.

The first edition of SUITE is held in conjunction with
the 31st International Conference in Software Engineering
(May 16-24, 2009. Vancouver, Canada).

1 Motivation

The workshop is motivated by the observation that soft-
ware developers spend most of their times in searching per-
tinent information they need to solve their task at hand
[8]. Past research has shown that code search is the
most frequent activity software developers engage in [12].
They spend most of their time in navigation and search
tools in their IDE [11]. More recently there has been
some significant efforts both from academia and the in-
dustry in building specialized search engines for develop-
ers [2, 3, 1, 5, 4, 9, 6, 10, 13, 7]. Most of these leverage
the huge amount of source code available in open source
repositories. However, these tools are still exploring the
tip of the iceberg. We know that source code is not the
only artifact that developers need to search and that tradi-
tional search engine interfaces have limitations to serve as
ideal tools for searching pertinent information for develop-
ers. Furthermore, along with the tools we still need a solid
understanding of how developers are really using these sys-
tems.

2 Objectives

As software development is a process of both informa-
tion creation and information gathering, software develop-
ers are constantly searching for the right information and
person to solve their problems at hand. This workshop will
focus specifically on exploring the notion of search as a fun-
damental activity during software development. The goal of
the workshop is to bring researchers and practitioners with
special interest on search technology for software develop-
ers together. Participants will have broad range of expertise
in topics ranging from building software tools and infras-
tructure, information retrieval, user studies and HCI, bench-
marking and evaluation.

The workshop will facilitate interested researchers to
share their ideas and experience in understanding the search
need and behavior of developers, building tools that ad-
dresses these various needs, and scientific ways to evaluate
these tools.

3 Topics

The workshop addresses the problem of search as it oc-
curs during software development. Search is related to soft-
ware mining, but differs in its problems and challenges. For
example, two of the important topics the workshop focuses
on are: a) search-engines for public software repositories on
the internet, and b) specialized search-engines for IDEs.

Areas of interests include, but are not limited to:

• Application of natural language processing on source
code and related artifacts.

• Approaches, applications, and tools for software
search.

• Case studies on setting up and running large software
search-engines.

• Empirical studies of search and navigation in IDEs.

1

• How can industry and researchers collaborate?

• Information retrieval and machine learning techniques
to search source code.

• Integration of specialized search engines into IDEs.

• Methods of integrating indexed data from various
sources and histories.

• Query languages to search software and repositories.

• Search techniques to assist developers in finding suit-
able components and code fragments for reuse.

• Techniques for indexing large software repositories
(and their history) efficiently.

• Static analysis and parsing of internet-scale code
repositories.

• Crawling source code in the internet and code reposi-
tories.

• The use of visualizations to support software search.

• Validation of tools and software searching benchmarks
(datasets).

• Ranking strategies and heuristics for code search.

• Slicing and generative techniques for code extraction
and synthesis.

4 Submissions

This year’s submissions to the workshop touches var-
ious themes as seen across the topics presented above.
They range from tools and infrastructure to user stud-
ies and experiments. All, in one way or another, mo-
tivated by the goal of enhancing the search experience
of developers during software development. The list of
accepted papers is available from the workshop’s web-
site http://smallwiki.unibe.ch/suite2009/. Final
versions of the papers appear in the ICSE proceedings.

5 Ogranizers

Sushil Bajracharya1 is a PhD candidate in the Depart-
ment of Informatics, Donald Bren School of Information
and Computer Sciences, University of California Irvine,
USA.

Adrian Kuhn2 is a PhD candidate at the Software Com-
position Group, University of Bern, Switzerland.

Yunwen Ye is a manager in the Technology Strategy Di-
vision in Software Research Associates, Inc. Japan.

1http://www.ics.uci.edu/∼sbajrach
2http://smallwiki.unibe.ch/adriankuhn

References

[1] Google code search home page.
http://www.google.com/codesearch.

[2] Koders web site. http://www.koders.com.

[3] Krugle web site. http://www.krugle.com.

[4] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor,
P. Baldi, and C. Lopes. Sourcerer: a search engine for open
source code supporting structure-based search. In OOP-
SLA ’06: Companion to the 21st ACM SIGPLAN symposium
on Object-oriented programming systems, languages, and
applications, pages 681–682, New York, NY, USA, 2006.
ACM.

[5] R. Hoffmann, J. Fogarty, and D. S. Weld. Assieme: finding
and leveraging implicit references in a web search interface
for programmers. In UIST ’07: Proceedings of the 20th an-
nual ACM symposium on User interface software and tech-
nology, pages 13–22, New York, NY, USA, 2007. ACM.

[6] R. Holmes and G. C. Murphy. Using structural context to
recommend source code examples. In ICSE ’05: Proceed-
ings of the 27th international conference on Software engi-
neering, pages 117–125, New York, NY, USA, 2005. ACM.

[7] O. Hummel, W. Janjic, and C. Atkinson. Code conjurer:
Pulling reusable software out of thin air. IEEE Softw.,
25(5):45–52, 2008.

[8] A. J. Ko, R. DeLine, and G. Venolia. Information needs in
collocated software development teams. In ICSE ’07: Pro-
ceedings of the 29th international conference on Software
Engineering, pages 344–353, Washington, DC, USA, 2007.
IEEE Computer Society.

[9] O. A. L. Lemos, S. K. Bajracharya, J. Ossher, R. S. Morla,
P. C. Masiero, P. Baldi, and C. V. Lopes. Codegenie: us-
ing test-cases to search and reuse source code. In ASE ’07:
Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, pages 525–
526, New York, NY, USA, 2007. ACM.

[10] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman. Jungloid
mining: helping to navigate the api jungle. In PLDI ’05:
Proceedings of the 2005 ACM SIGPLAN conference on Pro-
gramming language design and implementation, pages 48–
61, New York, NY, USA, 2005. ACM.

[11] G. C. Murphy, M. Kersten, and L. Findlater. How are java
software developers using the eclipse ide? IEEE Softw.,
23(4):76–83, 2006.

[12] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil. An ex-
amination of software engineering work practices. In CAS-
CON ’97: Proceedings of the 1997 conference of the Centre
for Advanced Studies on Collaborative research, page 21.
IBM Press, 1997.

[13] S. Thummalapenta and T. Xie. Parseweb: a programmer as-
sistant for reusing open source code on the web. In ASE ’07:
Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, pages 204–
213, New York, NY, USA, 2007. ACM.

2

Sourcerer: An Internet-Scale Software Repository

Sushil Bajracharya Joel Ossher Cristina Lopes
Donald Bren School of Information and Computer Sciences

University of California, Irvine
{sbajrach, jossher, lopes}@ics.uci.edu

Abstract

Vast quantities of open source code are now available
online, presenting a great potential resource for software
developers. Yet the current generation of open source code
search engines fail to take advantage of the rich structural
information contained in the code they index. We have de-
veloped Sourcerer, an infrastructure for large-scale index-
ing and analysis of open source code. By taking full ad-
vantage of this structural information, Sourcerer provides a
foundation upon which state of the art search engines and
related tools easily be built. We describe the Sourcerer in-
frastructure, present the applications that we have built on
top of it, and discuss how existing tools could benefit from
using Sourcerer.

1. Introduction

The proliferation of open source software has resulted in
vast quantities of source code being available online. This
code is a great potential resource for software engineers,
as it represents a vast store of accumulated development
knowledge.

Accessing this knowledge, however, has proven to be a
challenge. A number of open source code search engines
have sprung up, but all are based primarily around tradi-
tional information retrieval techniques [1, 2, 3]. The rich
structural information contained in the code is all but ig-
nored. This hampers the advent of next-generation code
search technologies, which seek to take into account this
structural information. It also makes building software en-
gineering tools on top of these search engines significantly
more work than should be necessary. In this position pa-
per we present Sourcerer, an infrastructure for large-scale
indexing and analysis of open source code. Sourcerer pro-
vides a foundation upon which these state of the art search
engines and tools can easily be built.

We describe the Sourcerer infrastructure, specifically the
metamodel it uses for storing detailed structural informa-

tion, how it links references across projects, and the code
index. We also present the applications that we have built on
top of this infrastructure, which are now available as public
web services, and discuss how existing tools could benefit
from using Sourcerer.

2. Sourcerer Infrastructure

Sourcerer crawls the internet looking for Java source
code from a variety of locations, such as open source repos-
itories, public web sites, and version control systems. This
code is then parsed, analyzed and stored in Sourcerer in var-
ious forms: (i) Managed Repository keeps a versioned copy
of the original contents of the project and related artifacts
such as libraries; (ii) Code Database stores models of the
parsed projects, based on the metamodel; and, (iii) Code
Index stores keywords extracted from the code for efficient
retrieval.

Figure 1 shows the general architecture of the Sourcerer
infrastructure, specifically in the context of the code it in-
dexes and the services and applications that it supports.
More information on an earlier architecture in addition to
some repository statistics can be found here [11].

2.1. Relational Metamodel

There were two major considerations in deciding on the
exact metamodel for the structural information in Sourcerer.
It had to be sufficiently expressive as to allow fine-grained
search and structure-based analyses, and it had to be effi-
cient and scalable enough to include all the code we could
get our hands on.

In the end, we settled on an adapted version of Chen et
al.’s [5] C++ entity-relationship-based metamodel. In par-
ticular, we agreed with their decision to focus on what they
termed a top-level declaration granularity, as it provides a
good compromise between the excessive size of finer gran-
ularities and the analysis limitations of coarser ones. The
metamodel we present here is an evolution of the earlier

Figure 1. Sourcerer system architecture

Sourcerer metamodel [11]. The revised metamodel adds
support for the latest version of Java, among other things.

Following the metamodel, a project model element
exists for every project contained in the managed repos-
itory, as well as every unique jar file. A project thereby
contains either a collection of Java source files or a single
jar file. Both types of files are linked to the sets of entities
contained within them, and to the relations that have these
entities as their source.

Entities The following is a complete list of entity
types: PACKAGE, CLASS, INTERFACE, CONSTRUCTOR,
METHOD, INITIALIZER, FIELD, ENUM, ENUM CONSTANT,
ANNOTATION, ANNOTATION ELEMENT, PRIMITIVE,
ARRAY, TYPE VARIABLE, and PARAMETRIZED TYPE.
These types all adhere their standard meaning in Java,
as defined in the Java Language Specification (JLS) [6].
Each entity is uniquely identified within a project by its
fully qualified name (FQN), a slightly altered version of
the binary name described in the JLS. An entity is further
annotated with the Java modifiers that referred to it, the
project and file that it came from, and its location in that
file.

Relations The majority of the structural information is
found in the relations between these entities. All of the re-
lations are binary, linking one entity to another. Two ex-
ample relations are INSIDE, representing physical contain-
ment, and USES, a catch-all relation for any references. A
relation is uniquely identified by its project, type, and the
FQNs of its source and target. Any time that the same re-
lation is generated more than once by the feature extractor,
such as a method calling another method multiple times in

its body, those relations are collapsed into one. Therefore,
unlike entities, relations are not linked directly to their lo-
cation in the source code. Their smallest containing entity
is all that is known.

2.2. Cross-Project Dependencies

Every project has some external dependencies, even if
only on the standard Java libraries. These dependencies are
typically packaged in jar files and included along with the
source code. During feature extraction, a large number of
relations end up with their targets as entities contained in
these jar files. Take Apache’s Log4j project, for example.
Many other projects use Log4j, and include log4j.jar

in their repositories. In such a project, let’s call it Loggy,
one could see relations with target entities contained in
log4j.jar.

On the one hand, these jar entities are specific to Loggy,
as they are located within the copy of log4j.jar found in
the Loggy repository. On the other hand, these jar entities
could be matched to the corresponding entities in Apache’s
Log4j project (which also happens to be in our repository)
as well as to other identical copies of log4j.jar. In
order to gather cross-project dependency information, all
such uses of entities from log4j.jar ought to be linked
to the Log4j project. However, the original link to the
jar file ought to be preserved, in case Loggy’s version of
log4j.jar is different from the version of Log4j in our
repository.

In order to achieve these goals, we begin by uniquely
identifying all the jar files across projects. Each file is then
run through our feature extractor, and the results are placed
into the database. Whenever a relation referencing a jar en-
tity is added to the database, it is linked to the entity from
that jar. Once the repository is fully populated, we then at-
tempt to match each jar entity to a corresponding entity in a
source project using a number of heuristics.

In cases where a necessary jar file might not have been
included in a project repository, we try to locate that jar
file based on the missing dependency information. Also,
we have a number of heuristics to detect cases in which a
project reuses a library by copying source code, so that such
dependency information is not lost.

2.3. Fine-Grained Code Index

Sourcerer maintains a fine-grained index of the terms ex-
tracted from various parts of the code. The searchable index
is constructed with fields that closely parallel the various
entities in the metamodel. Table 1 presents a subset of the
fields available in the Sourcerer index. The full list is de-
scribed in [4]. To populate these fields, a language specific
tokenizer extracts more meaningful terms from the entity

FQNs and parts of the comments. Common practices in
naming, such as the CamelCase and the use of special char-
acters (eg; ” ”, ”-”) are used to split the names into these
terms.

Fields in the Sourcerer index can be categorized into five
types: (i) Fields for basic retrieval that store terms coming
from various parts of the name of an entity; (ii) Fields for re-
trieval with signatures that store terms coming from method
signatures and also terms that indicate number of arguments
a method has; (ii) Fields storing metadata, for example the
type of the entity, so that a search could be limited to one
or more types of entities; (iii) Fields that pertain to some
metric computed on an entity; (iv) Fields that store ids of
entities for navigational/browsing queries.

Sourcerer uses Lucene as its underlying index store.
Here is a sample query that utilizes different fields:

• ”short name: (week date) AND entity type:
METHOD AND m ret type sname contents: String
AND m sig args fqn contents: Date” meaning, find
a method with terms ”week” and ”date” in its short
name, that returns a type with short name ”String” and
takes in argument with a type with the term ”Date” in
its name.

Index Field Description
Fields for basic retrieval
fqn Fully qualified name of an entity, unto-

kenized
fqn contents Tokenized terms from the FQN of an

entity.
comments The collected text (untokenized) from

an entity’s comments
Fields for retrieval with signatures
m sig args sname method’s formal arguments short name

in format arg1,arg2,arg3,...,argn
m sig ret type fqn FQN of the method’s return type
Fields Storing metadata
entity type String representation of entity type. Eg;

”CLASS”
Fields for navigation
fan in mcall local entity ids of all local callers for a

method from the same project

Table 1. Sample search index fields

3. Sourcerer Web Services

All of the artifacts managed and stored in Sourcerer are
accessible through a set of web services. Currently three
services are open to public. A detailed description of how
to use these services is available online [4]. We intend to
add a fourth service in the near future to provide more direct
access to the code database.

1. Code Search: This service implements a query pro-
cessing facility. Client applications (such as CodeGe-
nie [10]) can send queries as a combination of terms
and fields and the service returns a result set with
detailed information on the entities that matched the
queries. The query language is based on Lucene’s im-
plementation and our extended query parser supports
different query forms that allow the clients to express
more structural information in the queries.

2. Repository Access: This service provides access to the
Managed Repository in Sourcerer. All the code arti-
facts, libraries and metadata are accessible using this
service. Every entity that is stored in the Sourcerer
repository has a unique identifier and thus services pro-
vides access to the source of the entity (for example a
Java file) given the unique id.

3. Slicing Service: This service provides dependency
slices of any entities stored in the repository. A depen-
dency slice of an entity is a program which includes
that entity as well as all the entities upon which it de-
pends. Requested slices are packaged into zip files,
and should immediately be compilable.

Our algorithm for computing these dependency slices
is finer-grained than the forward reachability analysis
described by Chen et al. [5], and shares some similari-
ties with the dependency slicing done by Rodrigues et
al. [14] for functional languages.

4. Application to Existing Tools

This section presents existing software engineering tools
from a few different areas, and describes how they could
have benefited from the Sourcerer infrastructure.

Example Recommendation: Holmes et al.’s Strathcona
[7] is a tool for using a developer’s current structural con-
text to recommend source code examples. Strathcona at-
tempts to match the structural information in the current
context against examples from its repository. The informa-
tion stored in Strathcona’s repository is sufficiently similar
to that in Sourcerer’s that Strathcona could be implemented
on top of the Sourcerer infrastructure. This would focus
Strathcona’s development on the matching heuristics and
client integration, while immediately providing access to a
very large repository.

XSnippet [15], Prospector [12] and PARSEWeb [16] are
all systems designed to provide examples of object instanti-
ation. Although implementation on top of Sourcerer would
provide some benefit to all of them, PARSEWeb would be
dramatically improved. Currently PARSEWeb uses Google
Code Search to find and download likely examples of object
instantiation. These snippets are then analyzed to determine

if they contain appropriate invocation sequences. This anal-
ysis is complicated by the fact the code snippets are missing
most of their external references. PARSEWeb is forced to
utilize a variety of heuristic techniques to guess the miss-
ing types. Sourcerer is ideally suited for this sort of use,
as it can provide snippets where the external references are
present, eliminating the errors introduced by the fuzzy anal-
ysis.

Information Mining: Both SpotWeb [17] and CodeWeb
[13] are tools for detecting API hotspots. If they were to
use Sourcerer, hotspots could be detected directly simply
by ordering the entities in a jar by the number of incoming
relations.

Pragmatic Reuse: Holmes and Walker’s approach to
reuse [8] shares many similarities with our dependency slic-
ing. While our approach is fully automated, drawing in
all necessary dependencies, theirs permits a greater level
of customization, allowing developers to exclude dependen-
cies they do not want. In order to achieve this customiza-
tion, however, a developer must download and import the
full project into his workspace. This creates a fair amount of
manual overhead, for if there are multiple candidate projects
for reuse, the process must be repeated for each one. Fur-
thermore, any unresolved dependencies in the initial project
download will remain unresolved in the final result. The
combination of their approach with the Sourcerer infras-
tructure has the potential to eliminate many of these prob-
lems. One could construct a reuse plan on a slice returned
by our system, further reducing its size, without having to
worry about downloading the full project or unrelated or
unresolved dependencies.

Test-Driven Code Search: Tools such as CodeGenie
[10] and Code Conjurer [9] take a test-driven approach
to code search. Both automatically use the context pro-
vided by a test case to formulate queries. CodeGenie uses
Sourcerer code search as it underlying search engine, and
thus benefits from the slicer and repository access web ser-
vices, as well as the cross-project dependency resolution.
Code Conjuerer uses merobase (www.merobase.com), in-
stead, which has similar capabilities to Sourcerer. While
Code Conjurer’s dependency resolution can pull in required
files, Sourcerer’s dependency slicing is at a finer granu-
larity, which helps reduce the complexity of reused code.
Nevertheless, both these tools demonstrate the benefit of an
internet-scale code repository such as Sourcerer.

5. Conclusion

In this paper, we presented the Sourcerer infrastructure
for the large-scale indexing and analysis of source code. We
briefly outlined highlights of its functionality, and described
the applications that we have built on top of it. Lastly,
we discussed how existing tools could benefit from using

Sourcerer.

References

[1] Google code search. http://www.google.com/codesearch.
[2] Koders. http://www.koders.com.
[3] Krugle. http://www.krugle.org.
[4] Sourcerer services. http://sourcerer.ics.uci.edu/services/.
[5] Y.-F. Chen, E. R. Gansner, and E. Koutsofios. A c++ data

model supporting reachability analysis and dead code detec-
tion. IEEE Trans. Softw. Eng., 24(9):682–694, 1998.

[6] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java(TM)
Language Specification, The (3rd Edition) (Java (Addison-
Wesley)). Addison-Wesley Professional, 2005.

[7] R. Holmes and G. C. Murphy. Using structural context to
recommend source code examples. In ICSE ’05: Proceed-
ings of the 27th international conference on Software engi-
neering, pages 117–125, New York, NY, USA, 2005. ACM.

[8] R. Holmes and R. J. Walker. Lightweight, semi-automated
enactment of pragmatic-reuse plans. In ICSR ’08: Proceed-
ings of the 10th international conference on Software Reuse,
pages 330–342, Berlin, Heidelberg, 2008. Springer-Verlag.

[9] O. Hummel, W. Janjic, and C. Atkinson. Code conjurer:
Pulling reusable software out of thin air. IEEE Softw.,
25(5):45–52, 2008.

[10] O. Lemos, S. K. Bajracharya, J. Ossher, P. C. Masiero, and
C. Lopes. Applying test-driven code search to the reuse of
auxiliary functionality. In 24th Annual ACM Symposium on
Applied Computing (SAC 2009), 2009.

[11] E. Linstead, S. Bajracharya, T. Ngo, P. Rigor, C. Lopes, and
P. Baldi. Sourcerer: mining and searching internet-scale soft-
ware repositories. Data Mining and Knowledge Discovery.

[12] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman. Jungloid
mining: helping to navigate the api jungle. In PLDI ’05:
Proceedings of the 2005 ACM SIGPLAN conference on Pro-
gramming language design and implementation, pages 48–
61, New York, NY, USA, 2005. ACM.

[13] A. Michail. Code web: data mining library reuse patterns. In
ICSE ’01: Proceedings of the 23rd International Conference
on Software Engineering, pages 827–828, Washington, DC,
USA, 2001. IEEE Computer Society.

[14] N. Rodrigues and L. S. Barbosa. Component identification
through program slicing. In L. S. Barbosa and Z. Liu, ed-
itors, Proc. of FACS’05 (2nd Int. Workshop on Formal Ap-
proaches to Component Software), volume 160, pages 291–
304, UNU-IIST, Macau, 2006. Elect. Notes in Theor. Comp.
Sci., Elsevier.

[15] N. Sahavechaphan and K. Claypool. Xsnippet: mining for
sample code. In OOPSLA ’06: Proceedings of the 21st
annual ACM SIGPLAN conference on Object-oriented pro-
gramming systems, languages, and applications, pages 413–
430, New York, NY, USA, 2006. ACM.

[16] S. Thummalapenta and T. Xie. Parseweb: a programmer as-
sistant for reusing open source code on the web. In ASE ’07:
Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, pages 204–
213, New York, NY, USA, 2007. ACM.

[17] S. Thummalapenta and T. Xie. Spotweb: detecting frame-
work hotspots via mining open source repositories on the
web. In MSR ’08: Proceedings of the 2008 international
working conference on Mining software repositories, pages
109–112, New York, NY, USA, 2008. ACM.

Character izing Example Embedding as a Software Activity

Ohad Barzilay

Tel Aviv University
ohadbr@tau.ac.il

Orit Hazzan

Technion - IIT
oritha@techunix.technion.ac.il

Amiram Yehudai

Tel Aviv University
amiramy@tau.ac.il

Abstract

We use an empirical qualitative software
engineering research to characterize Example
Embedding (EE) as a software activity - a collection of
fine grained techniques which together assemble an
abstract key notion in software development. This
perspective lays the foundations for building an
activity catalogue, forming new software practices,
affecting the development process and motivating the
development of new software tools.

1. Introduction

We wish to identify and characterize a variety of

usages of examples in software construction as a

software activity. Motivation for this research direction

is partially derived from the already well-known

software activity of refactoring. Refactoring is a

disciplined technique for restructuring an existing body

of code, altering its internal structure without changing

its external behavior [1]. Although refactoring code has

been performed informally for years, William

Opdyke's 1993 Ph.D. dissertation [2] is the first known

resource that specifically examines refactoring.

The mere identification of refactoring as an activity,

as well as its naming and defining, promoted the

following important processes: First, building a

catalogue of different examples of refactorings,

describing how to apply them properly and discussing

their subtleties. Second, it enabled the development of

software tools automatically applying various

refactorings. Third, it influenced the coding practices,

the way in which programmers write code, using, for

example, test-driven development techniques. And

fourth, it affected the software lifecycle by allowing

the design phase to be incorporated into the coding

phase and by legitimizing time allocation for activities

which improve the code without adding functionality.

These advancements would not have been possible had

the refactoring activity not been extracted from the

various activities that constitute the coding phase.

We wish to identify another such activity, which is

currently not well appreciated as a standalone

technique, and thus establish the foundation for further

advancements. We argue that Example Embedding

(EE), the act of embedding a code segment from an

example into a software system being developed, is

such an activity. Although some of the aspects of EE

have already been addressed in the literature from the

perspectives of tool writers and machine learning, e.g.

[3], we introduce a broader perspective by which one

could derive additional implications and applications

of the example embedding software activity.

2. Related work

The study of using examples in software

engineering appears in the literature in several

contexts. We highlight the similarities and differences

between our approach and the approach taken by other

representative researchers.

In [3] Edwards takes a tool centric approach.

Example Centric Programming provides an IDE that

illuminates code with examples. In order to implement

a new functionality, say a method, the programmer

writes some well-chosen examples that call this

method, and an automated tool, called EG, writes the

code of the required method interactively with the

programmer. Edwards lists some interesting

implications of this approach, such as example centric

debugging and testing, teaching with examples and

example driven development. Although our research

shares some of these implications, the EE software

activity described here relies on already existing

examples rather than trade code writing with example

writing.

In [4], Hummel et al use a slightly different

approach, They present a tool that automatically finds

and presents suitable reusable software components to

developers, where the programmer specifies the

functionality needed using an interface-like syntax.

Our approach, on the other hand, is not tool driven, but

rather a product of an empirical study, formulated

through a field research. We would seek tool support

for an already existing software activity rather than

engineering a software activity to conform to existing

useful tool.

Another context in which examples are studied is

learning, such as machine learning and program

comprehension. This is out of the scope of our work.

3. M ethodology

The software engineering research field described in

the paper employs a qualitative research methodology

to build a field-grounded theory [5]. We investigate

industrial software development activities and patterns

by observing professional software engineers at work

in major software companies, aiming to identify

development activities that are currently assimilated in

the coding phase. Data gathering tools include

observations, interviews, reflective practitioner

techniques, and questionnaires.

The research is built bottom-up: we start from fine-

grained activities observed in the field and analyze the

data using standard qualitative techniques [5], looking

for recurring activities and hidden patterns. We then

refine our research questions and repeat the process

(observation-analysis-refinement), aiming to build a

field-grounded theory, identifying and characterizing

an already existing software activity that have not been

investigated yet. The first phase of this 3-phases

research has already been completed and involved the

investigation of software development at the

development sites of two major, worldwide software

companies.

4. Software activity

We define a software activity as a collection of fine

grained techniques, which together assemble an

abstract key notion in software development. We argue

that some of the already acknowledged software

activities, such as coding or debugging, are composed

of other finer software activities. For example,

refactoring is one of the software activities that

constitute the coding software activity.

Distinguishing a new software activity from an

already acknowledged activity is an important process

that affects software engineering in various dimensions

as follows.

4.1. Abstraction

The mere naming and definition of a new software

activity increase the level of abstraction in the software

engineering discourse. Due to the new name, some

micro activities could be interpreted in a wider context

of a more abstract notion. This recognition may affect

the development of tools, catalogues and practices as

described in the next sub-sections.

Moreover, the definition raises the awareness level

of the programmers to cognitive aspects inherent in the

particular software activity, by highlighting the fact

that some of the tasks involved in software

construction differ from others.

4.2. Recipe catalogue

We use the term recipe catalogue to describe a

detailed and comprehensive description of all known

instances of some software activity. The GoF book [6]

is a good example of a catalogue (for design patterns).

As with cook books, where different dishes require

different attention, so do software activities.

4.3. Practices

We define a software practice as a set of behaviors,

applied systematically following some mental model

[7] to perform a software related task. In contrast with

a software activity, which is declarative in nature, a

software practice is a meaningful imperative unit at the

abstraction level of the development process. A

software activity by itself is meaningless unless

applied in a systematic, disciplined methodological

way. For example, test driven development [8] is a

programming practice enabled by the refactoring and

testing activities.

4.4. Development process

An effective programming practice that

encompasses multiple activities challenges software

lifecycle models such as the waterfall model and the

spiral model, which address only one activity in each

of their phases, such as: design, coding and testing.

Agile methods, on the other hand, [9], break the phase

paradigm, and compensate the lack of a designated

design and testing phases by using a test driven

development software practice. This practice

incorporates design and testing together into the coding

activity.

4.5. Tools

Software tools are useful for activity

implementation in at least two ways. First, after one

characterizes a key activity, it is easier to identify

repetitive tasks. In many cases, those tasks could be

automated or at least supported by an automatic

software tool that would perform them easily, and in

some cases could ensure and enforce their correctness

consistently. A second use of a software tool is in

providing a framework that captures the sub elements

of this software activity and assists in streamlining

them. Working with such a framework guides the

developer along the major steps.

5. Example embedding

During the first observation phase of the research,

we tracked nine experienced developers in two Israeli

sites of major worldwide software companies. The

analysis of the observation reports discovered that

many developers (among other activities) use examples

in ways that differ from each other, for example in the

granularity and type of the example, in the way the

example is found and where, in how the example is

chosen and in how it is embedded in the code.

Aiming to generalize and characterize this software

activity, we define example embedding (EE) to be the

use of some already written code in the process of

writing some new code. In what follows, we present

the various dimensions of software engineering

mentioned above with respect to EE and introduce

preliminary classification criteria that could serve as a

starting point for a future catalogue, and motivate the

development of new software tools and programming

practices.

5.1. Abstraction

The definition and characterization of EE raises the

programmers' level of awareness to code reuse; it is

not only a programming language feature but should

also be assimilated in a common practice. We argue

that reuse should not be limited to the use of code as is,

but rather, should be applied more freely, as long as the

resulting unit is tested thoroughly. The difference

between our approach to reuse and the conventional

black box reuse is analogous to the difference between

refactoring and thorough design. Specifically, as

refactoring liberated us from the need to go through an

elaborate design phase, EE aims at liberating us from

the belief that we need to reuse the code as is. In

several situations even code duplication seems to be a

reasonable or even beneficial design option [10].

5.2 Recipe catalogue

As this research is still in progress, we present only

preliminary results with respect to the categorization

task. Following are several possible categories of EE;

each of them highlights its variability:

! Example for what. Developers use examples in

order to perform various tasks: adding

functionality, fixing a syntax error, applying a

design pattern or bootstrapping with a new

environment ("hello world"). Examples are used

for programming languages, scripting languages,

libraries and APIs and configurations.

! Example size. Examples are different in size,

scope and complexity: from several characters

demonstrating a language operator, through

function calls, and complex operations requiring a

sequence of several method invocations involving

several types.

! Examples source. Examples are taken from the

organization code base, documentation, example

set which is provided by the company, web

tutorials, blogs, emails and more.

! Searching for example. Developers search for

examples using Google search, code search, code

browsing, asking people, and documentation

search; in several occasions, they know upfront

where to look.

! Using the example. Examples are used in various

ways: copy and paste, retyping the example,

refactoring of the example code and then call it.

In some cases one could think of additional

variations that have not been observed yet in the field.

For example, we mention that examples are taken from

the organization code base but we do not mention

using open source code because at this phase our

research is empirically driven and during our

observations so far we have not yet found evidence for

that. At later phases of our research we will focus on

additional EE techniques and look for some missing

variations.

5.3. Practices

Example driven development is primarily a state of

mind, a mental model [7]. Accordingly, we argue that

many programming tasks could be reduced to an

example driven development cycle: find!alter!embed.

In this spirit, one of the important roles of the

categorization presented above is to raise the level of

awareness to the wide spectrum of scenarios in which

examples exist.

5.4. Development process

A software organization that appreciates the

contribution of EE to the development process could

take actions to improve its effectiveness.

One key component is writing examples. We argue

that each programmer should provide examples for

using the code he or she writes. This should be

anchored in the development process the same way

that testing the code is. The analogy with test coverage

is subtle. In test coverage every unit in the system is

tested for some behavior. Example coverage, on the

other hand, aspires that every snippet of the system

code could be easily used to perform meaningful

standalone tasks not necessarily in its original context.

Making example writing a habit, would pave the

way for public and general purpose example

repositories, integrated with documentation ones, with

similar structure and wide community support.

5.5. Tools

We identify three major building blocks in the EE

activity: find, alter, and embed. Tool support should

address each of the activities by itself as well as their

integration.

ID E-browser integration. When a programmer

conducts a web search using a general purpose web

search engine, he or she needs to switch from the IDE

to another application (the browser). The search might

yield several results, which s/he opens in different tabs,

and for examination purposes should copy and paste

each of them back to the IDE. We propose an

integrated solution in which the web search would be

possible from within the IDE. The various possible

solutions could be presented side by side, along with

the code in which they are to be embedded. This would

preserve the programming context along the process of

finding, evaluating and embedding the example.

Extract example ID E support. Modern IDEs

support a large number of automatic refactorings; we

wish to have something similar for EE. When a

programmer browses production code and spots a

snippet that fits his or her needs, the IDE should offer

assistance in this task as described in [11]. However,

we suggest that copy and paste is not the preferred

consumption of an example (to avoid code duplication)

but rather, we propose to enable to extract the example

snippet into method and to call it.

ID E-example repositories integration. Such

integration was already suggested by [12] and [13].

Recent advancements in IDE technology and useful

heuristics such as [14] could overcome the challenges

of searching and browsing these repositories.

6. Summary and future work

In this paper we described an ongoing empirical

software engineering research aimed at characterizing

EE as a software activity. From a methodological

perspective, we showed the benefits of conducting an

empirical SE research on the granularity and

abstraction level of software activities and highlighted

its affect and implications. We also presented

preliminary results of our prototypical research

findings regarding EE and its contribution to

programming practices, the development process and

the creation of software tools.

A lot of work is still left to be done identifying

additional software activities and characterizing the

already existing ones. This is a long, iterative and

interactive process involving SE empirical researchers,

computer scientists, software engineers and other

experts seeking to know more about this multi-faceted

domain of software engineering.

7. References

[1] M. !"#$%&'()*%+,-."&/01(2"3%(4,1%'5(

http://www.refactoring.com.

[2] W. !6(789:;%'()*%+,-."&/01(7<=%-.-Oriented

Frameworks,5(4>6?. dissertation, University of Illinois at

Urbana-Champaign, 1993.

[3] J. @9#,&9A'()@B,38$%(-%0.&/-(8&"1&,33/01'5(SIGPLAN
Not., vol. 39, no. 12, pp. 84C91, 2004.

[4] O. Hummel, W. Janjic, and C. D.;/0A"0'()E"9%(

conjurer: Pulling reusable software out of thi0(,/&'5(IEEE
Software, vol. 25, no. 5, pp. 45C52, 2008.

[5] B. G. Glaser and A. Strauss, The Discovery of
Grounded Theory: Strategies for Qualitative Research.

Chicago: Aldine Publishing Company, 1967.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,

Design patterns: elements of reusable object-oriented
software. Addison-Wesley, 1995.

[7] T. D. LaToza, G. Venolia, and R. ?%F/0%'()G,/0.,/0/01(

3%0.,$(3"9%$AH(,(A.I9:("+(9%J%$"8%&(#"&;(>,</.A'5(/0(ICSE
'06: Proceedings of the 28th international conference on
Software engineering. ACM, 2006, pp. 492C501.

[8] K. Beck, Test Driven Development: By Example.

Addison-Wesley, 2002.

[9] K. Beck and C. Andres, Extreme Programming
Explained: Embrace Change (2nd Edition). Addison-Wesley

Professional, 2004.

[10] C. Kapser and M. K6(L"9+&%:'()M-$"0/01(-"0A/9%&%9(

>,&3+I$M(-"0A/9%&%9(>,&3+I$'5(/0(WCRE '06: Proceedings of
the 13th Working Conference on Reverse Engineering. IEEE

Computer Society, 2006, pp. 19C28.

[11] M. Kim, L. Bergman, T. Lau, and D. N".;/0'()D0(

ethnographic study of copy and paste programming practices

/0(774F'5(/0(ISESE '04: Proceedings of the 2004
International Symposium on Empirical Software
Engineering. IEEE Computer Society, 2004, pp. 83C92.

[12] L. *6(N%,$'()D(A:A.%3(+"&(%B,38$%-based

8&"1&,33/01'5(SIGCHI Bull., vol. 20, no. SI, pp. 63C68.

[13] F. Gerhard, H. Scott, and R. ?,J/9'()E"10/./J%(.""$A(+"&(

loca./01(,09(-"38&%>%09/01(A"+.#,&%("<=%-.A(+"&(&%IA%'5(/0(

ICSE '91: Proceedings of the 13th international conference
on Software engineering. IEEE Computer Society, 1991, pp.

318C328.

[14] R. Holmes and G. E6(GI&8>:'()OA/01(A.&I-.ural context

."(&%-"33%09(A"I&-%(-"9%(%B,38$%A'5(/0(ICSE '05:
Proceedings of the 27th international conference on Software
engineering. ACM, 2005, pp. 117C125.

Search, Stitch, View:

Easing Information Integration in an IDE

Thomas Fritz and Gail C. Murphy

Department of Computer Science

University of British Columbia

Vancouver, BC, Canada

{fritz,murphy}@cs.ubc.ca

Abstract

When building a software system, software developers

each contribute a flow of information that together forms

the system. As they work, developers continuously consult

various fragments of information to answer their questions

about the system. In today’s programming environments, in-

formation is kept in disparate silos, such as program code,

bugs and change sets. However, to answer the variety of

questions a developer faces, the interleaving of information

from multiple sources is typically needed. We have imple-

mented a prototype that allows for the composition of infor-

mation fragments from different silos. We also interviewed

three experienced developers to find out about cases when

they need to interleave information.

1 Motivation

When building a software system, software developers

each contribute a flow of information that together forms the

system. This information comes from many different do-

mains; for instance, source statements, bug descriptions and

meta-information about the creator as well as the creation

time of a change to the system. As a developer is work-

ing on the system he has to answer a variety of questions,

such as “Why and when was this file introduced and how

did it evolve over time?”, “Who is working on what in my

team?” and “Which changes are affecting me [my code]?”.

The questions originate from interviews with practicing in-

dustrial developers and are equivalent to some found by Ko

et al. [3]. These kind of questions span across multiple

domains of information, such as changes, bugs and source

code. Current integrated development environments (IDEs)

that help support developers in their work, mostly focus on

providing information about one domain at a time. This fo-

cus makes it hard for developers to answer these kinds of

questions. Through talking to experienced software devel-

opers, we have learned about three particular scenarios in

which these problems occur.

Evolution of a file. One developer told us about his de-

velopment team’s process for tracking the evolution of a

file. This team uses a tool external to the IDE that requires

each developer to enter an identifier of the bug a commit

fixes in the commit comment. The developers in the team

can then use this tool to find to find the changes made to the

file, look at the actual changes and use the identifier from

the comment to find the corresponding bug to understand

why the change was implemented. While this approach

helps solve a development problem, the solution is outside

of the IDE so the developers lose the benefits of integration

with other tools to be able to achieve integration of source

code and bug information.

Who is working on what in my team. New team mem-

bers and team managers need to find out who is working

on what in their team. Jazz, a team collaboration platform

on top of the Eclipse integrated development environment,

should be well-suited to answer this kind of question. It

brings together several different domains of information,

such as source code, bugs, and teams. However, as many

views in Jazz focus on a single domain of information, a de-

veloper typically has to manually and cognitively map the

information from different views to answer such questions

as who is working on what.

Which changes affect me. To ensure that developers are

made aware of changes that might affect them, one team we

spoke with implemented a strategy that generates an email

to each team member for each change committed to the

team’s repository and sends it out to the whole team. A

downside of this approach is the large number of emails

generated that must be dealt with by each team member.

Another developer stated that his team has a “general com-

munication problem” as the changes do not “trickle down”

to the people. The problem in this case is that developers

might miss important information because its not being dis-

tributed.

The approaches taken by the developers we talked to

for each of these scenarios, either result in developers cog-

nitively mapping together information from different tools

and views, result in developers having to wade through a

lot of information to find just those subsets that are rele-

vant, or result in developers missing important information.

We want to reduce these problems by providing a common

model in the developer’s IDE that allows for the integra-

tion and presentation of information fragments from multi-

ple domains to answer the questions at hand.

A more detailed description of the underlying approach

as well as related work is presented in [1]. In this position

paper, we focus on the initial prototype implementation as

well as initial feedback by three experienced developers.

2 Working with Information Fragments

We have implemented a prototype that allows for the

creation, composition and presentation of information frag-

ments on top of Jazz.

Information Fragments. Underlying the prototype is

the idea that a developer working on a system never thinks

about all of the information forming the system at a time.

He only takes into account a small part of the complete in-

formation. These subsets of information are what we refer

to as information fragments. In our prototype, an informa-

tion fragment is represented by a graph. The nodes rep-

resent uniquely identifiable items of information; each is

attributed to a domain. Currently, we are supporting Java

nodes (classes, methods and fields), work items, change

sets and team elements (teams and team members). Edges

represent relationships between nodes that can be explicit,

such as method calls, or implicit, such as a relationship be-

tween a change set and a work item that can be inferred

from nodes. Both, nodes and edges contain certain proper-

ties that describe them. To create an information fragment,

we enhanced existing views in Jazz to create fragments by

simply selecting elements of interest and clicking the but-

ton highlighted in Figure 1(a). We call these fragments base

fragments as they only contain nodes of one domain. Once

the fragment is created, it will be added to the list of base

fragments as shown in Figure 1(b).

Composition. To answer questions like “Who is work-

ing on what in my team?”, developers have to combine

information from different domains. To support the vari-

ety of ways in which information fragments may be inte-

grated, our approach provides composition operators. A

composition operator combines two fragments by creating

new edges between nodes from different fragments based

on node properties. Currently, our prototype provides only

one operator that matches identifiers. In the upper part of

the Fragment Explorer view shown in Figure 1(c) the com-

posed fragment contains a work item node and change set

nodes. To integrate the afore added Java fragment with the

composed fragment, the developer selects the fragment in

the lower part of the view and clicks the composition button

highlighted in Figure 1(c). The composition operator will

go through all properties of the work item nodes as well as

change set nodes and find identifiers that refer to Java nodes.

If there are any it will create edges between the nodes. Af-

terwards it will look through the properties of Java nodes

and check wether there are references to the work item or

change set nodes. In our example, change sets know about

the Java elements they are affecting and therefore, the re-

sulting view shown in Figure 1(d) has a three level hierar-

chy, with work items on top, the corresponding change sets

below and the Java nodes that are affected by those change

sets and that area also in the Java fragment selected before-

hand on the third level.

Presentation. As each developer has several questions

and his own way of answering the questions and interpret-

ing the result, our prototype allows for the view to be config-

urable. In the upper right corner of the view the order of the

hierarchy is shown in a bar. The developer can change the

order of the hierarchy by using drag and drop and changing

the order of the icons in the bar. For instance, changing the

order so that the Java elements are the top nodes as shown

in Figure 1(e) allows the developer to answer the question

“Which changes are affecting me?”. For this question, he

just has to choose the Java fragment to include all the ele-

ments he is interested in, as well as the interesting change

set and work item fragment. By doing so, he can navigate

from the Java element to the change set and then even to the

work item in one single view without having to map any-

thing manually or cognitively. To answer “Who is working

on what in my team?”, the developer can add a team frag-

ment with the developers from his team and then change the

order so that he sees the work segmented by people and can

even go down all the way to the actual classes people were

changing as shown in Figure 1(f).

3 Discussion

It is often said that ”information is power”. Most devel-

opers today are deluged with information. At the touch of a

few buttons, thousands of lines of source code, the interre-

lationships between the code and documents about how to

use the code can be accessed. All too often, this informa-

tion does not align with simple questions that the developers

need to answer, such as “What is my team working on this

week?”.

As we have presented in this paper, we believe a possible

answer lies in making it easy for a developer to search for

particular kinds of information of interest and then to easily

integrate the results of those searches. A different approach

would be to pre-code more views into the integrated devel-

opment environment to support the direct answer of some of

a developer’s questions. This route seems doomed for two

reasons. First, we can’t possible pre-code all information

integrations of interest. Second, even if the views exist in

the environment, it is becoming impossible for developers

to find the view of interest when it is needed.

An interesting question to consider is how much of an

existing development environment’s views might be re-

placed with a query/integration mechanism such as we sug-

gest. Interestingly, it seems that very few could currently be

replaced. Instead, developers would use our approach for

answering questions that are currently not being handled in

one view but that require work to put the answer together.

For instance, one developer, while telling us about the pro-

cess of answering “who is working on what”, pointed out

that the view he has to use to answer the question presents

only “static” information. Therefore, he has to follow links

to several other views to accumulate the required informa-

tion. Having the information all in one viewwould save him

a lot of time and he was even thinking about implementing

a new view himself.

With other query mechanisms (e.g., relational views [4]

or JQuery [2]), a developer might be able to form a query

to answer some questions of interest, but forming the ap-

propriate query can be almost intractable, requiring a deep

knowledge of the query language. We believe that many of

the questions we are targeting come in sufficiently different

flavors at sufficiently different times that developers are not

willing to put a significant time investment into determin-

ing the correct formation of a complicated query because

the query may need to be different tomorrow. Instead, we

have been investigating offering general composition opera-

tors between different types of information. This raises two

interesting questions: “Will the developer be able to under-

stand what the composition does?”, and “Will we be able to

cover a variety of a developer’s questions with a limited set

of operators?”. As we develop our approach we need to an-

swer these questions. So far, we have determined that one

composition operator together with the configurable presen-

tation accounts for the three scenarios we introduced at the

start of the paper; recall, that the original approaches taken

by developers required different views of the IDE, external

tools and manual mapping. We believe that with a small

set of operators we will be able to cover a variety of ques-

tions, but future work on operators as well as on scenarios

is needed.

4 Summary

Developers have a variety of questions over multiple do-

mains of information. Our approach is intended to support

the interleaving of information from multiple domains and

thereby alleviating the need to manually and cognitively

map the information together. We have presented an ini-

tial prototype that allows the composition of information

fragments and provides a configurable view to tailor the

presented information to the developer’s needs. We believe

that the combination of the model and the presentation al-

lows the developer to interleave the information in a way

that allows him to answer his questions.

5 Acknowledgments

This work was supported by IBM and the IBM Ottawa

Center for Advanced Studies. We thank all developers for

their time and feedback.

References

[1] T. Fritz. Composing knowledge fragments: a next generation

ide. In ICSE Companion ’08: Companion of the 30th interna-

tional conference on Software engineering, pages 999–1002,

New York, NY, USA, 2008. ACM.

[2] D. Janzen and K. D. Volder. Navigating and querying code

without getting lost. In AOSD’03: Proc. of the 2nd Interna-

tional Conference on Aspect-Oriented Software Development,

pages 178–187, 2003.

[3] A. J. Ko, R. DeLine, and G. Venolia. Information needs in

collocated software development teams. In ICSE’07: Pro-

ceedings of the 29th International Conference on Software

Engineering, pages 344–353, 2007.

[4] M. A. Linton. Implementing relational views of programs.

In SDE 1: Proceedings of the first ACM SIGSOFT/SIGPLAN

software engineering symposium on Practical software devel-

opment environments, pages 132–140, New York, NY, USA,

1984. ACM.

(a) Enhanced Package Explorer (b) Fragment Explorer - Base Fragments Part (c) Fragment Composition

(d) Fragment Presentation (e) Which changes are affecting me. (f) Who is working on what.

Figure 1. Fragment Creation, Composition & Presentation.

Do developers search for source code examples using multiple facts?

Reid Holmes
Department of Computer Science & Engineering

University of Washington
Seattle, WA, USA

rtholmes@cs.washington.edu

Abstract

In this paper we examine the search behaviours of devel-
opers using the Strathcona source code example recommen-
dation system over the period of three years. In particular,
we investigate the number of query facts software engineers
included in their queries as they searched for source code
examples. We found that in practice developers predom-
inantly searched with multiple search facts and tended to
constrain their queries by iteratively adding more facts as
needed. Our experience with this data suggest that exam-
ple search tools should both support searching with multi-
ple facts as well and facilitate the construction of multi-fact
queries.

1. Introduction

Several research tools have been created to help devel-
opers locate relevant source code examples [7, 4, 1, 3, 6, 5].
One dimension in which these systems vary (see Sec-
tion 2 for additional detail) is whether they allow a sin-
gle search fact (such as getStatusLine()) or multi-
ple search facts. Although the precision of searches can be
improved by providing multiple search facts, the question
of whether developers know enough information to create
multiple search facts, and whether they are willing to enter
them, remains open. By analyzing log files from hundreds
of query sessions by nearly one hundred users of Strath-
cona, a system that allows developers to query for source
code examples using multiple search facts, we present pre-
liminary evidence that developers have the knowledge to
formulate queries with several search facts in their search
for source code examples and do so in practice.

Strathcona is a client–server example recommendation
system that enables developers to quickly select a block of
code from which a query is automatically generated. The
server then returns source code examples that best match
the code the developer has selected [1, 2]. We are able to
analyze Strathcona usage patterns as the server component

saves to disk every query made by developers as well as
their corresponding responses.

The primary contribution of this paper is evidence that
developers searching for source code examples usually pro-
vide multiple search facts in practice. We have observed
that 92% of queries contain two or more facts while 36% of
queries contain five or more facts. Investigating individual
query sessions we found that developers queried on aver-
age 2.5 times per query session and often augmented their
previous queries with new facts learned from prior results.

Background details on related search approaches is given
in Section 2. Section 3 provides a brief overview of the
Strathcona tool. The data we analyzed and some quantita-
tive results are presented in Section 4. The paper ends with
some suggestions for future code search tools (Section 5)
and conclusion (Section 6).

2. Related Work

Several research tools have been developed that can help
developers locate relevant source code examples. Code-
Broker is an adaptive system that automatically queries an
example repository using the comment and method signa-
ture of the method the developer’s cursor is currently in [7].
Prospector locates examples given a start and end types;
the tool then computes possible paths that would enable
a developer to get a reference to the end type given their
starting type by statically mining example source code [3];
PARSEWeb [5] uses the same input and locates exam-
ples using existing code search engines. CodeWeb [4] and
MAPO [6] take a simple input and locate examples using
generalized association rules.

Each of these systems constrains the number of facts that
can be queried on by the developer; typically at most two
query facts can be specified although often one of these is
reserved. CodeBroker uses one fact for the method signa-
ture and the other for the method comment; these cannot
be changed by the developer except by moving the cursor
to another method. Prospector and PARSEWeb specify that
one fact is related to the origin of the query and the other as

the destination. Both CodeWeb and MAPO generate rele-
vant examples from a single query fact.

In contrast to these approaches, Strathcona allows the
developer to select any contiguous block of code; all of
the statically derivable facts that can be extracted from this
block are automatically collected sent to the server in the
query. The developer can adapt the query by modifying
their selection, but cannot modify the the query otherwise.

3. Strathcona

The Strathcona example recommendation system is an
Eclipse plug-in that helps developers search for source code
examples. Strathcona is unique in its mechanism for auto-
matically constructing queries for the developer based on
their development context. The extracted facts are sent to a
remote server that contains a repository of source code; us-
ing a series of heuristics [2] the server identifies examples
that best match the developer’s query.

Strathcona returns at most 10 matches, regardless of the
number of examples that are located. The developer can
view an abstract representation of each example using a
UML-like view, requesting to see the source code only if
the example seems relevant to their task. As Strathcona
queries are constructed automatically, we envisioned that
developers using the tool would query on many structural
facts. While we have shown that the heuristics used by the
server to match the examples are most effective when two
or more facts are included in the query [2], due to limited in-
formation at the time we were unable to confirm that this is
how developers would use the tool; this paper demonstrates
that our assumption of large queries was valid.

4. Quantitative findings

By analyzing all of the saved interactions between the
client and the Strathcona server, we were able to gain insight
into how the developer used Strathcona during their query
session. We analyzed three main types of data recorded by
the Strathcona server.

Context queries. Context queries documents were sent
from the client to the server whenever a developer selected
some fragment of code and queried Strathcona. These doc-
uments contain a list of all of the structural facts comprising
the query. These facts identify statically derivable method
calls, field references, inheritance relationships, and type
usages within the block of code the developer has selected.

Returned examples. Strathcona answers each context
query with a set of structurally-relevant examples. Each
example includes the same structural facts present in the
context query so the Strathcona client can build a rationale

explaining why the example is relevant for the developer’s
query and to build the UML representation of the example.

Source requests. If the developer deems an example in-
teresting, they can request its source code; this document
simply provides an identifier for the example the developer
wishes to see the source code for.

The server records a timestamp for each of these docu-
ments, as well as a unique identifier for each host making
the query. Unfortunately, we cannot tell from the server logs
if the developer found an example useful or not; the only in-
dicators we can use are whether the developer asked for the
source code for an example. In this case, we infer that the
developer felt the example could be relevant given its UML
representation and assume the example was helpful in some
way. We facted sessions as successful if they ended with a
developer making a query and looking at the source code
of at least one example (in contrast to ending with a query
itself).

4.1. Session overview

Over the thirty-five month period of our Strathcona logs,
239 search sessions were initiated by 94 software develop-
ers (from at least 5 countries) encompassing 783 queries.1

Figure 1 provides an overview of the number of context
query and source requests made in each session. Devel-
opers averaged 2.4 context queries per session, although the
median was only 1. They also requested 4.3 source exam-
ples on average, with a median of 2. 49% of sessions in-
volved more than one context query, while 54% of sessions
involved multiple source code requests. Figure 2 provides a
breakdown of the 3652 query facts provided by developers.

Context

Queries

Source

Requests

0
5

1
0

1
5

0
5

1
0

1
5

Figure 1. Number of context queries and
source requests per Strathcona session.

1Before analyzing any of the data, we removed all of the sessions asso-
ciated with our own usage of the Strathcona tool.

0

200

400

600

800

0 1 2 3 4 5

Calls

0

200

400

600

800

0 1 2 3 4 5

References

0

200

400

600

800

0 1 2 3 4 5

Uses

0

200

400

600

800

0 1 2 3 4 5

Inherits

0

40

80

120

160

200

0 1 2 3 4 5 6 7 8 9 10 11 12

8

2223
29

37
32

48

60

120
130

176

51

0

All Queries

0

40

80

120

160

200

0 1 2 3 4 5 6 7 8 9 10 11 12

35

31

16

424548
57

68

182

194

61

0

All Queries (without duplication)

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9 10 11 12

35

31
16

424548
57

68

182
194

61

0 8
2223293732

48
60

120
130

176

51

0

All Context Queries

All Context Queries (without duplication)

(a) Number of facts provided considering all Strathcona queries.

0

50

100

150

200

0 1 2 3 4 5

Calls

0

50

100

150

200

0 1 2 3 4 5

References

0

50

100

150

200

0 1 2 3 4 5

Uses

0

50

100

150

200

0 1 2 3 4 5

Inherits

0

10

20

30

40

50

0 1 2 3 4 5 6 7 8 9 10 11 12

4
6

444

7
9

13

22
24

19

15

0

Final Queries

0

10

20

30

40

50

0 1 2 3 4 5 6 7 8 9 10 11 12

1
3

77

4
6

1112

15

34

22

15

0

Final Queries (without duplication)

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 10 11 12

1
3

77
4

6

1112
15

34

22

15

0

4
6

444
7

9

13

22
24

19

15

0

Final Context Queries

Final Context Queries (without duplication)

(b) Number of facts provided considering only the final query in a successful Strathcona session.

Figure 3. Each graph depicts number of structural facts included in a query (x axis) by the frequency
queries of each size occurred (y axis). The top set of graphs consider all queries while the bottom
pair consider only the final query of each session.

Type Parent Type Method Field

Count 1166 537 1512 437 3652

32% 15% 41% 12%

0

1000

2000

3000

4000

Total number of query facts

437

1512

537

1166

Type
Parent Type
Method
Field

0%

25%

50%

75%

100%
12%

41%

15%

32%

Type (32%)
Parent Type (15%)
Method (41%)
Field (12%)

Figure 2. Proportion of query facts.

4.2. Queried facts

For this analysis, we combined all of the different kinds
of search facts and treated them equivalently. Figure 3 pro-
vides a graphical representation of the queries; the x-axis
represents the number of search facts while the y-axis rep-
resents the number of queries for each quantity of facts.

Strathcona considers a query fact representing a refer-
ence to Status.OK as two facts, the reference to the
Status.OK field and a use of the Status class. To ac-
count for this, we provide both the total count of the facts as
Strathcona interprets them as well as a version that does not

duplicate any counts; we include both as different search
approaches can chose to use one representation or the other.
Figure 3(a) shows the number of facts for all of the con-
text queries while Figure 3(b) shows the number of facts for
only the final query of successful sessions.

In Figure 3(a) we can see that that while the median num-
ber of facts was two, developers provided three or more
structural facts for 67% of their queries. For their final
query (Figure 3(b)) the median number of facts has in-
creased to three, with developers providing three or more
structural facts for 74% of their queries. This clearly
demonstrates that developers using Strathcona are formu-
lating queries with multiple search facts and that they are
adding facts to these queries as they progress through their
search session.

While examining several sessions qualitatively, we
found that while iterating on their query sessions developers
were adding new facts to subsequent queries based on infor-
mation present in example source code they viewed that was
returned during prior queries.

5. Discussion

The internal validity of this study is hampered by the fact
that Strathcona makes including additional search facts in a
query trivial. While this is true, the interesting finding in

this paper is that the developers knew the facts to include
in the first place. The external validity of our findings is
limited from our lack of knowledge about the 94 develop-
ers who used Strathcona, if they were actually successful in
finding the information they were looking for, and the ob-
vious limitation of only having 239 search sessions to draw
data from.

A key assumption of the Strathcona system was that
developers would search for source code examples using
multiple search facts; the more facts included in a query,
the more effective Strathcona’s heuristics tended to be [2].
This paper demonstrates that the assumption upon which
Strathcona was created was valid and suggests that evalua-
tions comparing Strathcona to other example recommenda-
tion systems should conduct their comparisons using sev-
eral search facts in order to achieve a fair comparison of
relative effectiveness.

Our analysis of the Strathcona usage data have given us
several insights into how developers search for source code
examples; these observations should be considered by re-
searchers and practitioners creating source code search tools
and services.

Developers search with multiple facts. Developers are
able to elucidate multiple search facts when searching
for context-relevant source code examples. This suggests
that code search approaches should support and encourage
searching using multiple terms; this can both help the de-
veloper to fully express their current knowledge and to con-
strain the result space to identify the most relevant examples
possible.

Query sessions are iterative. Developers modify their
queries over the course of a query session to specialize them
as they identify new facts they deem relevant to their investi-
gation; search tools should encourage iterative query refine-
ment by including facilities that encourage developers to
modify their queries and view their results in a lightweight
manner. Tool designs that minimize the effort required to
reformulate and specialize queries and reduce the effort re-
quired for the developer to glean useful facts from returned
examples can help support iterative investigation.

Queries are composed of heterogeneous facts. While
method calls were the most common kind of query facts,
other types of facts were often included in queries. Facts
relating to specific types made up 47% of queries (15% of
these type facts related to parent classes and interfaces).
Code search systems should enable developers to supply
any kind of fact they are able to discern rather than forc-
ing developers to only supply a single constrained kind of
fact.

6. Conclusion

By analyzing 35 months worth queries sent to the Strath-
cona example recommendation system, we have found that
developers predominantly queried Strathcona for source
code examples using three or more search facts. We also
found that as developers iterate on their searches, they tend
to constrain their queries by adding more facts, as op-
posed to widening them by removing facts. These findings
demonstrate that developers query for source code exam-
ples using multiple search facts in practice; this suggests
that example recommendation tools should both allow de-
velopers to include multiple facts and make it easy for them
to do so, enabling them to fully express the knowledge they
have about the examples they are looking for.

Acknowledgements

I would like to thank David Notkin and Rylan Cottrell
for their insight and assistance with this paper as well as re-
viewers for their comments and suggestions. This work has
been funded in part through a NSERC Postdoctoral Fellow-
ship.

References

[1] R. Holmes and G. C. Murphy. Using structural context to rec-
ommend source code examples. In Proceedings of the Inter-
national Conference on Software Engineering (ICSE), pages
117–125, 2005.

[2] R. Holmes, R. J. Walker, and G. C. Murphy. Approximate
structural context matching: An approach to recommend rel-
evant examples. IEEE Transactions on Software Engineering,
32(12):952–970, 2006.

[3] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman. Jungloid
mining: helping to navigate the api jungle. In Proceedings of
the Conference on Programming Language Design and Im-
plementation (PLDI), pages 48–61, 2005.

[4] A. Michail. Data mining library reuse patterns using gener-
alized association rules. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 167–176,
2000.

[5] S. Thummalapenta and T. Xie. PARSEWeb: A programmer
assistant for reusing open source code on the web. In Proceed-
ings of the International Conference on Automated Software
Engineering (ASE), pages 204–213, 2007.

[6] T. Xie and J. Pei. MAPO: Mining API usages from open
source repositories. In Proceedings of the International Work-
shop on Mining Software Repositories (MSR), pages 54–57,
2006.

[7] Y. Ye, G. Fischer, and B. Reeves. Integrating active informa-
tion delivery and reuse repository systems. SIGSOFT Soft-
ware Engineering Notes, 25(6):60–68, 2000.

Software Component Recommendation Using Collaborative Filtering

Makoto Ichii† Yasuhiro Hayase† Reishi Yokomori‡ Tetsuo Yamamoto∗ Katsuro Inoue†

†Osaka University ‡Nanzan University ∗Ritsumeikan University
{m-itii,y-hayase,inoue}@ist.osaka-u.ac.jp yokomori@it.nanzan-u.ac.jp tetsuo@cs.ritsumei.ac.jp

Abstract

Software component retrieval systems are widely used
to retrieve reusable software components. This paper
proposes recommendation system integrated into software
component retrieval system based on collaborative filtering.
Our system uses browsing history to recommend relevant
components to users. We also conducted a case study using
programming tasks and found that our system enables users
to efficiently retrieve reusable components.

1 Introduction

A software component retrieval system (retrieval sys-
tem), or a source code search engine, is widely accepted
as a tool for finding reusable software components or help-
ful code examples. For example, Google code search 1 and
Krugle2 are publicly available through WWW. There are
academically developed system such as SPARS-J [6] and
Sourcerer [1]. Hummel et al., reports the growth of the
database of publicly-available code search engines [5], on
which needs for easily-accessible component are reflected.

However, developers, especially who are not familiar
with search engines, often have trouble to retrieve reusable
components with search engines. One reason for this is con-
structing “good” queries requires experience to the search
engines. For finding components suitable for his/her re-
quirement from large component repository, refinement of
search queries based on try-and-error is necessary. In other
case, a component found by a retrieval system requires fur-
ther components that are directly or indirectly related to
the component. In addition, code examples are required to
reuse components.

In this paper, we propose software component recom-
mendation approach based on collaborative filtering (CF)
technique. CF is a technique to recommend items to a tar-
get user by feeding back reputation of other users who have
similar preferences/interests with the target user. Various

1http://www.google.com/codesearch
2http://www.krugle.org

e-commerce systems use CF to recommend items to cus-
tomers.

We have developed component recommendation system
integrated into SPARS-J. Our system automatically recom-
mends potentially-beneficial components for users based on
their browsing history. Our approach assumes that the de-
velopers who have similar browsing history require similar
components. Our approach has potential to help users find-
ing a set of reusable components including dependency and
example code as they are guided by experienced antecessors
without labored try-and-error.

We have conducted a case study in order to evaluate how
our system can help developers; eight participants have tried
coding tasks with/without our system.

This paper is constructed as follows: Section 2 describes
about the recommendation systems as the background. We
explain our recommendation method in Section 3 and its
implementation in Section 4. Section 5 describes about the
case study. We conclude this paper in Section 6.

2 Recommendation System

Various works have tried to support developers who have
trouble to understanding a software system based on the
content-based approach, i.e., analysis of the software sys-
tem itself. Find-Concept [8] helps developers to finding
concerns, or implementation which they are interested in,
based on a hybrid technique of structural program analysis
and natural language processing.

Meanwhile, collaborative filtering (CF) is a technique to
recommend items to a user that matches to preferences of
the user from vast amount of items by sharing reputations
to items among users. [4]. GroupLens [7] is an automated
collaborative filtering system that recommends articles of
Usenet. A user of GroupLens votes ratings of articles they
read in five-point scale. Then GroupLens recommends arti-
cles that are highly-rated by users whose ratings are similar
to the target user.

CF can enhance content-based filtering tools: providing
filtering of items whose content is hard to analyze; recom-
mendations based on quality and taste; and serendipitous

recommendations [4]. DeLine et al. proposes a system
that helps program comprehension by filtering and recom-
mending the resources in the project of a developer based
on navigation data shared among the project team [3]. We
believe that CF approach can improve retrieval systems by
achieving filtering that is based on implicit relevance be-
tween components and personalized to target user, i.e. suit-
able for requirements and restrictions of the user’s task. In
addition, a user may get suggestion of some “better” com-
ponents than ones that a user considers to reuse.

3 A method for component recommendation

This section introduces a method for recommending
software components using CF on search history. The
method extends the GroupLens algorithm, which uses cor-
relation between users, for component recommendation.
The method consists of following steps.
Gather Ratings for Components: Store browsing history
of each user as ratings for components on a database.
Compute Correlation: Obtain correlations between users
based on ratings in the database.
Compute Recommendation Score: Obtain scores of all
components using ratings made by a user and its correlation
to other users.
Recommend Components: Present components for the
user based on the scores of the components.

Details of these steps are described below.

3.1 Gather Ratings for Components

User ratings for components are essential for CF. There-
fore, recommendation system has to gather ratings voted
by users. However, explicit ratings for components are
undesirable since effort for the inputting is not negligible.
Our method uses implicit rating [4] for avoiding the effort.
More specifically, a component is rated 1 (i.e. good) by a
user iff the user browses the source code of the component.
Our approach allows users to cancel their ratings, i.e., users
can improve the recommendation by deleting their brows-
ing history.

CF is based on user correlation and assumes that pref-
erences of users are stable. This assumption is problematic
for search systems because user preference varies according
to change of search purpose.

When using a search system, rating preference is stable
while search purpose is same. Therefore, we employed a
search purpose as a user in context of CF, and then used
similarity between search purposes for component recom-
mendation. Accordingly, the system has to detect changes
of search purpose and split browsing log at the changes. But
detecting the change from user action is difficult generally.
We treat an end of using a search system as a change of

search purpose, and ratings from beginning to end of use
(i.e. session) as user rating. A user and a browsing session
will not be distinguished hereinafter except for necessary
contexts.

We have to consider about same or similar components,
which are copied for reusing, in a search target. Users of
search system can arbitrarily choose one component from
similar components. However, this choice affects harmful
for CF because votes for the similar components are scat-
tered for each components. We adopted a set of similar
components as a basic unit of recommendation for allevi-
ating this problem.

3.2 Compute Correlation

CF requires correlation between users for the purpose
of speculating users similar to a user to whom the system
recommends items.

GroupLens defined a correlation between two users as
similarity of ratings for components that are voted both of
the two users. However, this definition is inappropriate for
our method. In our method, vote is done by browsing and
ratings for browsed components are always 1. Therefore
similarity between sessions is 1 if common component are
browsed in the sessions, otherwise similarity is 0. Further-
more, sessions are generally short and contain few records
of browsing, sessions rarely share browsed components. So
we employed Breese’s recommendation algorithm[2] which
defines the correlation between two users as similarity of
ratings for components that is voted either or neither of the
two users. Rating for a browsed component is 1, and for not
browsed component is 0.

Correlation c(a, i) between user a and i is defined as fol-
lows. Ii means the components that is voted by user i, and I
means all components that is registered in recommendation
system.

vi,j =

1 if j ∈ Ii

0 if j /∈ Ii
, v̄i =

1

|I|
X
j∈I

vi,j

c(a, i) =

P
j∈I (va,j − v̄a)(vi,j − v̄i)qP

j∈I (va,j − v̄a)2
P

j∈I (vi,j − v̄i)2

3.3 Compute Recommendation Score

CF computes a recommendation score for each compo-
nent based on ratings made by the users whose behavior
is similar to a receiver of the recommendation. In partic-
ular, recommendation score is an estimation value for the
rating that the receiver will vote. An estimation score is a
weighted average of scores made by other users; the weight
is a similarity for the receiver.

Web BrowserUser

Search query

SPARS-J

Search

subsystem

Component
database

History
database

Search result
Component

Recommendation

History

Recommendation

subsystem

Register

subsystem

Component
Library

Source code

Figure 1. SPARS-J with recommendation
subsystem

In our method, a set of the similar users are preliminary
computed for speed of recommendation. The set consists
of the users who satisfy the following conditions: 1) he/she
shares browsed components with a receiver, 2) His/her cor-
relation to the receiver is positive, and 3) he/she browsed
two or more components. The weight for the averaging is
square of the correlation according to [2].

Consider set of similar user U = {i|Ia ∩ Ii "= φ ∧
c(a, i) > 0 ∧ |Ii| > 1}. Recommendation score of com-
ponent k for user a is defined as follows:

pa,k =
∑

i∈U c(a, i)2vi,k∑
i∈U |c(a, i)2|

3.4 Recommend Components

The system recommends components in a descending or-
der of the scores. With the exception of recommendation,
the components that the receiver has already seen are elim-
inated from recommendation, since these components are
well-known for the receiver.

4 Implementation on SPARS-J

We implemented our recommendation method on
SPARS-J, which is a retrieval system for Java components.
Our method is built into SPARS-J as recommendation sub-
system. Figure 1 is the architecture diagram of SPARS-J
with the recommendation subsystem.

4.1 Record browsing history

Our system distinguishes a session using a session
cookie, which is generated when a searcher accesses to
SPARS-J using a web browser and is expired when he/she
closes the browser window.

When he or she opens a source code of a component, a
vote for the component is stored in the history database with
the session identifier that is assigned to the session cookie.

Figure 2. Recommendation page

4.2 Display recommended components

Recommendation page displays a list of recommended
components whose recommendation score is higher than
certain threshold.

Figure 2 is a sample of recommendation page. The list
contains hyper links to details pages for each recommended
components. Recommendation score is also shown in the
list; the user can refer the score for selecting components.

There are two way to receive recommendation: flat view
and relation view. The flat view shows all recommended
component in descending order of recommendation score.
The relation view displays components classified by those
relations to a certain component.

5 Case study

We conducted a case study to evaluate whether our rec-
ommendation method can help users to retrieve reusable
components in coding tasks. Eight participants (A1 ∼ A8)
tried four Java coding tasks (P1∼ P4) with/without the rec-
ommendation subsystem. The all participants have enough
Java experiments to solve the tasks; they are members of a
software engineering laboratory and they have used Java in
their research.

In each task, they were asked to implement some feature
into skeleton code using only SPARS-J and the documen-
tation of Java API. The resources for running the programs
are provided so that the participants can test their programs
quickly when they finished to code. The subjects of the
tasks are image file conversion (P1), file transfer using FTP
(P2), GUI (P3) and database access (P4). We suppose that
the number of reused components to finish the each task
range from 2 to 5; and the lines of code range from 10 to
50.

Table 1. Result of the case study

Search time (min) Precision
P1 P2 P3 P4 P1 P2 P3 P4

A1 28 25 14 3 0.42 0.06 1.00 0.67
A2 47 19 60 38 0.53 0.38 0.50 0.64
A3 14 2 3 7 0.23 1.00 1.00 0.83
A4 50 28 9 12 0.26 0.15 1.00 1.00
G1 34.8 18.5 21.5 15.0 0.36 0.18 0.88 0.79Ave.
A5 4 2 9 23 1.00 1.00 1.00 0.55
A6 3 4 18 45 1.00 1.00 1.00 0.63
A7 28 5 44 13 0.78 0.40 0.55 0.73
A8 15 2 26 23 0.75 1.00 0.37 0.73
G2 12.5 3.2 24.2 26.0 0.89 0.73 0.73 0.66Ave.

We set up SPARS-J for the case study with the database
comprising Java API and demos, open source software
packages and samples retrieved from WWW. The database
contains enough reusable components and their sample
codes to accomplish the tasks. Total number of components
is about 35,000. The case study begins with an empty his-
tory database

5.1 Procedure

Before the case study, every participant takes one-hour
lecture about the system usage including a training task. We
grouped the participants into two groups (G1 and G2) so
that the groups have similar programming ability based on
the memers’ Java experiments and the time spent to accom-
plish the training task.

At first, the members of G1 (A1 ∼ A4) tries P1 and P2;
and the members of G2 (A5 ∼ A8) tries P3 and P4 without
recommendation. Then, G1 tries P3 and P4; and G2 tries
P1 and P2 with recommendation.

5.2 Result and discussion

Table 1 presents the search time and the precision of the
retrieved components. The search time indicates (total time
to accomplish the task) - (coding time); and the precision is
defined as |the components used for implementation| ÷ |the
components displayed in SPARS-J|. The participant/task
combinations using the recommendation are presented with
the boldface. We can see that the recommendation success-
fully helps users by reducing searching time and improves
precision.

The result shows that difference of P3 is smaller than the
other tasks. This is likely because A5 and A6, who work on
P3 without recommendation, have knowledge on the subject
area of P3 enough to navigate themselves to the components
available for the task.

We also found that A2 and A7 did not improve the ef-
ficiency with recommendation. Their common behavior is
that they briefly read a lot of components at the beginning of
their activity. As the result, the available components were
recorded into the history without recognized as “available”
and never recommended. An idea to support such users is
changing the policy to gather the rating to ignore compo-
nents that had been viewed only in a minute.

6 Conclusion

This paper proposed software component recommenda-
tion based on collaborative filtering (CF). We also imple-
mented the recommendation system that is integrated into
SPARS-J. The result of the case study shows that CF is
effective to improve search efficiency of reusable compo-
nents. Our future work is improving recommendation by
sophisticating logic to gather ratings from browsing history.

Acknowledgements This work was supported in part
by “Global COE (Centers of Excellence) Program” of the
Ministry of Education, Culture, Sports, Science and Tech-
nology, Japan; and was conducted in part as a part of Stage
Project, the Development of Next Generation IT Infrastruc-
ture, supported by Ministry of Education, Culture, Sports,
Science and Technology, Japan.

References

[1] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi,
and C. Lopes. Sourcerer: A search engine for open source
code supporting structure-based search. In Proc. OOPSLA
’06, pages 25–26, Oct. 2006.

[2] J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis
of predictive algorithms for collaborative filtering. In Proc.
UAI ’98, pages 43–52, 1998.

[3] R. DeLine, M. Czerwinski, and G. Robertson. Easing pro-
gram comprehension by sharing navigation data. In Proc.
VL/HCC ’05, pages 241–248, 2005.

[4] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An
algorithmic framework for performing collaborative filtering.
In Proc. SIGIR ’99, pages 230–237, 1999.

[5] O. Hummel and C. Atkinson. Using the web as a reuse repos-
itory. In Proc. ICSR ’06, pages 217–230, July 2006.

[6] K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, and
S. Kusumoto. Ranking significance of software components
based on use relations. IEEE Trans. Softw. Eng., 31(3):213–
225, Mar. 2005.

[7] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl. GroupLens: An open architecture for collabora-
tive filtering of netnews. In Proc. CSCW ’94, pages 175–186,
1994.

[8] D. Shepherd, Z. P. Fry, E. Hill, L. Pollock, and K. Vijay-
Shanker. Using natural language program analysis to locate
and understand action-oriented concerns. In Proc. AOSD ’07,
pages 212–224, 2007.

Lowering the Barrier to Reuse through Test-Driven Search

Werner Janjic, Dietmar Stoll, Philipp Bostan, Colin Atkinson
Chair for Software Engineering

University of Mannheim, Germany
{janjic, stoll, bostan, atkinson}@informatik.uni-mannheim.de

Abstract

Dedicated software search engines that index open
source software repositories or in-house software assets
significantly enhance the chance of finding software compo-
nents suitable for reuse. However, they still leave the work
of evaluating and testing components to the developer. To
significantly change the risk/cost/benefit tradeoff involved in
software reuse, search engines need to be supported by user
friendly environments that deliver code search functional-
ity, non-intrusively, right to developers fingertips during key
software development activities and significantly raise the
quality of search results. In this position paper we describe
our attempt to realize this vision through an Eclipse plug-
in, Code Conjurer, in tandem with the code search engine,
merobase.

1. Introduction

The vision of systematically assembling software appli-
cations from prefabricated parts is as old as software engi-
neering itself (McIlroy presented a paper on Mass-Produced
Software Components at the NATO conference that coined
the terms software engineering and software crisis [10]).
However, despite significant research effort into reuse in the
1980s and 1990s, McIlroys vision has remained stubbornly
elusive. Over the years there were many reasons why fine-
grained component reuse failed to take off, but generally
speaking there have been three main barriers [3] –

1. there simply were not enough good components
around to make reuse worthwhile,

2. the recall and precision of the retrieval technologies
used to find suitable components was not sufficient,

3. the overall risk and effort involved in finding and eval-
uating components for reuse was too high compared
to the risk and effort involved in building them from
scratch.

Over the last few years there have been dramatic improve-
ments with respect to the first two of these. The rapid
growth in freely available, open source software reposi-
tories such as SourceForge and Google Code as well as
the emergence of dedicated search engines that index them
(such as Google Code Search, Krugle and merobase) now
provide developers with easy access to vast swathes of
reusable software. However, these advances have only par-
tially alleviated the third problem. They are necessary but
not sufficient. Although the precision of some of the new
generation of code search engines is much higher than be-
fore [5], the ratio of suitable to non-suitable components in
search results is still relatively low and developers have to
evaluate them all by hand. The costs and risks involved in
manual reuse by directly interacting with code search en-
gines therefore still typically outweigh the benefits.
To fundamentally change the risk/cost/benefit balance and
make fine-grained component reuse the rule rather than the
exception Garcia et al. [1] argue that component search fa-
cilities need to be integrated into a fully fledged software
reuse environment. Such an environment should (a) al-
low reuse recommendations to be driven by a background
agent that monitors the work of the developer and triggers
searches proactively (b) provide automatic assistance for
query formulation to bridge the gap between the described
functionality of a component and the described needs of the
developer and (c) make reuse as non-intrusive as possible so
that the developer is barely disturbed from his normal work.
We believe that integrating search functionality seamlessly
and unobtrusively into standard development environments
is only one half of the solution, however. We also believe
it is important to substantially raise the quality of research
results. Even if component search functionality is offered
in a highly unobtrusive way, it will still not be used unless
there is a reasonable likelihood that the effort and risk in-
volved in evaluating a component will be worthwhile. We
believe the best way to enhance the quality of the results is
to exploit the fact that code, unlike most other documents
indexed by text-driven search engines, is executable. This
means that a components fitness for purpose can be estab-

lished by testing it. This presupposes the existence of test
cases that can be used to test components, but fortunately
the trend in modern development approaches such as agile
development is to develop test cases before writing code.
In this paper we present a tool, Code Conjurer,
(www.code-conjurer.org), that implements these features
using the merobase software component search engine
(www.merobase.com).

2. Proactive Reuse Recommendation

Several prototype tools have been developed to pro-
vide assistance to developers based on information garnered
from code repostories. The chief examples include Ras-
cal [9], Prospector [8], ParseWeb [12] and Strathcona [2].
These help developers to work out what methods to call
in what sequences or provide examples of previous ways
in which a component has been reused. However, none is
directly focused on finding reusable components and none
provides support for proactive recommendations.
The first tool to offer proactive help to users based on in-
formation garnered from a code repository was CodeBro-
ker [13]. This tool was focused on reusing good design
and coding practices rather than fully blown components
per se, but it pioneered the notion of proactive recommen-
dation. The main weakness of CodeBroker is that it requires
components to be annotated by developers and is unable to
handle normal software modules. Finally, CodeGenie [7] is
an Eclipse plug-in that focuses on finding reusable compo-
nents. However, it is not proactive and requires developers
to manually test all reuse candidates locally in their devel-
opment environments. At the University of Mannheim we
have been working on a plug-in known as Code Conjurer
[6] that uses the merobase code search features to realize a
software reuse environment of the kind envisaged by Garcia
et al. [1] within the Eclipse framework. When plugged into
the standard Eclipse Java environment, it allows searches to
be initiated from various kinds of Java code fragments at the
click of a button. When set into proactive mode the plug-in
also provides proactive reuse recommendations. It includes
an agent that monitors the component under development
(CUD) and autonomously recommends potentially interest-
ing candidates for reuse in a non-intrusive way.
When the background agent discovers a significant change
in the CUDs interface-defining part (e.g. a method has
been added, changed or removed) it triggers a search via
the Merobase API. The component is analyzed, its interface
is extracted, an MQL (Merobase query language) query is
created and user-defined constraints are added (e.g. dupli-
cate filtering or exclusion of interfaces). The resulting list
of components is presented to the developer in an Eclipse
view, as shown in the bottom left of figure 1. He can then
study the components in more detail, review the imple-

mented methods and compare components using different
metrics.
If the developer decides that a component is worth reusing,
by a simple double-click he can either weave it into the cur-
rent project, thus overwriting his own code, or can put it
into a new project. When the component is inserted into
a new project, Code Conjurer automatically detects unre-
solved dependencies and tries to automatically resolve them
(provided that this functionality is activated in the prefer-
ences). During development it may also happen that the
component under development needs a new kind of object
(e.g. when writing an address book a Person object might
be necessary). In this case the developer can simply specify
the object (e.g. with Person p = new Person();)
which will lead to an error message displayed by Eclipse
indicating that the type cannot be resolved. Using the
QuickFix feature of Eclipse, the developer can easily get
Code Conjurer to search for a Person component and after-
wards directly add it to his project thereby avoiding self-
development.
Even if the developer does not wish to use one of the recom-
mended components, Code Conjurer provides potentially
interesting information about the typical or average form of
the discovered components. Using various clustering tech-
niques, the recommended components are analyzed and a
characteristic group picture is created. This information in-
dicates the typical set of methods offered by components
matching the developers partially defined interface. For ex-
ample, suppose the developer is working on a class Polyno-
mial, Code Conjurer can indicate that classes of this name
typically offer the following methods:

public class Polynomial {
Polynomial add(Polynomial arg1) {}
String toString() {}
int getDegree() {}

}

In contrast to the software reuse environment envisaged
by Garcia et al. [1] which only foresees automatic help
in query formulation, Code Conjurer extracts all neces-
sary information automatically from the CUD and creates
the search queries itself without user involvement. More-
over, the developer does not have to write code according to
any particular standard or worry about interacting with the
search engine but can fully concentrate on developing his
application.

3. Test-Driven Software Reuse

Code Conjurer seamlessly and unobtrusively integrates
search functionality into the Eclipse development environ-
ment, but this still does not ensure that it will be reused in
practice. As mentioned above, the value of a software reuse

Figure 1. Proactive reuse

environment is significantly diminished if the quality of the
search results is low and the developer has to spend a lot
of time manually studying and evaluating components. As
Mili and Mittermeir pointed out in 1998 [11], software arti-
facts are not textual documents but are executable modules
with observable behavior. Thus, it is possible to test their
fitness for purpose by checking whether they pass one or
more tests. The merobase search engine has therefore been
enhanced to support test-driven as well as standard search
mechanisms [6]. As soon as an executable test has been de-
fined by the developer and a search is initiated, Code Con-
jurer sends a request to the merobase server to find match-
ing components that pass the test. Merobase then initiates
the test-driven searching process, which in previous papers
we have referred to as Extreme harvesting [4] because of
its synergy with Extreme Programming. This involves the
following mains steps -

1. establishing what interface the test is for,

2. performing a normal search on this interface, and

3. testing the results against the provided test-case to fil-
ter out those components that match

The resulting component recommendations are of much
higher value than those typically generated by regular

interface-based matching alone, because the components do
what the developer has specified - that is, they pass the pro-
vided test-case. Suppose, for example, that the developer
needs a Matrix component for his application. He starts by
writing a test-case for a Matrix, specifying all the desired
functionality. Code Conjurer then sends this to merobase
where the interface defining part of the component is ex-
tracted and candidates are identified. In a secured virtual
environment, these are then tested against the test-case and
only those that match are returned to the developers IDE
where they are highlighted in green.. The components can
be directly weaved into the developers current project or
into a separate one.
It may happen that the initial test is only partially complete
so that the components in the recommendations view are
a superset of the components that are ultimately of inter-
est to the developer once he has finished writing test cases.
Nevertheless, at an early point in the process of writing test
cases the developer may already be interested in a group
picture of what methods components of the kind he is writ-
ing generally implement. Code Conjurer allows him to ex-
plore the characteristic group picture and write tests accord-
ingly. This kind of reuse is already mentioned in [13] where
it is referred to as glass-box reuse.

4. Conclusion

We believe that tools like Code Conjurer that combine
proactive reuse recommendation with test driven reuse can
for the first time significantly tip the risk/cost/benefit trade-
off between reuse versus build towards the reuse option.
The two technologies are also highly synergistic and com-
plement each others weaknesses. The latter complements
the former because it significantly enhances the quality of
the search results. In fact the precision of the results from
test-driven search is theoretically 1 (the recall is hard to esti-
mate [5]) because all returned components are guaranteed to
fulfill the developers functional requirements as defined by
his test case. The former complements the latter because it
hides the relatively long search times and low success rates
of test driven search. If a developer is not even aware that a
test-driven search is being performed on his behalf, the time
taken or success ratio is of no concern to him. Any poten-
tially reusable components that the tool is able to conjurer
up are simply seen as a bonus.
Code Conjurer also provides various other helpful features.
For example, component recommendations are generally
accompanied with metrics information like the LOC, cyclo-
matic complexity or Halstead metrics so that non-functional
properties of components can be evaluated (bottom right
window of figure 1). As well as finding normal functional
components Code Conjurer can also find reusable test cases
as well. When a developer starts writing a test, Code Con-
jurer can look for previously indexed tests and offer these
for reuse. These can be inspected to give the user an im-
pression of what tests are generally written for componentsl
similar to that he is developing (glass-box reuse), or they
can be weaved directly into the developed project and ex-
tended or changed as necessary. Our tool also has a de-
pendency resolution feature which analyzes selected com-
ponents with respect to unresolved dependencies and tries
to resolve them using several heuristics from fast and sim-
ple ones to more sophisticated ones. If it finds the needed
components, it automatically incorporates them at the nec-
essary places so the error messages of Eclipse disappear.
To conclude, we believe that Code Conjurer, driven by mer-
obase, fulfills the basic vision of a software reuse environ-
ment outlined by Garcia et al. [1]. Nevertheless the tech-
nology is only just scratching the surface of the develop-
ment support that can be offered by tools driven by code
search engines, and once the remaining possibilities are
elaborated we believe the technology will open up a whole
new paradigm of search-driven reuse.
Code Conjurer is released under the GNU General Public
License v3 and hosted at Sourceforge. More information
and some demo videos can be found at the project website
www.code-conjurer.org

References

[1] V. Garcia, D. Lucrédio, E. Almeida, R. Fortes, and S. Meira.
Toward a Code Search Engine Based on the State-of-Art and
Practice. In the 13th IEEE Asia Pacific Software Engineer-
ing Conference (APSEC), Component-Based Software De-
velopment Track, pages 61–70.

[2] R. Holmes, R. Walker, and G. Murphy. Approximate Struc-
tural Context Matching: An Approach to Recommend Rel-
evant Examples. IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, pages 952–970, 2006.

[3] O. Hummel. Semantic Component Retrieval in Software En-
gineering. PhD thesis, University of Mannheim, 2008.

[4] O. Hummel and C. Atkinson. Supporting Agile Reuse
Through Extreme Harvesting. LECTURE NOTES IN COM-
PUTER SCIENCE, 4536:28, 2007.

[5] O. Hummel, W. Janjic, and C. Atkinson. Evaluating the
efficiency of retrieval methods for component reposito-
ries. In Proceedings of the Nineteenth International Con-
ference on Software Engineering & Knowledge Engineer-
ing (SEKE’2007), Boston, Massachusetts, USA, July 9-11,
2007, pages 404–409. Knowledge Systems Institute Gradu-
ate School, 2007.

[6] O. Hummel, W. Janjic, and C. Atkinson. Code Conjurer:
Pulling Reusable Software out of Thin Air. Software, IEEE,
25(5):45–52, 2008.

[7] O. Lemos, S. Bajracharya, and J. Ossher. CodeGenie:: a tool
for test-driven source code search. 2007.

[8] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman. Jungloid
mining: helping to navigate the API jungle. In Proceedings
of the 2005 ACM SIGPLAN conference on Programming
language design and implementation, pages 48–61. ACM
New York, NY, USA, 2005.

[9] F. McCarey, M. Cinnéide, and N. Kushmerick. Rascal: A
Recommender Agent for Agile Reuse. Artificial Intelligence
Review, 24(3):253–276, 2005.

[10] M. McIlroy. Mass produced software components. Software
Engineering Concepts and Techniques, pages 88–98, 1969.

[11] A. Mili, R. Mili, and R. Mittermeir. A survey of software
reuse libraries. Annals of Software Engineering, 5:349–414,
1998.

[12] S. Thummalapenta and T. Xie. Parseweb: a programmer
assistant for reusing open source code on the web. In Pro-
ceedings of the twenty-second IEEE/ACM international con-
ference on Automated software engineering, pages 204–213.
ACM New York, NY, USA, 2007.

[13] Y. Ye. Supporting Component-Based Software Development
with Active Component Repository Systems. PhD thesis,
University of Colorado, 2001.

!"#$"%&&%'()*+,)"-)./*#"*%*0)1*2).-$3*#4*5)%"67*8##(.*
!

!

"#$%&%&'#!()*&+)!

!"#$%$&'()*'+$,-).'+'/012)3'/%4)5'-#'0)670)8'09$1').'+'/012)

:/#$7-/;)<-+#$#=#')76)>(9/-1'()<-(=+#0$/;)81$'-1')/-()3'12-7;7,?)

>@$2/A/0/)*/$)B;(,C)DEDFEDG)87#7@/-(/4)52$?7(/E@=4)37@?74)DHDEHHID4)J/"/-)

#E@/%$?/K/$+#C,7CL")

!

!

9'.:"%6:*
)

32$+)"/"'0)"0'+'-#+)/))-79';)('+$,-)76)+'/012)#77;+)

$-)0'9'0+')'-,$-''0$-,4)M2$12)'-/A;'+)('+10A-,)170')

+'/012$-,)#/+@+)N+=12)/+)"/##'0-)+'/012$-,4)'O#0/1#$7-4)

6$;#'0$-,4) '#1CP) $-) /) +'"/0/#'() M/?) 607%) #2') %/-/,'E

%'-#)#/+@)76);71/#$7-)(/#/)N+=12)/+);$-')-=%A'0)70)6$;')

-/%'PC) B?) =+$-,) 'O/%";') "07,0/%+) M$#2) /) "07#7#?"')

$%";'%'-#/#$7-4) M') 'O";/$-) 27M) #2') "07"7+'() ('+$,-)

($66'0+) 607%) /) #0/($#$7-/;) ('+$,-4) /-() 27M) #2') "07E

,0/%+)2';")#2')$%";'%'-#/#$7-)76)1=+#7%$&/A;')#77;+C))

!

;<*=3:"#>,6:-#3*
!

,#-&./! 0#.12.3&#.$4! -&)5203$! #6! 7'#/')**&./! 5).8

/9)/2$4! %29'&$3&0$! 6#'! 6&532'&./4! 230:! '2;9&'2! 3%2! 09$3#8

*&<)3&#.! #6! '212'$2! 2./&.22'&./! 3##5$:! "#! *)=2! 3%2!

-2125#7*2.3!#6!$90%!09$3#*&<)>52!3##5$!)!'2)5!7#$$&>&58

&3+4! 3%&$! 7)72'! 7'2$2.3$!)! .2?! -2$&/.! 6#'! $2)'0%! 3##5$!

93&5&<&./!)!/&**&0=!.)*2-! 3%2!70$,$-'() +#0$-,! 6#'! $28

7)')3&./! 0#'28$2)'0%&./! 3)$=$! 6'#*! 3%2! *).)/2*2.3!

3)$=!#6!5#0)3&#.!-)3):!"%&$!-2$&/.!%257$!)!3##5!-2125#78

2'!6#09$!#.!)!0#'28$2)'0%&./!3)$=!?'&332.!)$!)!0#%2$&12!

0#-24!&.!32'*$!#6!@#,!A$27)')3&#.!#6!0#.02'.$B!).-!3%2!

0#975&./!)*#./!A3')-&3&#.)5B!*#-952$:!

!

?<*8"%>-:-#3%(*>).-$3*
!

C)$&0)55+4!)!$2)'0%!3##5!2D20932$!3%2!6#55#?&./!$327$!

$2;92.3&)55+E!
!
F:! G.793$! -#09*2.3$! $90%!)$! $#9'02! 6&52$! A%2'2)632'!

'262''2-! 3#!)$!)!"2?+$1/;)0'"0'+'-#/#$7-B!).-!0#.8

12'3$! 3%2*! 3#!$#*2! &.32'.)5! '27'2$2.3)3&#.4!?%&0%!

&$!?2558$9&32-!6#'!$2)'0%&./!)5/#'&3%*A$B:!

H:! I2'6#'*$! $2)'0%&./!)5/#'&3%*A$B! 6#'! 3%2! &.32'.)5!

'27'2$2.3)3&#.:!

J:! K93793$!3%2!$2)'0%!'2$953$!>+!6#'*)33&./!3%2*!&.3#!

5#0)3&#.$!&.!3%2!7%+$&0)5!'27'2$2.3)3&#.:!

"%2$2!$327$!&*75+!3%)3!3%2!-2125#72'!)5$#!%)$!3#!?'&32!

0#-2! 3#! $3#'2!)!*)77&./! 6'#*! 3%2! &.32'.)5! '27'2$2.3)8

3&#.! &.3#! 3%2! 7%+$&0)5! '27'2$2.3)3&#.!)3! @327! F4!).-!

?'&32!0#-2!3#!'20)55!3%2!*)77&./!)3!@327!J:!L$!)!*)332'!

#6!0#9'$24!&6!3%2!-)3)!$3'9039'2!#6!3%2!&.32'.)5!'27'2$2.8

3)3&#.! &$! 3#! >2! 0#.12'32-! #'!*#-&6&2-! &.! @327! H4! 3%2.!

)--&3&#.)5!0#-2!?&55!>2!'2;9&'2-!3#!*)&.3)&.!$90%!*)78

7&./:! !"%2'26#'24!>#3%!0#'28$2)'0%&./! 3)$=$!).-!*)&.8

32.).02! 3)$=$!)'2! 0#85#0)32-! &.! 2)0%! $3274!).-! 3%2&'!

0#-2$!32.-!3#!2.3)./52!2)$&5+!?&3%!2)0%!#3%2'4!&.0'2)$8

&./!3%2!3%'2)3!#6!5#$&./!0#%2$&12.2$$4!9.-2'$3).-)>&5&3+4!

).-M#'!*#-&6&)>&5&3+:!

!

@<*0)1*>).-$3*'A*#"-$-3B%1%")*.:"-3$*
!

G6!?2!0).!*)=2!7'&*&3&12!-)3)!3+72$!A?%&0%!)'2!9$2-!

&.! 3%2! &.32'.)5! '27'2$2.3)3&#.B!$3#'2!$90%! 5#0)3&#.!-)3)!

).-!)5$#!*)&.3)&.! 3%2!*)77&./! 3%'#9/%!3%2!#72')3&#.$!

3%)3! *).&795)32! 3%2! -)3)! 3+72$4! 3%2.! 3%2! *)&.32.).02!

3)$=!?&55!>2!$27)')32-!).-!)93#*)32-:!

G.!3%&$!'2$2)'0%4!?2!0%#$2!)!$3'&./!)$!$90%!)!7'&*&8

3&12!-)3)! 3+72:!@&*75+! $)&-4! 3%&$!)532'2-! $3'&./4! .)*2-!

).! #'&/&.2-! $3'&./4! &$!).! #>N203! 3%)3! =.#?$! &3$! #'&/&.!

).-!&$!*).&795)32-!N9$3!5&=2!)!$3'&./:!L!3##5!-2125#72'!

0).! 0#.$3'903!).! &.$3).02! #6!).! #'&/&.2-! $3'&./! 6'#*!

$#*2! 32D3! 6&52!).-!)775+! 1)'	$! #72')3&#.$! A$90%!)$!

0)5095)3&./!$9>$3'&./$4!0#.0)32.)3&./4!#'!0#*7)'&./B!3#!

&3:! "%2'2)632'4! ?%2.! .22-2-4! 3%2! -2125#72'! 0).!)$=!

2)0%!&.$3).024!OP%2'2!-#!+#9!0#*2!6'#*QR!

P&3%!3%2!#'&/&.2-!$3'&./4!3%2!$2)'0%!3##5!327!*2.8

3&#.2-!&.!$203&#.!H!>20#*2!)$!6#55#?$E!!
!
F:! G.793$! -#09*2.3$! $90%!)$! $#9'02! 6&52$4!).-! 0#.8

12'3$! 3%2*! &.3#! #'&/&.2-! $3'&./$! A#'! $#*2! -)3)!

$3'9039'2$! &.059-&./!#'&/&.2-!$3'&./$B!#6! 3%2! &.32'8

.)5!'27'2$2.3)3&#.:!

H:! I2'6#'*$! $2)'0%&./!)5/#'&3%*A$B! 6#'! 3%2! &.32'.)5!

'27'2$2.3)3&#.:!

!"! #$%&$%'(%)*('*+,-)(,*'$.%'(/0(+'1234(%)*2,(.5-+%253(

23(%)*(&)0'2-+.(,*&,*'*3%+%253(23(,*.+%253(%5(*+-)(56(

%)*('*+,-)(,*'$.%'"(
(

7%(8%*&(9:(%)*(;+&&234(6,5;(%)*(23%*,3+.(,*&,*'*3%+%253(

23%5(%)*(&)0'2-+.(,*&,*'*3%+%253(<2..(/*(4*3*,+%*=(+3=(

'%5,*=(/0(5,2423*=('%,234'"(>3(8%*&(?:(%),5$4)(5&*,+@

%253'(%5(%)*(5,2423*=('%,234':(%)*(;+&&234(2'(1*&%($&@

=+%*=(/0(2%'*.6:(23(+3(2;&.2-2%(A23('5$,-*(-5=*B(+3=(

/+-14,5$3=(A23(&,54,+;(*C*-$%253B(<+0"(

7(&,5%5%0&*(%55.12%(3+;*=(!"#$%&'(()+'(/**3(2;@

&.*;*3%*=(23(D0%)53(&,54,+;;234(.+34$+4*:(23(5,=*,(

%5(*E+.$+%*(%)*(&,5&5'*=(=*'243(<2%)(%)*(5,2423*=(

'%,234"(F)*,*(+,*(%<5(&,2;+.(-.+''*'G(!"#$#%&'()"(

+3=(*+,&'()"(AH24"(9B"(F)*(-.+''(*+,&'()"(2'(23@

%*3=*=(%5(,*&,*'*3%(+('5$,-*(62.*(A5,(+30(%*C%(62.*B"(F)*(

-.+''()+'(23'%+3-*(E+,2+/.*':(%+,&(A62.*(3+;*B(+3=(

-+./&(A%*C%:(-53%*3%(56(%)*(62.*B"(F)*(-.+''(!"#!

$#&%'()"(2'(23%*3=*=(%5(,*&,*'*3%(+('$/'%,234(A5,(.2'%(

56('$/'%,234'B(56(*+,&'()":(/0('%5,234(*+-)('$/'%,234(

+'(+(&5'2%253(23(+3(23'%+3-*(56(*+,&'()""((

F)*(!"#$#%&'()"()+'(%<5(7D>('*%'"(F)*(62,'%(53*(

23-.$=*'(;*%)5='(+'('%,234(%0&*':('$-)(+'(-+.-$.+%234(

'$/'%,234':(-53-+%*3+%234:(+3=(-5;&+,234"(F)*('*-53=(

7D>('*%(+'1'(65,(.5-+%253':('$-)(+'($&)01"#$#%(23(H24"(

9"(F)*(;*%)5='(+'('%,234(%0&*'(+,*(=*'243*=(+3=(2;@

&.*;*3%*=(%5()+E*(%)*('+;*(23%*,6+-*(+3=('*;+3%2-'(+'(

%)*(&,2;2%2E*('%,234(%0&*(A-.+''(2)"B:('5(%)+%(!"#$#!

%&'()"(2'(23%*,5&*,+/.*(<2%)('%+3=+,=(.2/,+,2*'(+3=(

%)2,=@&+,%0(.2/,+,2*':(+'(')5<3(23(%)*(65..5<234('*-%253"(

I5%*(%)+%(%)*(+/5E*(2;&.*;*3%+%253(56(%)*(5,2423*=(

'%,234(2'('5;*)5<(23'&2,*=(/0(+()24)@&*,65,;+3-*(

'%,234(%0&*(3+;*=()*!$J9K:(=*'&2%*(()+E234(=2'%23-%(

&,2;+.(=*'243(45+.'L(5,2423*=('%,234'(+2;((65,(*+'*(56(

=*E*.5&;*3%(A23-.$=234(+$%5;+%253:($3=*,'%+3=+/2.2%0(

%-B:(<)2.(M5&*(<5,1'(53(&*,65,;+3-*(2''$*'"(

(

!"#$%&'()*+#
(

N3%2,*('5$,-*(-5=*(23(%)2'(&+&*,(2'(<,2%%*3(23(D0%)53(

+3=(%)*0(+,*(*C*-$%+/.*:(35%(&'*$=5(-5=*'(A%)*('5$,-*(

62.*'(+,*(+E+2.+/.*(+%()%%&GOO<<<",*;2-'"5,4OB"((

(

!","#$%&'()*#-,.#+/'()/0/*1#23*(#
(

(H5,(-5;&+,2'53:(+('2;&.262*=(+#$!(&,54,+;(AH24"(?B(

<+'(2;&.*;*3%*=(<2%)5$%($'234(%)*(%55.12%"(P)*3(%)*(

&,54,+;(2'(,$3:(23(.55&'('%+,%234(+%(Q23*(R:(%)*(&,54,+;(

'*+,-)*'('5$,-*(62.*'(23(%)*(-$,,*3%(=2,*-%5,0:(,*+='(

+-)(.23(56(*+-)(62.*:(+3=(&,23%'(+(.23*(3$;/*,(65,(*+-)(

%2;*(%)*(&+%%*,3(;+%-)*'"(I5%*(%)+%(%)*(-5=*(65,(;+23@

%+23234(%)*(.5-+%253(=+%+(A%)+%(2':(+(E+,2+/.*(.#%&*/,B(

3"!"#$%& 124""&4"252

6"!"#$%& 75"&,#82 '(",

9"

:"7+))&"%";""&<81,7#.&=252<+"$->3?@

A"

B"!!"#$%!&'(#)

C"D#.&E+F.& ;"",<G#.&E+F.&=@

H"D#.&E+F.&<"&+'0D"1,0'#"&8)1"5=**4"

I""""&<81,7#.&=*+,-+./01*@4""&8/"2#-&;E"/&@

3J

33"!!)#$"23!/$44#"5!'5!&'(#)

36",+)8K&'()"2 ;">?

39")$% 04"%2"!* 21")&'=D#.&E+F.&<#)&"#)&,2=@@L

3:""")$% ,"!* 7+))&"%<D#%'#)&"=",<1"#$#%&'02)"=%2@@L

3A""""",+)8K&'()"2<+77&%'=,<$"1/7=@@

3B"""""

3C"!!/"'54!6$423#)

3H")$% 2"!* ,+)8K&'()"2L

3I"""#%!*& *7)8!7)* M"=2<)10"1N02)"=@4""2@

!"#$%&'()!&*+!&$$,-'&.

(
H24$,*(!"(D,54,+;(*+'04,*&"&0(

+'5$,-*"&0 2 ; & 5 , % ! ' 0 ' " !!!

!"#$%&'()*!+ ,"-.$%&"))"/%01%23")

'%&4"#$56()

"%&7)*+*!$56()

8%&7)*+*!$56()
)1)$!2$9':
8$+*! $!5

2<%+,&";;"O+21/"8&<75P4
2<-+./& ;;"O#,71")"252QP

F";"+>CL3J?4"
F";;"O252P4

F<$&)01"#$#%=@";;">"R&D&"&%8&R+%$&=24"C4"3J@"?

+";;"O#,71")"252P4
+<$&)01"#$#%=@";;">"R&D&"&%8&R+%$&=24"J4"3J@"?

(
H24$,*(9"(>..$'%,+%253(56(I+;*=8%,O#,2423*=8%,

3"!"#$%& 124""&4"252

6"

9"7+))&"%";""&<81,7#.&=252<+"$->3?@

:"

A"!!"#$%!&'(#)!$5%!)#$"23!/$44#"5!'5!&'(#)

B")$% "11)4"'#"24"D#.&2"!* 12<N+.S=**@L
C""")$% D"!* D#.&2L

H"""""!) D<&%'2N#)K=*+/0*@L

I"""""""7+)K";"12<7+)K<T1#%="11)4"D@

3J""""""".#%&*/, ;"3

33""""""")$% .#%&"!* D#.&=7+)K@L

36""""""""")$% ,"!* 7+))&"%<D#%'#)&"=.#%&@L

39"""""""""""#%!*& *7)!7%8!7)* M"=7+)K4

3:""""""""""""""".#%&*/,4",<$"1/7=@@

3A""""""" .#%&*/, U;"3
(

H24$,*(?"(D,54,+;('2;&.*4,*&"&0(

!"#$!%&'#(!)*#)*&#+,'&#),#"&-.+*#/,.#-#0-))&.12#-1'#-'3

'!)!,1-4# 5-.!-64&"# (!44# 6&# 1&&'&'# /,.# 71)-184!18#)*&#

'&&049#1&")&'#4,,0"#),#.&'7+&#!1'&1)#4&5&4":#

;!)*#)*&#),,4<!)2#-4$,")#)*&#"-$�.,8.-$#!"#"0&44&'#

,7)#-"#!1#=!8:#>:#?1#)*!"#+,'&2#-44#+4-""&"#-1'#/71+)!,1"#

/.,$#)*&#),,4<!)#-.�.&/!%&'#(!)*#!"##;*&1#)*�.,3

8.-$#!"#.712#/!.")#)*&#",7.+&#/!4&"#-.&#.&-'2#+,15&.)&'#),#

!1")-1+&"# ,/#$%"&'()!2# -1'# "),.&'# !1# -# 5-.!-64&#*+!

,&-%.,&#!1#@!1&"#A3B:#C*&12#!1#-#.,7)!1&#/,.#"&-.+*!18#

)*�-))&.1#,/#@!1&"#DD3DE2#-#0-))&.1#"&-.+*!18# !"#0&.3

/,.$&'#/,.#&-+*#&4&$&1)#,/#*+,&-%.,&#-1'#)*&#$-)+*#

.&"74)"# -.&# "),.&'# !1# -# 5-.!-64&#"%)/0&'()!12# -"# !13

")-1+&"# ,/# 2!+3+4&'()!:# @-")492# !1# -# .,7)!1&# /,.#

0.!1)!18#)*&# .&"74)"# ,/# @!1&"# DF3DB2# 4,+-)!,1# '-)-# !"#

&%).-+)&'# /.,$# &-+*# ,/#)*&# $-)+*# .&"74)"# -)# @!1&# DB2#

(!)*#$&)*,'#)56!5761)!#,/#2!+3+4&'()!:#

C*!"#&%-$04&#!$04!&"G#
#

3! !"#$ %&'$ %()"*%)+'$ *%,&)+&%&-+$ ".$ /"-%),"&$

'%)%0$C*,+-)!,1#'-)-#-.&#-7),$-)!+-449#8&1&.-)3

&'#-1'#"),.&'#!1#!1")-1+&"#,/#2!+3+4&'()!:##

3! 1"2$ -"(3/,&40# C*&# .,7)!1&"# -.&# (&44# "&0-.-)&'#

(!)*#4,(#+,704!18#69#-#"$-44#17$6&.#,/#5-.!-64&":#

3! 5&)+6"3+6%7,/,)8$)"$ 9)%&'%6'$ /,76%6,+90# H1# !13

")-1+&# ,/" 2!+3+4&'1)!# !"# "-/&49# 0-""&'#

),I.&+&!5&'# /.,$# -# ")-1'-.'# 4!6.-.9"!&# J.&874-.#

&%0.&""!,1K:#

#

:0;0$<=%*3/+$>;?$@,9(%/,A%),"&$".$'+3+&'+&-8$
#

C*&# "&+,1'# &%-$04&# !"# -# 0.,8.-$#),# 5!"7-4!L&# '&3

0&1'&1+!&"#6&)(&&1#",7.+&#/!4&":#C*&#M'&0&1'&1+9N#,/#

)*!"# 0.,8.-$# !"# ",$&*,(# -# .&4-%&'2# 1-$&36-"&'# ,1&2#

)*-)#!"2#(*&1#-#1-$&#'&/!1&'#!1#-#",7.+&#/!4&#!#!"#7"&'#!1#

-#",7.+&#/!4&#"2#-#'&0&1'&1+9#/.,$#"#),#!#&%!")":##

=!8:# O# "*,("#)*&# ",7.+&# +,'&#,/#)*&# 0.,8.-$:#C*&#

/,44,(!18#0-.-8.-0*"#&%04-!1#&-+*# .,7)!1&#,/#)*�.,3

8.-$:#P,)&#)*-)#)*&.&#-.&#,149#/,7.#5-.!-64&"#J*+,&-!

%.,&2# !&*&!!&'8'12# '&*+4&'8'12# -1'# 3!%90K#

"*-.&'#-$,18#)*&"&#.,7)!1&":#

C*&#/!.")#.,7)!1&#/,.#.&-'!18#",7.+&#/!4&"#,/#@!1&"#E3

:"!"#$%& +)&!)55,1;"51;"!&;"1<1

="!"#$%& 3!%90"!!"#$%&'"()*"%!+%$$",--.&/01(&&(201.&3-"-"#$%&'"()*"%-4
>"!"#$%& 9<!&"+/1 '(!"

?"

@"!!)0*/!5&6).0!78205!7)&3!.6))0'$!/8)0.$&)#
A"*+,&-%.,& B"!"#C+,&-%.,&DE

F"*+,&-%.,&#!&%'6*!5"6'+!&/)5!<D99;"!&#/5"9+,&D91:;1<"#=9E;"!&/G!1+H&B-!G&E
I"+4+)C+,&1 B"J*+,&-%.,οD9E")$% 9"!* *+,&-%.,&#K&<1DE"!) 9#&4'17+)0D9>>8'8$>>1"#9EL
M"

:N"!!78'/!8/0'$8780)5
::"1"B")?;)6@A<B9+CC1D;E9<4B9D999++FG999414B999?
:="9%)"B"!&#/5"9+,&+9D9#O5+4DJ)9CH+GIJ/07K+/07D.2*554C5:4G+GIJ8/K;*"LM"N><COB49;"!!8/0'$8780)
:>"""""1;"1#!&9,%/&D?9?;"9?9E;")9!;EC'<BC'9LEE"!!5$)8'(!28$0)*25P!.&330'$
:?"!&*&!!&'8'1;"'&*+4&'8'1 B"JL;"JL

:@")$% 6;"41"!* 15!)&'D*+,&-%.,&#+)&!+)&"1DEEP

:A""")$% ""!* 9%)#*+4'+)&!D!"#5!+3+4&'61)!D41EEP

:F"""""+'"B""#3!5G9D?8/?E
:I"""""!) "#3!5G9D?/07?EP"'&*+4&'8'1#%99&4'D+'E
:M"""""+,!) +'P"!&*&!!&'8'1#%99&4'D+'E

=N"!&*&!!&'8'1 B"*+,)&!D1&)D'&*+4&'8'1E#66/54)%+4166;"!&*&!!&'8'1E

=:"

=="!!H682/!()*"%!&7!/0"0'/0'.#!+H#!'*304!H0$O00'!$%0!5&6).0!78205
=>"3!%90"B"3!%90#'+3!%90DE

=?"3!%90#%''645'&1D41#4%"&")$% 41"!* *+,&-%.,&#H%,G&1DEE

=@")$% '&*$%"&;"'&*1 !* +)&!)55,1#3!5G9.<D15!)&'D'&*+4&'8'1EEP

=A"""'&*C+,&1 B"J+'#5!+3+4N#4%"&'1)!")$% +'"!* '&*1L

=F"""!&*C+,&1 B"J+'#5!+3+4N#4%"&'1)!")$% +'"!* !&*&!!&'8'1 !) +'"BB"'&*$%"&L

=I"""!) *$& 1&)D!&*C+,&1E"! 1&)D'&*C+,&1EP"-$*&!*.+ !!5Q8"!87!$%0!8/!85!650/!&'2#!8'!&'0!7820
=M"""3!%90#%''645'&D'&*$%"&E

>N""")$% *"!* '&*C+,&1P"3!%90#%''6&'3&D'&*$%"&;"*#4%"&E

>:""")$% *"!* !&*C+,&1P"3!%90#%''6&'3&D*#4%"&;"'&*$%"&E

>="

>>"!!/)*O!$%0!()*"%
>?")$% 41"!* *+,&-%.,&#H%,G&1DEP

>@""")$% %))! !* D95%*"09;"9H&R9E;"D92*H029;"41#4%"&#!&9,%/&D51#9%)0#1&9;"9-CC'9EEP
>A"""""3!%90#%''645'&6%))!+.G)&D41#4%"&;"%))!E

>F"*+,&D9()*"%1/&$9;"9O9E#7!+)&D3!%90#7!+)&D*")B?/&$?EE
#

=!87.&#O:#Q.,8.-$#'&08.-0*:092#-#>F34!1&#),,4#),#-1-49L&#'&0&1'&1+9#-$,18#",7.+&#/!4&":#

!"#$"%&'("$#)#*+'",-",.&"-/&"#/"&0+)1*&"234"&05&1,",.#$"

-/&" 6#%&$" $1&5#+*" ,'&+,)&/," ,-" 7#*&$" /+)&8"

9!!"#"$!!%&':";$<5."+" 7#*&" #$" $1&5#+*"=&5+<$&" #," #$"<$&8"

,-"8&7#/&"+"1+5>+6&"#/"?(,.-/"1'-6'+))#/6"*+/6<+6&@A""

B.&"$&5-/8"'-<,#/&"-7"C#/&$"3DEFD"7#/8$"#8&/,#7#&'$"

#/",.&"#/1<,"$-<'5&"7#*&$A"G("5.&5>#/6"H.&,.&'"-'"/-,"+"

>&(H-'8"!"#$$" -'"%&'" ;+,"C#/&"3F"+/8"C#/&"3!@"+1E

1&+'$" =&7-'&" &+5." #8&/,#7#&'4" ,.&" '-<,#/&" 8#$,#/6<#$.&$"

,.&"8&7#/&8"#8&/,#7#&'$";,.+,"#$4"/+)&$"-7",.&"5*+$$&$"-'"

7</5,#-/$" ,.+," +'&" 8&7#/&8" $-)&H.&'&" #/" ,.&" #/1<,"

$-<'5&"7#*&$@"7'-)",.&"I<$,E'&7&''&8"#8&/,#7#&'$A"

B.&",.#'8"'-<,#/&"-7"C#/&$"FFEJ3"6&/&'+,&$"+"6'+1.4"

H.&'&" &+5." /-8&" '&1'&$&/,$" +/" #/1<," $-<'5&" 7#*&" +/8"

&+5." &86&" '&1'&$&/,$" 8&1&/8&/5(" =&,H&&/" ,H-" 7#*&$A"

K-'" &+5." -7" ,.&" 8&7#/&8" #8&/,#7#&'$4" ,.&" '-<,#/&" 6&/&E

'+,&$" &86&$" =&,H&&/" ,.&" #8&/,#7#&'" +/8" ,.&" 7#*&$" ,.+,"

8&7#/&L'&7&'" ,.&" #8&/,#7#&'" +," C#/&$" JDEJ3A" M&'&4" 7#*&"

/+)&$".+%&"=&&/"&0,'+5,&8"8#'&5,*("7'-)"#8&/,#7#&'$"%#+"

+/" #/$,+/5&" %+'#+=*&" ()*+*,-" -7" .)*+*,&%/0)!+,"

C#/&$"FNEFOA"P*$-4"+",'#5>"+,"C#/&"F!"'&8<5&$",.&"/<)E

=&'"-7"/-8&$"#/"+"6'+1."+/8"#)1'-%&$",.&"'&+8+=#*#,("-7"

,.&"6'+1.A"

B.&"*+$,"'-<,#/&"-7"C#/&$"JJEJO"1'#/,$",.&"6&/&'+,&8"

6'+1.",-"+"7#*&A"Q-)&"7-')+,,#/6"#$"1&'7-')&8"+,"C#/&$"

JREJNA"B.&"-<,1<," #$" +" 9A8-,:" 7#*&4"H.#5." 5+/" =&" 5-/E

%&',&8"#/,-"+/"#)+6&"7#*&"H#,.",.&",--*"()*&+,"-";.,,1SLL"

HHHA6'+1.%#TA-'6L@A"

K#6A"U"$.-H$"+"$+)1*&"-<,1<,"-7" ,.#$"1'-6'+)A"B.&"

#/1<,"5-/$#$,$"-7"$-<'5&"7#*&$"-7",.&"&0+)1*&"1'-6'+)$4"

,.&" $-<'5&" 7#*&$" -7" ,.&" ,--*>#,4" +/8" +" ,&$," 1'-6'+)" 7-'"

,.&",--*>#,A"P"7#*&"-7",.&",--*>#,".+$",.&"#/5-)#/6"&86&$"

7'-)" +**" /+)&$" =&5+<$&" #," 8&7#/&$" ,.&)4"H.#*&" +" 1'-E

6'+)"."/&012)1&%&'"8-&$/V,".+%&"+/("#/5-)#/6"-'"-<,E

6-#/6"&86&$"$#/5&"#,"8-&$/V,"<$&"+/("/+)&$"8&7#/&8"#/"

,.&",--*>#,A"B.#$"6#%&$"$-)&"&%#8&/5&",.+,",.&"1'-6'+)"

H-'>$"+$"#/,&/8&8A"

B-"&%+*<+,&")-8#7#+=#*#,(4"H&")+8&"5<$,-)#T&8"%&'E

$#-/$"-7",.#$"1'-6'+)";,.&#'"$-<'5&"5-8&"-'",.&#'"$+)1*&"

-<,1<,$"+'&"/-,"$.-H/"#/",.#$"1+1&'4"=<,"+'&"+%+#*+=*&"+,"

,.&"W&=$#,&@A"B.&"7#'$,"-/&" #$"+/"+=$,'+5,&8"%&'$#-/X"+"

1'-6'+)" ,-" 6&/&'+,&" 5-<1*#/6" =&,H&&/" $-<'5&" 7#*&$A"

B.&"$&5-/8"-/&"#$"+"8&,+#*&8"%&'$#-/X"+"1'-6'+)"5+*5<E

*+,&$",.&"$+)&"8&1&/8&/5("6'+1."=<,"+88$",-"&+5."&86&"

+"*+=&*"-7"*#/&"/<)=&'$"H.&'&",.&"#8&/,#7#&'"+11&+'$A"Y/"

,.&$&"5<$,-)#T+,#-/$4",.&")-8#7#5+,#-/"-55<''&8"-/*("#/"

,.&",.#'8"'-<,#/&4"<1",-".,"*#/&$A"

Y/"+88#,#-/",-"Q-Z4"+<,-)+,#-/4"#/,&'-1&'+=#*#,(",-"+"

$,+/8+'8"*#='+'("+/8"*-H"5-<1*#/6"+)-/6"'-<,#/&$4",.#$"

&0+)1*&"#/8#5+,&$S"
"

E! !"#$%$&'$($)*+, B.&" &0+)1*&$" -7" 5<$,-)#T+,#-/"

H&'&" 8&$5'#=&8" #/" ,.&" 1'&5&8#/6"1+'+6'+1.A"P*$-4"

,H-" .&<'#$,#5$" #/" ,.&" -'#6#/+*" 1'-6'+)" +," C#/&" !"

+/8"C#/&"F!".+%&"=&&/" #/,'-8<5&8"+7,&'" ,&$," '</$4"

#/"H.#5."H&"/-,#5&8",.&"1--'"[<+*#,("-7",.&"-<,1<,"

=&5+<$&" +*,.-<6." 5-''&5," =(" 8&7#/#,#-/4" </H+/,&8"

8+,+"+'&"#/5*<8&8"#/",.&"'&$<*,";(-<"5+/"$&&",.#$"=("

8-H/*-+8#/6" ,.&"1'-6'+)"+/8"'<//#/6" #," +7,&'" '&E

)-%#/6" ,.&$&" *#/&$@A"Q<5.">#/8$"-7" 9/-#$&:" 7#*,&'E

#/6"+'&"-7,&/"'&[<#'&8"#/"+/+*($#$"H#,."'&%&'$&"&/E

6#/&&'#/6",--*$A"

E! -.)/0"1/0&'$($)*,)", &,)2$0#31&0)*, ($'0&0*+" Y/E

$,+/5&$"-7".)*+*,&%/0)"+'&"1+$$&8";I<$,"+$"$0)@"

,-"+",.#'8E1+',("*#='+'(4"&'$+3#42)*&+";.,,1SLL5-8&A"

6--6*&A5-)L1L1(,.-/E6'+1.L@A"

"

4+,5".6(78$".8,&.#,%70)2/0,62&((/.9/8,
"

Y/",.#$"1+1&'4"H&"1'&$&/,&8"+"/&H"8&$#6/"#/"-'8&'",-"

$&1+'+,&"5-'&E$&+'5.#/6" ,+$>$" 7'-)" *-5+,#-/E8+,+")+/E

+6&)&/,",+$>$"+/8",-"+<,-)+,&",.&"*+,,&'A"B.&"&0+)1*&$"

<$#/6" ,.&" 1'-,-,(1&" ,--*>#," &')1/"5." $.-H" .-H" ,.&"

8&$#6/L,--*>#," #/" +<,-)+,#-/" +5.#&%&$" 5-.&$#%&/&$$" #/"

,&')$"-7"Q-Z"+/8"5-<1*#/6"=&,H&&/")-8<*&$4"#/,&'-1&E

'+=#*#,(4"+/8")-8#7#+=#*#,(A"

"Y/",.&"7<,<'&"H&"H#**S"
"

E! \0,&/8" ,.&" ,--*>#," 7-'" #/,&'-1&'+=#*#,(" ,-" PQBE

=+$&8"1+'$&'$A"

E! ?-'," ,-" -,.&'" 1'-6'+))#/6" *+/6<+6&$A" K-'" &0+)E

1*&4"+" ,&)1*+,&" ;-'"5-/5&1,E=+$&8@" ,(1&"$($,&)"-7"

Z]]"+77-'8$"#)1*&)&/,+,#-/",-"+",--*>#,"H#,."#/,&E

'-1&'+=#*#,(" ,-" &0#$,#/6" *#='+'#&$4" +$"H&**" +$" +" 8(E

/+)#5",(1&"$($,&)4"$<5."+$"?(,.-/"8-&$A"

E! ^&%&*-1"'&+*";/-,",-(@"+11*#5+,#-/$"H#,.",.&",--*>#,A"

B.#$"+*$-"H-'>$"+$"+/"&%+*<+,#-/"-7" $5+*+=#*#,("-7"

,.&",--*>#,A"

"

:/%/0/.6/8,
"
_3`" M+/$EaA" G-&.)4" b<$$" P,>#/$-/4" +/8" c#5.+&*" ?*+$$4"

9b-1&$S" +/" +*,&'/+,#%&" ,-" $,'#/6$:4" Q-7,H+'&S" ?'+5,#5&" +/8"

\01&'#&/5&4"%-*A"FU4"#$$<&"3F4"11A"J3U"E"3JJD";3ddU@A"

"

!"#!$%%&'($

!"()!*+%,+-.!/%#)!

01!!2)#!$"#!$%%&'($

"
K#6<'&"UA"P"$+)1*&"-7"-<,1<,"

Exploring Java Software Vocabulary: A Search and Mining Perspective

Erik Linstead1,2, Lindsey Hughes2, Cristina Lopes1, Pierre Baldi1
1 School of Information and Computer Sciences. University of California, Irvine.
2 Department of Math and Computer Science. Chapman University, Orange, CA.

elinstea@ics.uci.edu, hughe120@mail.chapman.edu, lopes@ics.uci.edu, pfbaldi@ics.uci.edu

Abstract

We conduct a large-scale analysis of Java source code
vocabulary for 12,151 open source projects from Source-
Forge and Apache, a corpus substantially larger than con-
sidered previously. Simple statistical analysis demonstrates
robust power-law behavior for word count distributions
across multiple program entities. We then identify salient
vocabulary trends for classes, interfaces, methods, and
fields. Our results provide low-level insight into the vo-
cabulary space governing Java software development, with
direct application to program comprehension and soft-
ware search. Supplementary material may be found at:
http://sourcerer.ics.uci.edu/suite2009/suite.html.

1. Introduction

As the amount of publicly available source code con-
tinues to grow, so does the need for tools that can effec-
tively search and mine software repositories to facilitate
code reuse and automated program comprehension. Ad-
vances in information retrieval (IR) and text mining (TM)
have acted as catalysts for such tools, allowing software de-
velopers to increase efficiency, reduce implementation re-
dundancy, and effectively understand arbitrary amounts of
source code at multiple levels of granularity.

While the techniques used in contemporary software
search and mining engines vary greatly, there is general
acceptance that source files are just another collection of
documents and the tokens that comprise them are just an-
other vocabulary [2]. Thus, even though programming lan-
guages differ from natural language in syntax and conven-
tion, many of the same approaches to search and mining
that apply to English documents, for example, can be ex-
tended to a programming language. Indeed, traditional text
information retrieval and modeling algorithms such as tf-
idf and latent dirichlet allocation have yielded high perfor-
mance when applied to software artifacts [6].

Despite the fact that many natural language-based tech-

niques have been augmented for the purposes of code search
and mining, developers of such tools still lack many of the
standardized resources available in IR and TM domains.
Stopword lists, for example, play an essential role in text in-
dexing and search by pruning tokens of little value. While
such lists are easily located for natural languages such as
English and Arabic, community-vetted lists are not avail-
able for C++ and Java. The same is true for part-of-speech
taggers, query analyzers, and other components essential
in code search and mining. While there are many reasons
why this is the case, we believe an aggravating factor is the
lack of a large-scale statistical analysis of programming lan-
guage vocabularies capable of supporting the generation of
such resources. Text corpus vocabulary is at the heart of the
IR and TM problem space, and though experiments have
been carried out in the past to understand the word space of
small software collections, we still need an Internet-scale
understanding of software vocabulary that can form a foun-
dation for Internet-scale search and mining.

Here we provide an Internet-scale vocabulary analysis
for the Java programming language by investigating the
word space of class, interface, method, and field names for
12,151 projects. Our results demonstrate strong evidence of
power-law behavior for word distributions across program
entities, and highlight distinct vocabulary features for each
entity type, including part-of-speech data. Our hope is that
this analysis will fuel additional progress in the creation of
standardized resources for software search, with application
to indexing, ranking, topic modeling, and query assessment.
On a more fundamental level, it is our intent to demonstrate
that the complete understanding of low-level source code
vocabulary trends has great promise for further advancing
these areas.

2. Data

To allow for the Internet-scale analysis of source code
we have built an extensive infrastructure, Sourcerer [6], de-
signed for the automated crawling, parsing, and storage of
large software repositories in a relational database. The cur-

100 101 102 103 104 105
100

101

102

103

104

105

lo
g(

N
um

be
r o

f O
cc

ur
en

ce
s)

log(Word Rank)

classes
fields

Figure 1. Power-law Distributions for Class
and Field Vocabulary.

rent version of Sourcerer consists of 12,151 Java projects
from Sourceforge, Apache, and other public repositories.
When parsed these projects yield 514,369 classes, 43,965
interfaces, 2,902,186 methods, and 1,560,627 fields. The
names of these entities form the basis for our vocabulary
study.

3. Methodology

For this study we consider code entities of the types
class, interface, method, and field. By further processing
the fully qualified names (FQN’s) of the entities stored in
Sourcerer we are able to produce the vocabulary that un-
derlies the corpus, as well as the number of occurrences for
each word in the repository.

Processing FQN’s consists of two distinct steps. The first
is to extract the words that constitute the entity name, where
the entity name is the rightmost portion of the FQN. In other
words, we do not consider the name of the encapsulating
package as part of the proper entity name. Once the proper
entity name is obtained, it is tokenized to obtain individ-
ual vocabulary words. This tokenization is accomplished
by leveraging common naming heuristics for Java software.
For example, the class name “DynamicConfigurator” will
generate the words “dynamic” and “configurator.” Counts
of each word are maintained and used to determine distri-
butions for individual entity types, as well as to investigate
fundamental vocabulary differences across types. As an ad-
ditional step a stemmer can be applied to each word, but this
was not done for the initial empirical analysis carried out in
this paper. Parsing our full Java corpus yields a vocabu-
lary of 44,060 distinct words. When examined individually,
classes boast a vocabulary size of 17,286, interfaces a size
of 5,091, methods a size of 23,699 and fields a vocabulary
of 31,231 words.

The second step in our vocabulary analysis consists
of tagging individual words with their parts of speech.

This allows us to investigate ”grammatical” differences be-
tween entity types, thus providing additional opportunities
to leverage vocabulary structure in tools for search and min-
ing. Validating that methods, for example, contain more
verbs than their class counterparts may be useful in pruning
the search space of code queries, or used as a classifica-
tion feature in software-oriented machine learning. Since a
part-of-speech tagger trained on source code is not readily
available, we rely on the implementation described in [7].

4. Results

In this section we provide an overview of our analysis
results. Complete results may be downloaded from the sup-
plementary materials page.

4.1. Word Distributions

As a first step in exploring the vocabulary of our Internet-
scale software repository, we consider the distribution of
word counts. In doing so, one is immediately struck by
the fact that the vocabulary for the entire repository ex-
hibits strong power-law behavior. Power-law distributions
have been observed in a wide variety of domains, ranging
from word frequencies in text to molecular substructures in
chemical informatics. Various structural aspects of software
have been shown to follow power-law distributions, and it
appears this model also explains the shape of Java vocab-
ulary in the large scale. Indeed, power-law distributions
were observed for individual entity types as well. Figure 1
depicts power-law behavior for class and entity word distri-
butions, as demonstrated by the straight line on the log-log
plot, ignoring boundary effects. (The reader may refer to
[6] for a mathematical review of power-law distributions,
as well as a survey of previously identified power-laws in
software.)

Understanding the word distributions of entity types
proves useful for honing in on interesting areas of vocab-
ulary space. For example, one may choose to set a thresh-
old on the high end of the distribution, and use all words
occurring above that threshold to construct a stopword list.
Similarly, one may focus on the low end of the distribution
to locate rare words that may prove useful in distinguishing
entity types, or identify vocabulary entries in need of further
processing. While the ultimate ramifications of vocabulary
power-law behavior are still to be digested by the commu-
nity, being able to model the functional form of Java word
distribution poses both theoretical and practical opportuni-
ties.

Table 1. The Ten Most Frequent Words by Entity Type.
Rank Class Interface Method Field

Word Count Word Count Word Count Word Count
1 1 21478 event 740 get 768519 default 15042
2 2 11581 data 630 set 365749 type 12122
3 test 11288 object 408 is 124501 text 11552
4 3 7472 xml 388 test 79472 version 11422
5 file 7213 type 383 to 75232 is 11215
6 abstract 6000 service 377 add 70846 file 10829
7 data 5982 file 370 action 59264 serial 10460
8 table 5816 standard 368 create 57963 label 10083
9 list 5432 change 337 remove 29896 max 9604
10 type 5405 message 331 do 26696 to 8990

4.2. Vocabulary Trends

Having considered the general form of word distribu-
tions, a natural next step is to examine the words themselves
for telling trends and patterns. Table 1 lists the 10 most fre-
quent words for each entity type considered. Examining
this table one makes several observations. The first is that
cardinal numbers account for the two most frequent words
in classes, but do not appear in the top 10 words for any of
the remaining entity types. Turning back to the raw data it
appears that these numbers are used frequently to differenti-
ate different implementations of the same general type, and
are thus more prevalent in class names relative to overall
vocabulary size. Another striking observation is that most
frequent words in the method vocabulary are dominated by
verbs, as opposed to other entity types, which are domi-
nated by nouns. Not surprisingly the most frequent words
for methods are ’get’ and ’set,’ stemming from the use of
accessor methods for reading from and writing to encapsu-
lated class fields.

In addition to frequency, one may also differentiate en-
tities based on words that are unique to their individual vo-
cabularies. Our results identify 196 words unique to classes,
0 words unique to interfaces, 344 words unique to methods,
and 714 words unique to fields. A small selection of such
words appear in Table 2. Again, some of the same trends are
found, most noticeably that classes and fields are dominated
by nouns, while over 90% of method-specific words in the
table are verbs. Moreover, looking at unique field words
one finds several entries (eg. ’menuitem’) that are concate-
nations of English words. This phenomenon is attributed
to both a limitation in our parsing techniques and what ap-
pears to be a prevalent coding practice. We rely on case
changes or common delimiters to tokenize entity names. In
these cases the names consist of several distinct words, but
the developers did not employ any techniques to increase
readability. In almost all cases these names can be mapped
to private class member variables. In discussing this matter,
we came to the conclusion that developers are apparently

more likely to adhere to best practices for public APIs, tak-
ing a more relaxed approach to private and local identifiers.
From the perspective of search and mining, more sophisti-
cated techniques are needed to parse such names for pur-
poses such as concept location.

As a final component to our analysis we consider the
prevalence of various parts-of-speech for individual entity
types. Table 3 depicts, for each entity type, the percentage
of words assigned to each part of speech for the N most
frequent words. Results are reported for varying thresholds
of N . (Note that some parts-of-speech are not included due
to space constraints.) The results present quantitative evi-
dence that verbs are most prevalent in methods for all levels
of N , and are especially dominant for moderate levels of
N . When complete vocabularies are considered, adjectives
and adverbs are also marginally more prevalent in method
names. The data also supports our previous observations
that cardinal numbers are most prevalent in frequently oc-
curring class words. In examining the output of our tagger
we did notice several misclassifications. The word ’test,’
for example, was classified as a noun for both classes and
methods, though in the context of methods its usage was in-
tended to be a verb. Such errors can be corrected manually,
but further supports the need for taggers trained on code.

5 Applications

Our study only scratches the surface of the many types
of vocabulary trends that can be used to improve search and
mining techniques. Obvious applications include the cre-
ation of standardized stopword and concept lists, augmenta-
tion of code search queries based on parts-of-speech, as well
as the classification of code entities based on word finger-
prints. In the latter case, we have leveraged the vocabulary
trends discussed here to train first-order Markov Models to
classify class, interface, and method entities. In one ex-
periment based on partitioning the Sourcerer database into
static testing and training corpora we achieved 78% classi-
fication accurracy. This level of accurracy is striking given

Table 2. Unique Words by Entity Type.
Class Method Field
decomposes qualifies sacrificial
debrief violate menuitem
combinations disambiguate nodename
simplistic commence accesslevel
reconstruction advertise neptune
trainer reify uranus
interpolator sanitize saturn
analytical formulate fontcolor
synchronizer definite tabletype
subordination nominate toolbutton

the simplicity of first-order models, and underscores the im-
portance vocabulary plays in discerning entity types. In this
experiment we noted that 74% of misclassifications were
due to confusion between classes and methods. We are cur-
rently moving toward higher-order models to leverage ad-
ditional word cues and part-of-speech data to reduce such
confusion.

In addition to classification, such vocabulary-centered
Markov Models may be adapted to code assessment and
search. Specifically, the statistical structure of the model al-
lows one to efficiently calculate the likelihood that a given
string was generated from a specific model (in our case a
model for classes, interfaces, methods, or fields). In this
way, programmer naming conventions for each entity type
could be run through the appropriate model and analyzed
for their adherence to practices observed in large software
repositories. Turning to search, query strings based on en-
tity names could be analyzed and re-written to reflect the vo-
cabulary structure most suited for the type of interest, thus
improving precision and recall subject to the tokenization
rules used to generate the search index. A similar approach
could be taken using part-of-speech data, adding additional
refinements above and beyond the usual tf-ids approach.

6. Related Work

Our analysis of Java vocabulary extends previous ef-
forts to understand software language. These efforts include
building a grammar for function identifiers [3] and deduc-
ing the meaning of common verbs in the context of soft-
ware [5] for repositories numbering in the tens of projects.
An in-depth survey of previous studies is undertaken in [4],
which examines the content of comments and identifiers to
understand how domain terms are expressed within them
and underscores the importance of vocabulary selection in
such tasks. Recently, the work in [1] has considered the
word structure of Java class names. This work is perhaps
most similar to the direction we are exploring, but differs
from own analysis thus far in that interfaces, methods, and
fields are not considered, nor is part of speech tagging.

Table 3. Part-of-Speech Percentages Across
Entity Types for Varying Thresholds.

Type N Noun Verb Adj Adv Num
class 10 0.6000 0.0000 0.1000 0.0000 0.3000
interface 10 0.8000 0.1000 0.1000 0.0000 0.0000
method 10 0.2000 0.7000 0.0000 0.0000 0.0000
field 10 0.7000 0.1000 0.1000 0.0000 0.0000
class 100 0.7500 0.0400 0.0700 0.0100 0.0900
interface 100 0.8900 0.0300 0.0700 0.0000 0.0000
method 100 0.5800 0.2300 0.0700 0.0000 0.0000
field 100 0.7600 0.0500 0.1000 0.0200 0.0000
class 1000 0.7130 0.1030 0.1360 0.0080 0.0110
interface 1000 0.7440 0.0920 0.1260 0.0070 0.0020
method 1000 0.6200 0.1720 0.1620 0.0080 0.0020
field 1000 0.6690 0.1160 0.1450 0.0130 0.0020
class all 0.6397 0.1576 0.1806 0.0085 0.0021
interface all 0.6498 0.1450 0.1797 0.0084 0.0012
method all 0.6208 0.1686 0.1870 0.0109 0.0020
field all 0.6664 0.1439 0.1701 0.0082 0.0017

References

[1] C. Anslow, J. Noble, S. Marshall, and E. Tempero. Visual-
izing the word structure of java class names. In OOPSLA
Companion ’08: Companion to the 23rd ACM SIGPLAN con-
ference on Object oriented programming systems languages
and applications, pages 777–778, New York, NY, USA, 2008.
ACM.

[2] P. Baldi, C. Lopes, E. Linstead, and S. Bajracharya. A the-
ory of aspects as latent topics. In OOPSLA ’08: Proceed-
ings of the 23rd annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications,
New York, NY, USA, 2008. ACM. to appear.

[3] B. Caprile and P. Tonella. Nomen est omen: Analyzing the
language of function identifiers. In WCRE ’99: Proceed-
ings of the Sixth Working Conference on Reverse Engineer-
ing, page 112, Washington, DC, USA, 1999. IEEE Computer
Society.

[4] S. Haiduc and A. Marcus. On the use of domain terms in
source code. International Conference on Program Compre-
hension, 0:113–122, 2008.

[5] E. W. Host and B. M. Ostvold. The programmer’s lexicon,
volume i: The verbs. In SCAM ’07: Proceedings of the Sev-
enth IEEE International Working Conference on Source Code
Analysis and Manipulation, pages 193–202, Washington, DC,
USA, 2007. IEEE Computer Society.

[6] E. Linstead, S. Bajracharya, T. Ngo, P. Rigor, C. Lopes, and
P. Baldi. Sourcerer: Mining and searching internet-scale soft-
ware repositories. Data Mining and Knowledge Discovery,
2009. in press.

[7] K. Toutanova and C. D. Manning. Enriching the knowledge
sources used in a maximum entropy part-of-speech tagger. In
2000 Joint SIGDAT conference on Empirical methods in natu-
ral language processing and very large corpora, pages 63–70,
Morristown, NJ, 2000. Assn for Computational Linguistics.

Improving Software Quality via Code Searching and Mining

Madhuri R. Marri

Department of Computer Science

North Carolina State University

mrmarri@ncsu.edu

Suresh Thummalapenta

Department of Computer Science

North Carolina State University

sthumma@ncsu.edu

Tao Xie

Department of Computer Science

North Carolina State University

xie@csc.ncsu.edu

Abstract

Enormous amount of open source code is available on

the Internet and various code search engines (CSE) are

available to serve as a means for searching in open source

code. However, usage of CSEs is often limited to simple

tasks such as searching for relevant code examples. In this

paper, we present a generic life-cycle model that can be

used to improve software quality by exploiting CSEs. We

present three example software development tasks that can

be assisted by our life-cycle model and show how these

three tasks can contribute to improve the software quality.

We also show the application of our life-cycle model with a

preliminary evaluation.

1. Introduction

Open source code available on the Internet has become

a common platform for sharing source code. Programmers

often reuse the design of code examples or adapt code ex-

amples of existing open source projects rather than discov-

ering usage patterns by digging into documents. Currently,

the amount of open source code available on the Internet

is enormous. For example, sourceforge.net1, the world’s

most popular website for open source software develop-

ment, hosts about 179,518 projects with two million reg-

istered users and a large number of anonymous users. With

such enormous amount of open source code available on the

Internet, several code search engines (CSE) such as Google

code search [6], Krugle [7], Koders [1], Sourcerer [9], and

Codase [5] are developed to efficiently search for relevant

code examples (i.e., source files containing a search term).

These CSEs accept queries such as the names of classes or

methods of Application Programming Interfaces (API) and

search in CVS or SVN repositories of available open source

projects.

Although CSEs can serve as a means for searching in

enormous amount of open source code, the usage of CSEs

is often limited to simple tasks such as searching for rele-

vant code examples. In this paper, we propose a life-cycle

1http://sourceforge.net/

model2 that combines code searching through CSEs and

mining common patterns of API usages from gathered code

examples. Our proposed model can be used to assist three

main software development tasks: (1) to learn about an API

usage by automatically inferring programming rules (from

the mined patterns), (2) to use mined patterns to detect de-

fects in a program under analysis, and (3) to infer a fix that

needs to be applied for a detected defect.

There exist approaches [4, 8] that mine common usage

patterns (e.g., frequent occurrences of pairs or sequences of

API method calls) as programming rules for software ver-

ification or software reuse. One common characteristic in

these existing approaches is that these approaches mine pat-

terns from a few code bases. Therefore, these existing ap-

proaches often cannot surface out many programming rules

as common patterns because there are often too few data

points in these code bases to support the mining of desirable

patterns [10]. In other words, the number of data points to

support a pattern related to a particular programming rule

is often insufficient. The drawback of these approaches is

reflected in empirical results reported by these existing ap-

proaches: often a relatively small number of real program-

ming rules were inferred from huge code bases.

A natural question to ask is whether a larger number of

code bases (such as a large scale of open source code) can

serve as an alternative data source for smaller code bases.

One issue with a larger number of code bases is that min-

ing a larger number of code bases is often not scalable. To

address this issue, we propose a life-cycle model based on

code searching and mining. In our life-cycle model, we ex-

pand the data scope to a larger number of code bases and

include techniques to address scalability issues. In particu-

lar, we search for relevant code examples using CSEs and

mine only those code examples. Our life-cycle model can

assist in improving software quality over different phases

of software development. We refer to our model as life-

cycle model since the mined patterns can be used for writing

new code, which can again be used as input for our model.

2The term life-cycle model is inspired from software development life

cycle and refers to the life cycle of mining patterns.

We applied our life-cycle model in our previous approach,

called PARSEWeb [10], that identifies frequent method-

invocation sequences to serve as solutions for queries of the

form “Source object type→Destination object type”. In the

evaluation of PARSEWeb, we show that our model can ad-

dress issues that cannot be addressed by a CSE or any exist-

ing mining approach individually. We also show that code

examples gathered from a CSE require post-processing be-

fore mining common usage patterns. In this paper, we elab-

orate on the life-cycle model of code searching and mining.

We describe issues (and related post-processing techniques)

that need to be addressed before using gathered code exam-

ples for mining patterns. We also present the application of

our model in improving software quality with an emphasis

on the post-processing techniques.

2. Life-Cycle Model

We next describe our life-cycle model that exploits CSEs

and mines common patterns from gathered code examples.

These common patterns can be used in improving software

quality. Our model includes two phases: searching andmin-

ing. In the searching phase, we use CSEs to gather relevant

code examples. In the mining phase, we analyze these code

examples and mine patterns that describe how to use an

API. Figure 1 presents an overview of our life-cycle model.

We next describe each phase in detail.

2.1 Searching
The searching phase includes two tasks: query construc-

tion and duplicate elimination.

Query Construction. In the query construction

task, we construct queries with API names as search

terms. For example, we construct the query “lang:java

org.apache.regexp.RE” to gather relevant code exam-

ples of the RE class from Google code search (GCS). These

code examples show how to use the RE class provided by the

Apache library [3]. GCS returns around 2, 000 code exam-
ples for this query. Based on our experience with CSEs, one

observation with query construction is that the relevance3 of

resulting code examples mainly depends on the format of

the query issued to CSEs. Without a well-formulated query,

CSEs can result in a high number of irrelevant code exam-

ples. For example, to search for relevant code examples of

the fopen API, a basic search query on GCS is “lang:c

fopen”. This query returns around 752, 000 code samples.
When the query is tuned to “lang:c file:.c$ [\ s \
*]fopen [\ s]?\(” (GCS supports search with regular
expressions), GCS returns 689, 000 code examples. Among
the top 50 returned code examples, the number of relevant

code examples was found to be doubled among code ex-

amples returned by a specific query (query with regular ex-

pressions) when compared to that of a basic query. The

3A code example is relevant when it includes a call site of the required

API that is searched for.

Figure 1. Phases in the life cycle of mining

approaches based on code search engines

relevance (or quality) of gathered code examples plays an

important role in mining common patterns from the gath-

ered code examples. Although a programmer can decide to

filter out irrelevant code examples during either the search-

ing or mining phase, filtering out irrelevant code examples

using an appropriate query in the searching phase can help

reduce additional efforts in handling irrelevant code exam-

ples.

Duplicate Elimination. One observation with code ex-

amples returned by CSEs is that these code examples of-

ten include duplicate copies. We consider two code ex-

amples as duplicate of each other, if both belong to the

same project and the same source file. For example, among

the 2, 000 code examples returned by GCS for the query
“lang:java org.apache.regexp.RE”, the source file

JakartaRegexpRegexp.java is found 13 times. Among

these 13 copies, there are 5 different versions of the source

file and the remaining 8 copies are duplicates of these 5

versions. There are both desirable and undesirable conse-

quences with duplicate or multiple versions of source files

among code examples. For example, code examples that

are duplicate of the same source file, such as those belong-

ing to a particular jar file, can be found to be used in vari-

ous projects. The existence of duplicate or multiple copies

for a code example can indicate that the code example is

widely used and therefore the code example can be trusted

more than those code examples that do not have duplicate

or multiple versions. On the other hand, duplicate or mul-

tiple copies can bias the results of mining approaches that

try to mine common patterns. To mine unbiased patterns

used across a large number of code bases, we propose du-

plicate elimination to identify and filter out duplicate code

examples.

2.2 Mining
The mining phase includes three tasks: type resolution,

candidate extraction, and pattern inference. We refer to

01:import java.util.ArrayList;

02:import java.util.*;

03:Public class test {
04: public void method1(ArrayList list) {
05: Iterator iter = list.iterator();

06: while(iter.hasNext()) {
07: String str = (String) iter.next();

08: ...}}
Figure 2. A code example using Iterator

API.

these three tasks as post-processing techniques on gathered

code examples.

Type Resolution. In the type resolution task, we resolve

object types such as the return object type of a method call

in gathered code examples. These object types are neces-

sary for analyzing gathered code examples. In our model,

we cannot use traditional techniques for parsing and resolv-

ing object types. The primary reason is that CSEs often

return only individual source files (i.e., code examples) in-

cluding the search term, and these code examples are often

partial and not compilable. In our context, a partial code

example indicates that the code example is complete; how-

ever, the other source files on which the code example is de-

pendent upon are not available. To achieve the task of type

resolution, we use partial program analysis for resolving ob-

ject types. In our PARSEWeb approach [10], we developed

16 heuristics and these heuristics are contrary to type check-

ing done by a compiler. We next present a sample heuris-

tic for inferring fully qualified names using a code example

(shown in Figure 2) to show the use of these heuristics in

analyzing partial code examples.

Inferring fully qualified names. In Java, classes and inter-

faces have fully qualified names that can be extracted from

the class declaration. However, as our gathered code exam-

ples are partial, we infer fully qualified names from import

statements in these code examples. For example, the fully

qualified name of the ArrayList class is inferred from the

import statement in Line 1. However, this heuristic can-

not infer the fully qualified name for the Iterator class

referred in Line 5. The reason is that the related import

statement in Line 2 uses * instead of the Iterator class.

Our heuristics are not complete as these heuristics cannot

resolve entire type information. However, the evaluation re-

sults of our PARSEWeb approach show that these heuristics

are often effective in resolving required type information.

Candidate Extraction. In the candidate extraction

task, we analyze gathered code examples to extract pat-

tern candidates. These pattern candidates include infor-

mation about API usage. For example, a pattern can-

didate extracted from the code example in Figure 2 is

“Iterator.next should be preceded with a boolean

check on Iterator.hasNext”.

Pattern Inference. In the pattern inference task, we ap-

ply mining techniques such as frequent subsequence min-

ing [2] on extracted pattern candidates to mine common

patterns of API usage. The details of these two tasks (candi-

date extraction and pattern inference) vary across the types

of problems being addressed using our model, whereas type

resolution is an essential task to resolve type information in

gathered code examples.

3. Application of the Life-Cycle Model

In this section, we describe example software develop-

ment tasks that can be assisted by our life-cycle model and

show the utility of our model with a preliminary evaluation

done for one of these tasks.

3.1 Tasks Assisted by Life-Cycle Model

We expect that our life-cycle model can be used to im-

prove software quality over different phases of software de-

velopment by assisting three example major tasks.

Development. The patterns mined using our life-cycle

model can be used to assist programmers during the devel-

opment phase. These mined patterns provide common us-

age scenarios of how to reuse APIs and can be referred to

as specifications while writing code. We implemented an

approach, called PARSEWeb [10], based on our life-cycle

model. PARSEWeb can be used to assist programmers dur-

ing software development. The utility of the PARSEWeb

approach over a traditional approach based on a CSE is

shown in Section 3.2.

Verification. The patterns mined using our life-cycle

model can be used to detect deviant behavior in a program

under analysis. These patterns can be treated as specifica-

tions of an API usage and any deviation from the pattern

in a program under analysis can be reported as a violation.

For example, consider a pattern mined for the fopen API

of standard C library (stdio.h) as shown below:

API method: fopen

Condition check on "return" value

Condition Type: NULL-CHECK

The preceding pattern describes that a majority of gath-

ered code examples contain a NULL condition check on the

return value of the fopen method call. This pattern can be

used to detect defects related to missing condition checks

after the fopen API call in the program under analysis.

This example illustrates that our life-cycle model can be

used to detect defects in the verification task.

Maintenance. The patterns mined using our life-cycle

model can also be used for suggesting defect fixes during

the maintenance task. For example, consider the following

pattern related to the Iterator.next method:

API method: Iterator.next

Condition check on "return" value of

Iterator.hasNext

Condition Type: BOOLEAN-CHECK

The preceding pattern describes that there should be a

boolean check on the Iterator.hasNextmethod before

invoking the Iterator.next method. Failing to perform

the boolean check can cause NoSuchElementException.

Consider that the verification task detects a violation of the

preceding pattern in a program under analysis. In this sce-

nario, we can suggest a defect fix based on the pattern.

For example, we can automatically perform defect fixing

by inserting a boolean check on the Iterator.hasNext

method before the Iterator.next method.

3.2 Preliminary Evaluation

We next show the utility of our life-cycle model over a

traditional approach of directly searching via a CSE with

an example task related to software development. We im-

plemented our life-cycle model in our previous approach,

called PARSEWeb [10]. PARSEWeb accepts queries of the

form “Source object type → Destination object type” and

finds method-invocation sequences that produce the desti-

nation object type from the source object type.

We use a programming problem “org.

eclipse.ui.IWorkbenchWindow → org.eclipse.

ui.IViewPart” described in a previous related ap-

proach [8]. The programming problem can be in-

terpreted as that a programmer has an object of the

IWorkbenchWindow class, and the programmer wants

a method-invocation sequence to obtain an object of the

IViewPart class. We use four code search engines (GCS,

Koders, Krugle, and Codase) and PARSEWeb to investi-

gate how they can assist in addressing this programming

problem.

The minimal requirement for a code example to include a
solution method-invocation sequence is that the code exam-
ple should include both classes IWorkbenchWindow and
IViewPart. Therefore, we constructed a query with both
class names as search terms and used all four CSEs to gather
relevant code examples. GCS, Krugle, Koders, and Codase
returned 775, 112, 478, and 0 code examples, respectively.
We inspected the top ten code examples returned by each
CSE to check whether these code examples include a solu-
tion method-invocation sequence. We found that GCS and
Koders include a solution method-invocation sequence in
the sixth and eighth code examples, respectively. We could
not find any solution method-invocation sequence among
the code examples returned by Koders and Codase. There
are two major tasks that need to be carried out in using CSEs
directly for addressing this programming problem. First,
the programmer has to browse to the sixth or eighth code
example for getting a solution sequence. Second, the pro-
grammer does not have any knowledge whether this solu-
tion sequence is a commonly used method-invocation se-
quence. We next used PARSEWeb to recommend a solu-
tion for the programming problem. The solution sequence
recommended by PARSEWeb is shown as below.

... IWorkbenchWindow iwwObj;

IWorkbenchPage iwpObj = iwwObj.getActivePage();

IViewPart ivpObj = iwpObj.findView(String);

PARSEWeb analyzed code examples gathered fromGCS

to generate sequence candidates. PARSEWeb used these

sequence candidates to mine commonly used method-

invocation sequence. PARSEWeb recommended a single

solution sequence that is a common sequence among gath-

ered code examples. This example shows the utility of our

life-cycle model used to develop our PARSEWeb approach.

4. Conclusion

We proposed a life-cycle model that can be used to

develop approaches based on code searching and mining.

We elaborated on the two phases of our life-cycle model

and suggested post-processing techniques for mining

patterns from gathered code examples. We also presented

three example software development tasks (that contribute

to improve software quality) that can be assisted by our

life-cycle model. Additionally, we highlighted the utility of

our life-cycle model with an approach developed based on

our life-cycle model.

Acknowledgments. This work is supported in part by NSF

grant CCF- 0725190, ARO grant W911NF-08-1-0443, and

ARO grant W911NF-08-1-0105 managed by NCSU Secure

Open Systems Initiative (SOSI).

References

[1] Koder’s Zeitgeist. http://www.koders.com/

zeitgeist/.
[2] R. Agrawal and R. Srikant. Fast algorithms for mining as-

sociation rules in large databases. In Proc. VLDB, pages

487–499, 1994.
[3] The Apache Jakarta Project, 2007. http://jakarta.

apache.org/regexp/.
[4] R.-Y. Chang, A. Podgurski, and J. Yang. Finding what’s not

there: a new approach to revealing neglected conditions in

software. In Proc. ISSTA, pages 163–173, 2007.
[5] Codease, 2005. http://www.codase.com/.
[6] Google Code Search Engine, 2006. http://www.

google.com/codesearch.
[7] V. Magotra. The art of ranking code search results, 2006.

http://blog.krugle.com/?p=184.
[8] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman. Jungloid

mining: helping to navigate the API jungle. In Proc. PLDI,

pages 48–61, 2005.
[9] B. Sushil, N. Trung, L. Erik, D. Yimeng, R. Paul, B. Pierre,

and L. Cristina. Sourcerer: a search engine for open source

code supporting structure-based search. In Proc. OOPSLA

Companion, pages 681–682, 2006.
[10] S. Thummalapenta and T. Xie. PARSEWeb: A Programmer

Assistant for Reusing Open Source Code on the Web. In

Proc. ASE, pages 204–213, 2007.

Hybrid Storage for Enabling Fully-Featured Text Search
and Fine-Grained Structural Search over Source Code

Oleksandr Panchenko
Hasso Plattner Institute for Software Systems Engineering

P.O. Box 900460, 14440 Potsdam, Germany
panchenko@hpi.uni-potsdam.de

Abstract

Searching is an important activity in software main-
tenance. Dedicated data structures have been used to
support either textual or structural queries over source
code. The goal of this ongoing research is to elabo-
rate a hybrid data storage that enables simultaneous
textual and structural search. The naive adjacency list
method has been combined with the inverted index ap-
proach. The data model has been enhanced with the
use of recent data compression approaches for column-
oriented databases to allow no-loss albeit compact stor-
age of fine-grained structural data. The graph indexing
has enabled the proposed data model to expeditiously
answer fine-grained structural queries. This paper de-
scribes the basics of the proposed approach and esti-
mates its feasibility.

1 Introduction

Source code search is an essential activity in software
maintenance. Approximately 30% of the actions per-
formed on source code involve searching [9]. Depending
on the task, developers perform different search strate-
gies. Search queries include full-text queries, struc-
tural queries or a combination of the two [14]. Since
both aspects are equally important, the combination of
both types of data in one storage seems to be prefer-
able. However, existing tools treat these two aspects
independently: some methods focus on information re-
trieval (IR) techniques to enable full-text search on
source code [12, 11], other tools rely on structural anal-
ysis methods [2, 7, 8]. Maintaining and integrating
several data structures results in higher costs.

This paper proposes a data model that uses recent
compression and graph indexing techniques to enable
simultaneous full-text search, structural search or a

combination of the two. Since queries are often formu-
lated in terms of the application domain [4], a mapping
between application domain terms and implementation
domain terms should be supported. The proposed data
model allows expeditious answering of various queries:
text queries in application domain terms and imple-
mentation domain terms; structural queries on multi-
ple levels of detail, e.g. find all writing accesses for a
variable, find all classes with more then 30 methods or
find a class with only static final fields.

2 Existing Approaches

The inverted index is a popular storage for textual
and numerical information. Amongst many other sce-
narios this technique has been used to index source
code [12]. Although IR methods have been successfully
used in software engineering for a long time, structural
information in source code remains mostly unutilized
[10, 11]. Hash table is a naive technique to implement
inverted index. Although some advanced compression
and indexing methods based on b-trees or bitmap in-
dexing have been developed for both numerical and
categorical values [15], so far none of those methods
have been applied to storing source code, and, espe-
cially, to its structural properties.

Holmes et al. used a relational database to store
source code and to query it to recommend relevant ex-
amples [7]. Nevertheless, this approach assumes storing
source code with a coarse level of detail.

Begel proposed enriching terms stored in an index
with metadata extracted from the source code about
the role of the term, type of usage and few others [3].
Similar approach is used by existing code search en-
gines, e.g. Codase, Koders, Krugle, and Google Code
Search. Here, additional metadata about the used pro-
gramming language, license and other information is
captured. However, stored metadata does not contain

important information about relations between entities
and can be used to answer only relatively simple ques-
tions about source code.

Bajracharya et al. have used a simplified relational
data model [2], which has been considered appropriate
to store data with a middle level of detail. Information
about more fine-grained characteristics is precomputed
and aggregated into fingerprints. If new queries should
be answered, new fingerprints should be introduced.

Many tools for storing and querying source code ex-
ist. However, to keep high performance and acceptable
requirements for disk and memory space, the amount of
information stored in the database is kept small. Thus
only a few predefined queries can be answered based on
coarse structural information or on precalculated and
stored facts about source code. Storing fine-grained
data using existing data models will significantly in-
crease space requirements. Ad hoc queries result in
low performance. Hence, a new type of storage should
be developed. The data model proposed in this paper
enables no-loss storing structural information and an-
swering free style queries. The goal is to fit index of
even large projects into main memory.

3 Hybrid Storage Structure

The maintainer needs several representations of
source code: textual representation, abstract syntax
tree (AST), call graph, data flow graph and different
subgraphs of it, slices, etc. These representations are
used for navigation as well for search. Although these
representations are quite different in their nature, the
elements of all the representations remain the same.
Only the way these entities are connected and repre-
sented is changed. The proposed data model contains
all representations in one index as shown in Figure 1.

Adjacency matrix and adjacency list are crude ap-
proaches for storing structural information represented
as a tree or a graph. The adjacency list approach is a
table, each row of which corresponds to an edge with
references to the start vertex and to the end vertex.
This simple data model is applicable on a limited basis
for large structures because of non-optimal space us-
age. Moreover, storing related elements in one index
results in multiple self-joins if it comes to traversing the
relations. The proposed data model overcomes both
challenges.

The first improvement is the utilization of compres-
sion algorithms. A row in the index for structural infor-
mation can store different types of relations. The col-
umn RELATION TYPE distinguishes between edges
of different structures. Since all relation types refer
to the same entities, the column ENTITY ID refers to

the dictionary where the entities are stored. Storing a
higher amount of data in a column without increasing
the cardinality increases opportunity for compression.
High compression enables storing fine-grained informa-
tion. In the proposed approach the dictionary encoding
and run-length encoding [16, 13] are used. Thus, each
dictionary value is encoded with a minimal possible
number of bits. Nevertheless, depending on the actual
distribution of values in the columns, other compres-
sion methods can be used [1]. An elaborate analysis
is needed to identify the best compression algorithm
for this scenario. More detailed information leads to
a higher number of repeated entities in the index and
to lower entropy. Low entropy results in a higher com-
pression rate and in manageable memory consumption.
Thus, a much higher degree of detail results in only a
marginal increase of the required space.

The second improvement is the use of an index-
ing algorithm. To overcome the performance challenge
caused by multiple self-joins, the pre- and post-order
indexing method can be used. To each vertex in the
tree, two numbers are assigned: pre-order number and
post-order number. These numbers are ascertained
during a depth-first traversal of the tree before and
after the visit of the corresponding vertex. If vertex
A is reachable from vertex B, A must have a higher
pre-order and lower post-order number than B. Al-
though the method was originally developed for trees,
the GRIPP approach [17] is an extension for graphs. As
graph vertices can have more than one ancestor, those
vertices receive additional pre- and post-order numbers
during indexing. The result of this transformation is a
tree with additional vertices that receive independent
pre- and post-orders but which are in fact just pointers
to the original vertex. During query processing this
leads to additional queries. However, the number of
additional queries usually remains reasonable, depend-
ing on the graph density. The preliminary analysis
shows that most vertices with more than one ancestor
are leaves and do not require additional queries. To
indicate this, a special field is included in the table.

Two dictionaries define the vocabulary of all enti-
ties extracted from source code. The application do-
main dictionary includes all automatically extracted
keywords that describe the application domain. The
implementation domain dictionary contains all tokens
that form the program: class names, method and vari-
able names, parameters, etc. To simplify the decision
if the term belongs to the application domain, a dic-
tionary lookup has been made: all English words were
assigned to the application domain terms. The index
for textual information is used to persist the many-to-
many mapping between application domain and imple-

mentation domain terms. This paper discusses only the
possibility of storing such a mapping. Readers inter-
ested in how tuples [application domain term, imple-
mentation domain term] can be identified are referred
to the work of Cleary and Exton [5]. Fields DOCU-
MENT ID and POSITION refer to the place in source
code, where the term can be found.

The data is supposed to be stored in a central
column-oriented main memory database. The column-
oriented architecture is more suitable for the selected
types of compression [1]. It is also possible to paral-
lelize indexing and querying, to partition index hori-
zontally based on projects, areas, versions, etc. and to
distribute the index on several servers.

Although both dictionaries have similar structure
and content these are separated into two tables due
to maintenance ease. Industry size column-oriented
databases such as TREX [13] can populate and admin-
ister the implementation domain dictionary automati-
cally. The application domain dictionary is populated
by a tool for mapping application and implementation
domain terms.

4 Sizing Example

This section illustrates some important characteris-
tics of source code in the context of the data model
and determines the size of the index for a selected
project. A prototype has been implemented that tra-
verses source code, constructs ASTs and call graphs,
analyses these, and stores the statistics in the index.
One open source project has been selected (JAllInOne
ERP System v.0.9.17) to exemplify how such an index
can appear. Table 1 illustrates some facts about the
project. In addition to the entities presented in Table
1, there are a number of other elements such as method
parameters, numerical and string literals, exceptions,
etc. The total number of implementation domain enti-
ties is 151 thousand. A number of terms were identified
as application domain terms. Each entity appears at
least once in ASTs. The number of all vertices in ASTs
is 543 thousand.

To demonstrate how several different types of struc-
tural information can be coalesced in the index, a sec-
ond type of structural information has been stored
there, namely call graph. The number of edges in the
call graph is 49 thousand. Each [vertex, ancestor ver-
tex] relation as well as each [caller, callee] relation cor-
responds to one row in the index. Therefore, the index
has 592 thousand rows.

Now, the amount of memory needed to store data is
investigated. For more details see Table 2. The size of
the index is 592,260 rows * 96 bits per row = 7,107,120

bytes. Some space can be saved by the run-length
encoding. The complete infrastructure including the
implementation domain terms dictionary and control
files requires 11 MB. The source code (only *.java files,
without configuration files, etc.) needs 8.4 MB disk
space. Therefore, the proposed data model requires
about the same amount of memory as the original
source code, yet includes no-loss fine-grained structural
information and the possibility of mapping between
application domain terms and implementation domain
terms. It is expected that including other representa-
tions, e.g. data flow graph, into the index will only
marginally increase its size.

This estimation in no way represents a complete
analysis. Nonetheless, these measurements have been
helpful in a feasibility assessment of the proposed ap-
proach and in the determination of problem areas.

Table 1. Number of entities
Entity type Number
TypeDeclaration 1,239
MethodDeclaration 8,508
FieldDeclaration 8,056
VariableDeclarationFragment 16,012

Table 2. Row size of the index
Column Cardinality Bits needed
PRE ORDER 682,322 20
RELATION TYPE 2 1
ENTITY TYPE 83 7
ENTITY ID 281,406 19
POST ORDER 682,322 20
DOCUMENT ID 1,089 11
POSITION 61,393 16
IS VIRTUAL 2 1
IS LEAF 2 1
Total 96

5 Conclusions and Further Work

This paper illustrates the possibility of creating a
compact and fine-grained representation of source code
in a main memory index, which enables high perfor-
mance search. The structure for the mapping between
application domain terms and implementation domain
terms is directly incorporated into the data model.

Such an extensive indexing is time-consuming,
therefore this data model can be primarily used in

Figure 1. Data model

maintenance, where software is changed continually,
but not intensively. An incremental indexing technique
should be developed.

Since the output of the GRIPP method is in fact a
tree, it seems reasonable to apply methods for querying
XML [6] to source code structures. For example, one
can provide an XPath-like interface to the repository.

A benchmark is planned to compare performance
of the approach with other approaches. Moreover, a
substantial experiment with maintainers is intended to
measure usability of the tool, and to estimate perfor-
mance of queries and the number of queries needed in
different scenarios.

References

[1] D. Abadi, S. Madden, and M. Ferreira. Integrat-
ing compression and execution in column-oriented
database systems. In Proceedings of the international
conference on Management of data, pages 671–682,
New York, NY, USA, 2006. ACM.

[2] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor,
P. Baldi, and C. Lopes. Sourcerer: a search engine for
open source code supporting structure-based search.
In Companion to the 21st ACM SIGPLAN symposium
on Object-oriented programming systems, languages,
and applications, pages 681–682. ACM, 2006.

[3] A. Begel. Codifier: A programmer-centric search
user interface. In Proceedings of the Workshop on
Human-Computer Interaction and Information Re-
trieval, pages 23–24, 2007.

[4] T. J. Biggerstaff, B. G. Mitbander, and D. E. Webster.
Program understanding and the concept assignment
problem. Comm. of the ACM, 37(5):72–82, 1994.

[5] B. Cleary and C. Exton. Assisting concept location in
software comprehension. In Psychology of Program-
ming Workshop, pages 42–55, 2007.

[6] T. Grust. Accelerating XPath location steps. In Pro-
ceedings of the ACM SIGMOD Int-l Conference on
Management of Data, pages 109–120. ACM, 2002.

[7] R. Holmes, R. J. Walker, and G. C. Murphy. Approx-
imate structural context matching: An approach to

recommend relevant examples. IEEE Transactions on
Software Engineering, 32(12):952–970, 2006.

[8] O. Hummel and C. Atkinson. Using the web as a
reuse repository. In Proceedings of the International
Conference on Software Reuse, pages 298–311, 2006.

[9] T. Lethbridge and J. Singer. Studies of the work prac-
tices of software engineers. In Advances in Software
Engineering: Comprehension, Evaluation, and Evolu-
tion, H. Erdogmus and O. Tanir (Eds), pages 53–76.
Springer-Verlag, 2001.

[10] D. Liu and S. Xu. Challenges of using LSI for concept
location. In Proceedings of the 45th annual southeast
regional conference, pages 449–454. ACM, 2007.

[11] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic.
An information retrieval approach to concept location
in source code. In Proceedings of the 11th Working
Conference on Reverse Engineering, pages 214–223.
IEEE Computer Society, 2004.

[12] D. Poshyvanyk, M. Petrenko, A. Marcus, X. Xie, and
D. Liu. Source code exploration with Google. In Pro-
ceedings of the 22nd IEEE International Conference
on Software Maintenance, pages 334–338. IEEE Com-
puter Society, 2006.

[13] J. Schaffner, A. Bog, J. Krüger, and A. Zeier. A hy-
brid row-column OLTP database architecture for op-
erational reporting. In Proceedings of the international
workshop on Business Intelligence for the Real Time
Enterprise, 2008.

[14] S. E. Sim, C. L. A. Clarke, and R. C. Holt. Archetypal
source code searches: A survey of software developers
and maintainers. In Proceedings of the 6th Interna-
tional Workshop on Program Comprehension, pages
180–187. IEEE Computer Society, 1998.

[15] K. Stockinger, J. Cieslewicz, K. Wu, D. Rotem, and
A. Shoshani. Using bitmap index for joint queries on
structured and text data. Annals of Information Sys-
tems, pages 1–23, 2008.

[16] F. Transier and P. Sanders. Compressed inverted in-
dexes for in-memory search engines. In Proceedings of
the 9th Workshop on Algorithm Engineering and Ex-
periments, 2008.

[17] S. Trißl and U. Leser. Fast and practical indexing and
querying of very large graphs. In Proceedings of the
ACM SIGMOD international conference on Manage-
ment of data, pages 845–856. ACM, 2007.

Specifying What to Search For

Steven P. Reiss
Department of Computer Science

Brown University

Providence, RI. 02912 USA

spr@cs.brown.edu

Abstract

In this position paper we look at the problem of
letting the programmer specify what they want to
search for. We discuss current approaches and their
problems. We propose a semantics-based approach
and describe the steps we have taken and the many
open questions remaining.

1. Motivation

One of the first things a programmer should do
when writing new code is to find existing, working
code with the same functionality, and reuse as much of
that code as possible. With the large amount of open-
source code available and the fact that most applica-
tions are not completely novel, one could imagine that
a significant amount of the code that is being written
today has been written before in some form, and much
of it is available in an open-source repository.

This is the type of motivation given for code
search. The emphasis here is on enabling reuse, avoid-
ing writing what has been written before, making
effective use of open source software, speeding up
development, and producing higher quality software
systems.

Code search, if it is going to achieve these ends,
has to be substantially different from traditional web
search. In particular it has to be designed and imple-
mented so that:

• It is easier to use the results returned from the
search engine rather than creating the code from
scratch. Reuse should be relatively simple.

• The results returned must do what the programmer
wants them to do. They shouldn’t be an approxima-
tion or just related.

• The programmer must be able to use the resultant
code. This means that the code must conform to all
the requirements for the potential application.

• Programmers must be able to find what they are
looking for. It is much trickier to determine this by
looking at the summary or even the code itself than
it is for textual information.

Achieving these goals should be the aim of the
code search community. This involves addressing
several problems. The first is getting access to all the
appropriate open source (and other) code. The second
involves organizing this data set and providing an
appropriate query mechanism. The last is to provide
the appropriate user interface for code search.

The first two of these problems, while difficult,
have proven tractable, as can be seen in the various
existing solutions. The difficulties lie in the fact that
most code is not designed primarily for human read-
ability and other factors such as program structure can
be important aspects of the search. The last problem
however, attempting to make the code search interface
meet the programmer’s needs, is the one that I find the
most interesting and the least tractable.

2. Current Solutions

Current interfaces to code search take three princi-
ple forms. The first and most prevalent approach uti-
lizes keywords. Here one depends on matching the
user’s vocabulary with that of the original programmer.
It also requires finding keywords that are unique
enough to actually identify the code in mind. Keyword
searches typically yield lots of unevaluated results. The
problem with this is that programmers have to read
each instance of returned code, attempt to understand
what it does, and then determine if it meets their
requirements.

My experience with keyword based code search is
that it creates a lot of work for the programmer. For any
simple piece of code, the effort required to analyze the
returned results is more than the effort that would have
been required to write the code in the first place. Also,
it can be a significant amount of work converting the
code into the programmer’s target framework after
finding an appropriate method or class. This makes
reuse based on code search difficult and unappealing.

The second approach is to use information about
program structure, for example method signatures or
expected loop structures [1-3]. These can be combined
with keyword search. While the additional information
can be helpful, its applicability is relatively limited.
When searching for a method, the program structure

used in the algorithm is generally unknown or irrele-
vant to the search. Moreover signatures are only rele-
vant if the code base being searched and the user’s
code share the same environment or if the programmer
happens to be looking for a code snippet that is inde-
pendent of their coding environment, a rarity in prac-
tice.

The third approach used today is to let the pro-
grammer specify test cases possibly accompanied by a
set of keywords. When keywords are not provided, the
test cases themselves can be used to derive keywords.

This approach is closer to what is needed for effec-
tive code search. Here the programmer is attempting to
define what they are looking for, and define it in a way
that the system might understand. Test cases can go
beyond simple functionality and check additional code
properties such as security and error handling. They
also can define the context in which the code has to
work.

There are several problems here. The first is that
test cases can be difficult to write. In many cases the
amount of code required for testing can exceed the
amount of code being retrieved. When part of test-
driven development, this might be an acceptable cost,
but otherwise it can be a deterrent [4]. The second
problem is that the problem might be one where test
cases are difficult to define because the solution is not
well defined. An example I’ve run across here is a
method that determines what countries a news article is
about, returning a probability vector where there is no
real “correct” answer. The third problem is that, as the
test cases and methods become more specific and con-
strain the set of possible solutions, the likelihood of
finding any code that does exactly what the program-
mer wants becomes diminishingly small.

3. Examples

To make this analysis more concrete, consider
some examples of code search I have attempted.

My first case was relatively simple. I needed to get
the text from an HTML page using a Java class or
method. The difficulty was that in my application white
space in the text was relevant and I needed to under-
stand one type of tag. Moreover, I wasn’t particularly
fussy about an interface; I could work equally well
with a parser that works with callbacks or a parser that
generated a tree of nodes.

Searching for the keywords “html parser”: tends to
yield lots of results, most of which are not relevant.
Even when I found an implementation of a HTML
parser this way, I still had to determine if that parser
collapsed white space or not. Because the parsers are
relatively sophisticated components, this involved sig-
nificant work. Often, it seemed easier to do this dynam-
ically, running the parser on a sample file and seeing
what it returned. However, this required writing a
framework that instantiated and used the parser first,

and the framework was essentially different for each of
the available parsers. This relates to the problem of
using test cases in this situation; because the parsers
have different interfaces, selecting a single test harness
will essentially limit or eliminate what might be viable
parsers from being considered. Once I select a particu-
lar callback framework or DOM model, it is very
unlikely that I will find more than one parser and that
parser is unlikely to do what I need with spaces.

In another example I needed to compute a topo-
graphical ordering for the set of nodes in a graph. The
problem here is that I have my own graph structure.
Code search finds lots of code that does topological
sort. The results fall basically into two categories. First
are those that are embedded in a graph class (or actu-
ally a whole hierarchy of graph classes). Of course the
graph class here is significantly different than mine,
and it looks like attempting to reuse the code is going
to be more work than writing topological sort from
scratch. Second are those that take sets of nodes and
edges as arguments. Here, the problem was that the sets
contain objects representing nodes or edges and these
objects were quite different from the objects in my
graph model. A further complication arose in under-
standing the behavior of the different algorithms when
the graph was cyclic and there was no topological
ordering.

Finally, I needed code that would find a least
squares solution to a system of linear equations. Here
code search helped to identify a relevant library that
could be used almost directly. The real problem arose
when we noted that we needed to add constraints so
that all the resultant values were non-negative. Search-
ing for this was not productive until it was pointed out
that this was an instance of a quadratic programming
problem. Searching for quadratic programming yielded
solutions, but none were close to the desired specifica-
tions. To use them I had to write significant code that
would convert the system of linear equations into a cor-
responding quadratic, set up the constraints, and then
map the resultant values into the actual solution.

These examples only touch the surface of what
programmers face when they attempt to use code
search to facilitate reuse. In each case the programmer
had a good idea of what he was searching for, however
it was either difficult to specify or the results required
significant work in order to be usable or both. Before
code search becomes usable, these problems will need
to be addressed.

4. Semantics-Based Search

In order for code search to be effective, the pro-
grammer needs to be able to specify what they are
interested in finding. They need to state what they want
the identified code to do functionally, where it has to fit
in, and what constraints (e.g. performance, error han-

dling, security, privacy, synchronization) they want to
impose on it.

This information is precisely a description of the
semantics of the code where semantics is taken in a
broad sense. It might include a formal description of
the behavior of the code (formal semantics), a high
level description of the code in terms of keywords or
text (informal semantics), pseudo code for the function
(structural semantics), test cases (semi-formal seman-
tics), security and privacy limitations, error handling
(formal or informally), recovery information, perfor-
mance requirements, synchronization requirements,
the context where the code will be used, and the
desired coding style and conventions.

The programmer generally knows a subset of this
information and needs to convey it to the code search
tool in some manner. The goal of a code search inter-
face should then be to encourage the specification of as
much of this information as possible.

But even if the programmer could be precise here,
it would not be enough. As programmers become more
precise as to what they want, the odds of identifying
code that exactly matches their specifications
approaches zero. Moreover, many of the problems, for
example signatures and use of the programmer’s envi-
ronment or context, need to be addressed in order to
correctly interpret other parts of the specifications such
as test cases.

Thus, an effective code search tool has to automate
much of the way that the programmer would want to
use the result of the search. In particular it has to auto-
matically refactor the located code to fit the program-
mer’s environment. Examples of the transformations or
refactorings that might be done here include: adapting
the signature of the identified code to the programmer’s
specification, eliminating unnecessary functionality,
isolating the desired functionality from the middle of
an existing routine, bringing in additional classes and
methods that are required to make the code functional,
modifying the code to use existing support classes
rather than their own, converting the coding style to
meet the current project’s requirements, adapting the
code to fit into an existing class, converting a class-
based implementation into a method-based one (or vice
versa), generalizing or specializing parameter and
return types, changing the way errors are reported, and
adding or removing logging or debugging statements.

5. The S6 Project

The goal of our research is to create an appropriate
front end for code search that allows semantic specifi-
cation of what to search for and automatically performs
the appropriate transformations that programmers
would otherwise have to do to make the identified code
usable in their application.

Our approach to date shows that this might be an
achievable goal, but that significant work still needs to

be done [5]. Our front end concentrates on allowing the
user to specify test cases quickly and effectively. It
requires keywords as a starting point for the search. In
addition, it allows contracts to be defined for each
method and the code to be run in a restricted Java secu-
rity context. A front end to the system is available at
http://conifer.cs.brown.edu/s6. Source code for the
system is available from the author.

While this is a start, much more needs to be done.
Keywords are sometimes hard to find or select.
Complex test cases, for example test cases that require
the user to write code, are not supported by the front
end. The Java security model is limited and does little
about privacy concerns. Contracts are only checked
when running test cases, not statically against the code.
Performance can only be evaluated in terms of the per-
formance on the test cases (which are generally too
simple for this purpose), and then only as part of
sorting the output. No information about the structure
of the target code is used, nor is anything done about
synchronization. There is only limited support cur-
rently for handling user context such as existing classes
and methods.

Our code search engine also applies a suite of
transformations to attempt to adapt the code to meet
the programmers’ requirements. While this is neces-
sary to accommodate test cases, and has been quite
effective in simpler cases, much still needs to be done.
The current transformations do not take into account
the target environment or attempt to map the implicit
environment of the identified code to the target envi-
ronment. This is where most of the work of adapting
identified code actually occurs. In addition, it only has
a limited set of type mappings and does not support
many class-level transformations. While much of this
is easy to add in theory, in practice it is difficult
because of the exponential number of possible map-
pings that can arise.

6. Challenges

Based on our experiences, we can identify several
challenges that need to be met before code search will
be really practical, challenges that we hope will be
taken up by the code search community.

The first is finding a practical approach to letting
the programmer specify the semantics of what they are
looking for. This approach has to handle of the com-
plexities of real world problems and situations. The
approach will have to be an amalgam, since no one
specification method or technique will work for all (or
even a majority of) cases.

The second is developing the underlying code rep-
resentations and search mechanisms that will support
such a front end. Keywords alone are not sufficient.
Signatures or program structures are helpful, but have
to be flexible enough to accommodate the possible
transformations. One should be able to search not only

based on the target code, but also on the desired and
original contexts.

The third is finding a suitably broad set of transfor-
mations that mimic what programmers do when they
adapt the result of code search to fit their applications,
and then automating these transformations in a practi-
cal way. The main problem here is making this process
intelligent, avoiding the potentially exponential
number of results, and integrating transforms with the
back end and the semantic specifications.

7. Acknowledgements

This work is supported by the National Science
Foundation through grant CCR0613162.

8. References

1. Sushil Bajracharya, Trung Ngo, Erik Linstead, Yimeng
Dou, Paul Rigor, Pierre Baldi, and Cristina Lopes,
“Sourcerer: a search engine for open source code supporting
structure-based search,” Proc. OOPSLA 2006, pp. 682-682
(October 2006).

2. Andrew Begel, “Codifier: a programmer-centric search
user interface,” Workshop on Human-Coputer Interaction
and Information Retrieval, (October 2007).

3. Raphael Hoffmann and James Fogarty, “Assieme: finding
and leveraging implicit references in a web search interface
for programmers,” Proc. UIST 2007, pp. 13-22 (October
2007).

4. Otavio Lemos, Sushil Bajracharya, Joel Ossher, Ricardo
Morla, Paulo Masiero, Pierre Baldi, and Cristina Lopes,
“CodeGenie: using test-cases to search and reuse source
code,” ASE ’07, pp. 525-526 (November 2007).

5. Steven P. Reiss, “Semantics-based code search,” ICSE
2009, (May 2009).

On the Evaluation of Recommender Systems with Recorded Interactions

Romain Robbes
REVEAL

Faculty of Informatics
University of Lugano

romain.robbes@lu.unisi.ch

Abstract

Recommender systems are Integrated Development En-
vironment (IDE) extensions which assist developers in the
task of coding. However, since they assist specific aspects
of the general activity of programming, their impact is hard
to assess. In previous work, we used with success an eval-
uation strategy using automated benchmarks to automati-
cally and precisely evaluate several recommender systems,
based on recording and replaying developer interactions.
In this paper, we highlight the challenges we expect to en-
counter while applying this approach to other recommender
systems.

1. Introduction

Developing software systems is a complex and difficult
task relying on a large skill set, including program compre-
hension, creative thinking, problem solving and algorithmic
skills. To assist developers as they program, Zeller envi-
sions the future IDE as featuring a set of recommendation
and assistance systems, each focusing on a type of com-
monly recurring problem [12]. We refer from now on to
this type of tools simply as recommenders. Zeller’s vision
is already partially fulfilled, as state-of-the-art IDEs such as
Eclipse already feature several recommenders, such as:

• Code completion, which assists the the seemingly sim-
ple task of typing program statements;

• Error correction, which, based on compilation warn-
ing and errors, proposes automated edit operations to
address common classes of errors, such as importing
missing namespaces (Eclipse’s Quickfix);

• Change prediction, exemplified in tools such as
eROSE, recommends entities to change alongside cur-
rently changed entities, based on the history of previ-
ous changes to the system [13];

• Navigation aids, such as Mylyn [4] or NavTracks [10],
which based on what the programmer is currently
looking at, recommend other entities to look at.

If all these recommenders are intuitively useful, having
more definitive proof is difficult. The most common evalu-
ation strategy that comes to mind is to perform a user study.
A simple experimental protocol is to gather two groups of
people, and ask them to perform a given development task,
one group with the help of the recommender system, the
other without. Each subject is either observed while they
perform the task by the experimenter, or asked to fill a ques-
tionnaire after completing the task. From this data, the im-
provement that the recommender yields can be quantified.
Many variants of this design exist, but they all share the fol-
lowing shortcomings:

Many variables: Each developer has a distinct experience
with programming languages, tools, and a different
way to solve problems. Some might type much faster
than other. In short, there are many variables that could
explain an observed variation in productivity. A larger
number of subjects is needed to smooth out individual
differences.

Subjectivity: Since coding relies on an array of skills, the
developer or the observer themselves may have trouble
discerning the impact of the recommender. How can a
developer evaluate the accuracy of a code completion
engine when he is focusing on finishing a non-trivial
development task? Answering a questionnaire after-
wards may hence yield vague or subjective answers
that are hard to interpret.

Expensive: Recruiting a sufficient amount of people and
carefully laying out the experimental protocol is time-
consuming and potentially expensive. “Dry runs” of
the experiment are necessary to weed out mistakes in
the protocol. Finding the subjects for the experiment
is also a difficult task as people value their time.

Hard to reproduce: User studies must have a very de-
tailed protocol in order to be repeated. Lung et al.
documented the hurdles they went through when they
attempted to reproduce an experiment [5]. Reproduc-
ing user studies is hence hard and uncommon.

Of course, a user study is essential to ensure the good
usability of a recommender, but these shortcomings mean
that incremental improvements to a recommender are hard
to evaluate this way. Indeed, the smaller the increment in
productivity is, the larger the group of users need to be in
order to rule out statistical error. The difficulty in reproduc-
ing a study and to compare the results of two studies is a
further impediment to gradual optimizations. Such an opti-
mization of the recommender is however essential to ensure
that it is as accurate and useful to the developers as it could
be. Without it, the algorithms and heuristics used by the
recommender may be far from optimal.

There is however an evaluation strategy that is better
suited to the comparative evaluation that is needed to op-
timize the algorithms at the heart of recommenders: Auto-
mated benchmarks [9]. An automated benchmark is a fully
automatic process that takes as parameters a recommenda-
tion algorithm to evaluate and the data to evaluate it on, and
computes the accuracy of the algorithm. This allows easy
reproducibility and comparison between variants of the al-
gorithm, making the technique ideal to optimize a recom-
mender system.

In order to evaluate recommender systems in this way,
the challenge lies in gathering the data necessary for the
evaluation. In previous work, we introduced Change-Based
Software Evolution (CBSE), which models with accuracy
how software systems evolve over time [6]. CBSE relies
in recording the changes as they happen in the IDE. Based
on the change data we gathered on several systems, we ap-
plied a benchmarking strategy in order to evaluate several
variants of two recommender systems, Code Completion
and Change Prediction. The focus of this paper is hence
to draw from this experience and outline the challenges that
lies ahead in order to generalize this approach to other rec-
ommenders.

2 Benchmarking Recommenders

The approach we propose is based on the openness of
state-of-the-art IDEs. IDEs such as Eclipse, Squeak or Vi-
sualworks allow one to easily monitor and record how the
developer is using the IDE to incrementally develop a piece
of software. Such an IDE issues all kinds of events (neces-
sary for its internal architecture) in response to actions the
developer perform. Examples of such events are navigation
events indicating that the developer is looking at a given
part of the system, tool usage event indicating that the de-
veloper is using the refactoring engine, the compiler or the

debugger, and edition events describing how the developer
changes the system, from keystroke events to higher-level
events such as addition of entities.

If the IDE is open enough and allows access to these
events to third-party extensions, one can record these
events, and, ensuring that they are descriptive enough, re-
play them at will in an automated manner. If the informa-
tion is accurate enough, such an approach allows one to ef-
fectively simulate –in an entirely automatic way– the inter-
actions of the developer with the IDE as he is building the
system.

Automation is key to allow the definition of interaction
benchmarks as a methodology to repeatedly and accurately
measure the accuracy of recommender systems. It allows
one to inexpensively run several variants of the same recom-
mendation algorithm and compare their performance with a
precisely and objectively computed metric. This allows one
to truly optimize the recommendation algorithm and make
the recommender as accurate as possible.

Assuming that a recorded interaction history H is avail-
able, computing the accuracy A of a recommender R on the
interaction history proceeds as shown by Algorithm 1 (E is
the model of the system and the developer that the recom-
mender uses).

Input: H , R
Output: A

foreach Interaction I in H do
if I is of interest to R then

Ask R to predict I , given the environment E
Compare R to I and update A

end
Replay I in order to update E

end
Algorithm 1: Computing the accuracy of a recommender
on an interaction history

Of course, Algorithm 1 assumes that the interaction his-
tory H exists. For this to be the case, one must follow the
following steps:

Frame the problem of the evaluation of the recommender
in terms that allow the automation. This implies isolat-
ing only the parts of the recommender that are relevant
to the task, such as the central algorithm providing rec-
ommendations from unnecessary parts like the GUI.

Identify the information needed by the recommender to
function properly, and from it, the interactions that
need to be recorded to rebuild the information needed
by the recommender.

Define the prediction format that the recommender uses
and the kind of interaction triggering its evaluation.

2

Define the accuracy measure that will be computed. De-
pending on the types and format of the predictions, dif-
ferent measure will work, such as a single accuracy
measure or both precision and recall.

Record interactions. Once the type of information needed
is defined, one has to gather it by monitoring the activ-
ity of a large enough set of developers as they work for
a long enough period of time, so that the set of interac-
tion histories gathered can be deemed representative.

We now illustrate this process with the two examples
in which we applied it successfully. In both cases, we re-
produced and introduced several variants of each recom-
menders, and improved on the state of the art.

Example: Code Completion We used recorded interac-
tions to measure the accuracy of several code completion
engines [7]. Code completion is a recommender used to as-
sist typing that presents to the user a list of words or function
names that may correspond to the word the programmer is
presently typing, saving her keystrokes.

To automate testing, we consider the completion engine
only, that is the part of the recommender taking as input the
prefix of a word, and returning a list of candidates matches.
Since variants of the code completion engine rely on the
state of the program and the recent changes to the system,
the interactions we recorded were the changes made to build
the system. Of these, the interactions of interest to the rec-
ommender were the changes that inserted new method calls
in the system: The completion engine was asked to return
a list of candidates which ideally contained the name of the
method being inserted. The list was cut off at ten items, as
a longer list of candidates was deemed too long to be read
in its entirety by the programmer. To compute the accuracy,
we measured the index of the correct match in the list, and
rewarded correct matches that were in the first items, and
for shorter prefixes (we tested each insertion of a method
call by asking for the recommender’s guess with a prefix of
2, 3 ... up to 8 letters). The data used in the benchmark were
the recorded changes performed on 8 small to medium scale
systems, totalling more than 3 years of development.

Example: Change Prediction Our evaluation of change
prediction approaches [8] was very similar as it relied on
the same recorded interactions, the changes to the system
as they evolve. Change prediction attempts to predict the
entities (classes or methods) that the programmer is going
to change after the one he changes, in order to either remind
him to change them (error prevention) or to provide easy
access to them (navigation assistance).

The portion of the change predictor we tested was the
algorithm that, given entities changed in the past, proposed

a list of potential change-prone entities. The data recorded
was the change sequence developers made when building
programs. The entities of interest for which the change
predictors was tested where the sequence of changed enti-
ties, filtering out repetitive changes to the same entities and
changes originating from automated tools. The accuracy of
the change predictor was defined as the similarity between
a list of n change-prone entities returned by the predictor
with the actual n next changing entities. The data set we
used was very similar (it contained one additional change
history from a Java program).

Note that a similar evaluation strategy was used by
previous change prediction approaches, but based on
SCM transactions, rather than recorded change sequences
[3][13][11][2]. Using SCM transactions instead of recorded
IDE interactions is more convenient, since a lot of data is
already available, but less accurate, since the data is more
coarse.

3 Challenges in Further Applications

We believe this approach is applicable to other kinds of
recommenders and we expect the same benefits from its ap-
plication. However, certain particularities of the approach
mean that care must be taken in fulfilling the steps we de-
scribed above. Indeed, recording the data is a costly and
time-consuming operation. Hence the kind of data that has
to be recorded must be carefully defined upfront. In the
following we make a tentative list of recommender systems
that we envision being evaluated in the same way, and high-
light the needs for each of them.

Code Completion and Change Prediction: In our com-
parison of approaches, missing data prevented us to
reproduce every approach we wished. The navigation
information necessary for some approaches was miss-
ing. Further, a precise notion of task (i. e. the set of
entities related to a task) was only approximated. This
missing data is needed to further improve our results.

Task Detection: The missing notion of task context could
be a recommendation by itself. We would like to anno-
tate our change information with task information and
experiment with several approaches to detect them.

Clone Detection: The presence of duplicated code in code
bases is an established fact, and several tools exist to
detect it. Based on our recorded change histories, we
could annotate changes that introduce new clones in
the system as interactions of interest.

Clone Evolution: A possible solution to the clone problem
is to co-evolve clones when one of them changes [1].
The techniques proposed so far are based on simple

3

string rewriting. An automated benchmark comparing
the actual changes with the future changes could assess
whether more complex techniques are needed.

Error prevention and correction: With the necessary an-
notations of the change data, tools such as Quickfix
could be formally evaluated, and new heuristics fulfill-
ing their shortcomings could be defined.

Based on the potential applications, we identified the fol-
lowing issues that are open to discussion:

Additional sources of information. An effort is needed to
identify all the necessary sources of information to
be recorded, beyond those that we already identified,
changes and navigation information. Tool support
should then be implemented to record this data.

Annotations of the interactions. Annotations are needed
to mark the entities of interest for each recommender,
such as clones, tasks, errors and the interactions caus-
ing and/or solving them. A systematic review of the
recorded interaction is needed to annotate them, and
tool support is needed to perform it efficiently. Such a
review would also filter out interactions featuring un-
wanted behavior, such as cases where the developer
was in the wrong track for a part of the session.

Recording more data. The amount of data we recorded so
far is still small, and some of it is incomplete. To
provide more significant result, an effort is needed to
record much larger interaction histories.

Community involvement. Recording a large amount of
data, implementing the necessary tools, and improv-
ing on the state of the arts of recommenders once the
infrastructure is there is a significant effort for which
we welcome members of the community. In particu-
lar, a shared effort to record development histories of
student projects would be the most immediate way to
gather a larger amount of data.

4 Conclusion

Recommenders are a growing part of a programmer’s
tool set, yet optimizing them remains a difficult problem.
We presented a general approach to evaluate the perfor-
mance of recommenders in a systematic way, allowing in-
cremental optimization of a recommender’s overall useful-
ness to developers. The approach is based on the record
and replay of programmer interaction histories in order to
repeatedly simulate the activity of a developer. We outlined
some of the challenges that we need to overcome in order
to adapt the approach to various kinds of recommenders,
namely identifying the kind of information one needs to

record, recording of a large and representative enough set of
interaction histories, annotating the interaction history in or-
der to emphasize the relevant interactions when needed, and
the development of a common infrastructure allowing the
sharing of the data and the easy dissemination of the results
necessary to foster a community around recommenders [9].

References

[1] E. Duala-Ekoko and M. P. Robillard. Tracking code clones
in evolving software. In Proceedings of the 29th Intera-
national Conference on Software Engineering (ICSE 2007),
pages 158–167, 2007.

[2] T. Girba, S. Ducasse, and M. Lanza. Yesterday’s Weather:
Guiding early reverse engineering efforts by summarizing
the evolution of changes. In Proceedings of 20th IEEE Inter-
national Conference on Software Maintenance (ICSM’04),
pages 40–49, Los Alamitos CA, Sept. 2004. IEEE Computer
Society.

[3] A. E. Hassan and R. C. Holt. Replaying development his-
tory to assess the effectiveness of change propagation tools.
Empirical Software Engineering, 11(3):335–367, 2006.

[4] M. Kersten and G. C. Murphy. Using task context to improve
programmer productivity. In Proceedings of SIGSOFT FSE
2006, pages 1–11, 2006.

[5] J. Lung, J. Aranda, S. M. Easterbrook, and G. V. Wilson. On
the difficulty of replicating human subjects studies in soft-
ware engineering. In Robby, editor, ICSE, pages 191–200.
ACM, 2008.

[6] R. Robbes. Of Change and Software. PhD thesis, University
of Lugano, 2008.

[7] R. Robbes and M. Lanza. How program history can im-
prove code completion. In Proceedings of ASE 2008 (23rd
ACM/IEEE International Conference on Automated Soft-
ware Engineering), pages 317–326. ACM Press, 2008.

[8] R. Robbes, M. Lanza, and D. Pollet. A benchmark for
change prediction. Technical Report 06, Faculty of Infor-
matics, Università della Svizzerra Italiana, Lugano, Switzer-
land, October 2008.

[9] S. E. Sim, S. M. Easterbrook, and R. C. Holt. Using bench-
marking to advance research: A challenge to software en-
gineering. In ICSE, pages 74–83. IEEE Computer Society,
2003.

[10] J. Singer, R. Elves, and M.-A. Storey. Navtracks: Support-
ing navigation in software maintenance. In Proceedings of
the 21st International Conference on Software Maintenance
(ICSM 2005), pages 325–335. IEEE Computer Society, sep
2005.

[11] A. Ying, G. Murphy, R. Ng, and M. Chu-Carroll. Predicting
source code changes by mining change history. Transactions
on Software Engineering, 30(9):573–586, 2004.

[12] A. Zeller. The future of programming environments: Inte-
gration, synergy, and assistance. In Proceedings of the 2nd
Future of Software Engineering Conference (FOSE 2007),
pages 316–325, 2007.

[13] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. In ICSE,
pages 563–572. IEEE Computer Society, 2004.

4

Internet-Scale Code Search

Rosalva E. Gallardo-Valencia

University of California, Irvine

rgallard@ics.uci.edu

Susan Elliott Sim

University of California, Irvine

ses@ics.uci.edu

Abstract

Internet-Scale Code Search is the problem of

finding source on the Internet. Developers are typically

searching for code to reuse as-is on a project or as a

reference example. This phenomenon has emerged due

to the increasing availability and quality of open

source and resources on the web. Solutions to this

problem will involve more than the simple application

of information retrieval techniques or a scaling-up of

tools for code search. Instead, new, purpose-built

solutions are needed that draw on results from these

areas, as well as program comprehension and software

reuse.

1. Introduction

Open source is the practice of distributing source

code along with the executable code for a computer

program. The increasing availability of high quality

open source code on the Internet is changing the way

software is being developed [9]. It has became

commonplace to search the Internet for source code in

the course of a software development project.

Developers are increasingly using an Opportunistic

Software Systems Development (OSSD) approach to

put together software pieces that they found. This

approach is used to face the market demands of

delivering software quickly and with more

functionality [6]. Although, these software pieces

provide functionality that programmers need to include

in a system, often, they are unrelated and were not

designed to work jointly.

Developers who are using these approaches search

the Internet looking for open source to reuse in their

projects. We will refer to this specific type of source

code search as Internet-Scale Code Search. Locating

the right component for as-is reuse or a reference

example at the right time can have significant impact

on how the project progresses.

The Internet-Scale Code Search has many

similarities with other areas of research and we should

build on their contributions. These areas include

software reuse, code search, information retrieval, and

program comprehension. We will discuss the

similarities and differences with these areas.

In this paper, we argue that Internet-Scale Code

Search is a new kind of problem. Not only is Internet-

Scale Code Search more than the sum of the parts,

different kinds of technological possibilities are

available due to emerging computational practices.

2. What is Internet-Scale Code Search?

Internet-Scale Code Search is searching the Internet

for source code to help solve a software development

problem. Results from a web-based survey have shown

that developers search for code on the Internet with the

motivation of finding a piece of software to reuse or a

reference example to use as a guide. The target piece of

software varies on size ranging from a block (a few

lines of code), a subsystem, and a system [11]. Some

examples of search targets from a previous empirical

study are summarized below.

Table 1. Examples of software pieces classified

by motivation and target size.

 As-Is Reuse Reference Example

Block Code snippets,

wrappers, parsers

To learn language

syntax and idioms

Sub

system

Algorithms, data

structures, GUI

widgets, libraries

To help in the

implementation of

algorithms, data

structures, GUI widgets.

To aid in the use of

libraries

System Stand-alone

tools, ERP

packages, DBMS

To get ideas about an

existing similar system

In the cases where developers are searching for a

component for as-is reuse, the search parameters are

more tightly defined, and developers are most often

looking for a piece of functionality, that is, a portion of

code that will perform a particular task. This type of

search target was also evident in the studies by Chen et

al. [1], Madanmohan and De’ [4]. Developers preferred

components that could be used as-is, with little or no

modification. In fact, they avoided components that

required an understanding of the inner workings.

Developers are also motivated to search for a

reference example of how to use or do something. In

other words, software developers are using the web as

a giant desk reference manual. While this kind of

knowledge reuse has been acknowledged in the

software reuse literature, it has been overshadowed by

as-is component reuse. Searches for reference

examples are qualitatively different from those for

reusable components. The underlying problem being

solved is different and so too are the selection criteria.

Some tools that support Internet-Scale Code Search

are available on the Web. These tools include Google

Code Search
1
, Koders

2
, Krugle

3
, and Sourcerer

4
 among

others. Although these tools already help developers to

find open source, a better understanding of the

challenges behind code search on the Internet can

suggest improvements to these tools.

2.1. Motivating examples

Here, we present some motivating examples of

Internet-Scale Code Searching. These are composite

descriptions based on data collected in our earlier

empirical study [11].

Waldo was writing a Java program to send out

meeting notifications by email. His program needed to

send notifications of meetings in participants’ local

time zones. To do this, he needed to use the Calendar

classes, which have a complex interface and can be

used in many different ways. Rather than reading the

Javadocs, he searched the web for examples of how the

classes were used. Waldo found a number of useful

blog posts and tutorials that gave him the information

that he was looking for.

The example above describes a developer looking

for a reference example for a subsystem, i.e. the

Calendar classes in Java. In such cases, general-

purpose search engines, such as Google and Yahoo, do

reasonably well. The code that Waldo found was

surrounded by natural language explanations that

matched his search keywords. It should also be noted

1
 http://www.google.com/codesearch/

2
 http://www.koders.com/

3
 http://www.krugle.com/

4
 http://sourcerer.ics.uci.edu/sourcerer/search/index.jsp

that he was not looking for a program element or

identifier.

Wenda was looking for an implementation of the Trie

tree data structure in C. A Trie tree is an ordered tree

data structure where the keys are strings. She started

out using a general-purpose search engine, but got too

many matches. She added “C” as a search term to

reduce the number of matches, but this did not help at

all. She tried some code-specific search engines, but

‘c’ appeared a lot, so she switched to filtering by

programming language. Also, “trie” was a substring

of retrieval, so these too were a false start. Wenda

ultimately found what she needed by going to a site

were developers share ideas and resources with each

other, such as www.codeproject.com. Here, she found

a number of annotated examples that she could reuse

as-is in her project.

This second example depicts a developer looking

for a subsystem-sized reusable component. She wanted

source code that implemented a well-understood

abstract data structure. The main goal behind these

searches is that the source code is commonly available

and saves time. This example illustrates ways in which

both general-purpose and code-specific search engines

fall short. “C” was not a good search term, because it is

too short and too common. “Trie” and “tree” were not

much better. Also, it was difficult to judge the

suitability of the various matches returned for Wenda’s

project. While some of the code returned by the code

search engines had good comments, they generally

lacked instructions for (re)use. As well, extracting the

code and incorporating into her project would have

required a non-trivial amount of work. In the face of

uncertainty regarding the costs and benefits of adapting

unfamiliar code, the safest option is often to implement

it yourself.

3. Comparison with code search

Code search typically occurs within an Integrated

Development Environment while working on the

source code for a single project. This activity is often

done during the development and maintenance of

software, and involves searching for specific program

elements in a software project. Developers have mainly

four motivations to search for pieces of software:

defect repair, code reuse, program understanding, and

impact analysis. The pieces of software they are

looking for are declaration, definition, use, and all uses

of functions, variables, and classes [8].

Internet-Scale Code Search involves looking in not

just one project but in a great number of different open

source projects. In addition, Internet-Scale Code

Search will also search for source code in other types

of information besides to source code repositories. It

also includes searching on web pages, forums, mailing

lists, and other sources.

Internet-Scale Code Search is an activity that is not

restricted to the maintenance of software; this type of

search expands to different phases in the software

development process, such as feasibility study,

analysis, design, implementation, testing, and

maintenance.

Internet-Scale Code Search will build on the

contributions from research into code search activity

and scale it where possible to the Internet. However,

we believe the usefulness of searching for program

elements or certain kinds of identifiers will have

limited applicability. More often, developers are

looking for functionality or knowledge, and not for

where a method or variable is declared.

4. Comparison with information retrieval

The area of information retrieval focuses on finding

material of an unstructured nature, usually text, that

satisfies an information need from within large

collections stored on computers [5]. Internet-Scale

Code Search is different because the material that

developers are searching for is source code, which is

structured in nature due to the fact that it follows strict

syntax rules specific to a programming language.

Information retrieval commonly allows keyword-

based searches. However, developers are searching for

source code in terms of features, functionality, and

requirements; source code is written in a programming

language, while search keywords are in natural

language. The only place where natural language

appears in source code is within comments.

Consequently, searches for code tends to rely on the

comments and the text surrounding an excerpt of

source code. Blocks of code on web pages have more

descriptive text around them than in a version control

repository. For these reasons, general-purpose search

engines work surprisingly well in code search. Still,

there is room for improvement, as our second

motivating example illustrates.

The effectiveness of conventional information

retrieval techniques can be attributed to both human

ingenuity and metadata. Developers often find creative

ways to make use of the tools available. For instance,

they use general-purpose search engines to find

repositories or caches where they can search further.

Metadata, we believe, will play a major role in the

design and implementation of improved Internet-Scale

Code Search engines.

5. Comparison with software reuse

Software reuse is the process of finding and using

existing components or libraries in the creation of new

software [3]. It is now common to create software by

hacking, mashing, and gluing together existing open

source code [2]. Although, software has not been built

from scratch since function libraries were invented, the

Internet, open source, and Opportunistic Software

System Development have significantly increased the

scope and scale of source code being reused.

The Internet-Scale Code Search process differs

from software reuse, where the recommended process

is to identify the requirements and use them to evaluate

the suitability of candidate libraries. Instead, the

requirements are defined iteratively based on the

available functionality. This process more resembles

engineering design than looking for a set of lost keys.

The former process proceeds by optimizing constraints

in a cost effective manner. The latter process seeks to

find an object that is known to exist, is well defined,

and can only be located in a limited number of places.

In other words, software developers acquire an

understanding of what they are looking for by

searching.

Software reuse contributes knowledge about the

different facets of reuse, such as substance, scope,

technique, and products [7]. Internet-Scale Code

Search can use this knowledge when developers are

looking for open source code on the Internet

opportunistically.

6. Comparison with program

comprehension

Program comprehension research has focused on

the cognitive theories that help us understand how

programmers comprehend software in a single body of

source code and on the tools to aid users in their

comprehension tasks [10]. A key step in the Internet-

Scale Code Search process is the evaluation of

thousands of candidate matches that have been

returned by a search engine in order to find the right

piece of open source code to incorporate into a project.

This evaluation requires developers to understand the

source code, but in contrast with program

comprehension, this evaluation involves discerning the

characteristics of a candidate piece of code without

becoming entangled in the internals.

In conventional program comprehension,

developers use source code and documentation to

understand the program [10]. We believe that program

comprehension in Internet-Scale Code Search is very

different. Developers tend not to look at the source

code when selecting a component for reuse, but rather,

they rely on surface features and external information

sources. Preliminary research has identified two kinds

of judgments. Relevance judgments are made by

software developers while identifying promising

candidates among the available matches. These

decisions are rapid, taking only a few seconds, and use

relatively little information. Suitability judgments are

made when determining whether a promising candidate

is appropriate for the software project. These decisions

are slower and typically involve a careful cost-benefit

analysis. These judgments are made based on

characteristics of the open source project, fellow users,

price, terms of license, documentation, and

functionality.

7. Summary

In this paper, we argued that Internet-Scale Code

Search is a novel problem, in need of novel solutions.

Although, it is similar to a number of existing

problems, research is needed to combine and create

research contributions. This emerging field is similar to

software reuse, source code searching, information

retrieval, and program comprehension.

Internet-Scale Code Search is similar to software

reuse, because developers are often looking for code to

reuse as-is on their projects. But they also look for

code to use as reference examples. Source code

searching and Internet-Scale Code Search have in

common the fact that developers are searching for

source code. But, in the former developers are typically

looking for program elements within a single project.

In the latter, they look in a great number of open

source projects on the Internet. Like information

retrieval, Internet-Scale Code Search involves

searching large collections. An important difference is

that developers are searching for source code and not

for natural language text in unstructured documents.

Some program comprehension is needed during

Internet-scale code search, but not the kind normally

performed during software maintenance. During

Internet-Scale Code Search, developers need to

evaluate thousands of candidate matches using

superficial information and from different sources.

In summary, Internet-Scale Code Search is a new

problem that has arisen as a result of evolving

technologies and software development practices. The

solution to this problem will require similar innovation

and creativity to both use existing results and to create

know-how.

8. References

[1] Weibing Chen, Jingyue Li, Jianqiang Ma, Reidar

Conradi, Junzhong Ji, and Chunnian Liu. “An empirical

study of software development with open source components

in the Chinese software industry.” Software Process:

Improvement and Practice, 13:89–100, January 2008.

[2] Bjorn Hartmann, Scott Doorley, and Scott R. Klemmer.

“Hacking, mashing, gluing: A study of opportunistic design.”

Technical Report CSTR 2006-14, Department of Computer

Science, Stanford University, September 2006.

[3] C. W. Krueger. “Software Reuse.” ACM Computing

Surveys, 24(2):131-184, June 1992.

[4] T.R. Madanmohan and Rahul De’. “Open source reuse in

commercial firms.” IEEE Software, 21(6): 62–69, 2004.

[5] C. Manning, P. Raghavan, and H. Schutze. Introduction

to Information Retrieval. Cambridge University Press, 2008.

[6] Cornelius Ncube, Patricia Oberndorf, Anatol W. Kark,

"Opportunistic Software Systems Development: Making

Systems from What's Available," IEEE Software, 25 (6): 38-

41, Nov./Dec. 2008.

[7] Johannes Sametinger. Software Engineering with

Reusable Components. Springer, New York, 1997.

[8] S. E. Sim, C. L. A. Clarke, and R. C. Holt. “Archetypal

source code searches: A survey of software developers and

maintainers.” In Proceedings of the 6th International

Workshop on Program Comprehension, page 180, Los

Alamitos, CA, 1998. IEEE Computer Society.

[9] Diomidis Spinellis and Clemens Szyperski. “Guest

editors’ introduction: How is open source affecting software

development?” IEEE Software, 21(1):28–33, 2004.

[10] Margaret-Anne D. Storey. “Theories, tools and research

methods in program comprehension: past, present and

future.” Software Quality Journal, 14(3):187–208, 2006.

[11] Medha Umarji, Susan Elliott Sim, and Cristina V.

Lopes. “Archetypal internet-scale source code searching.” In

Barbara Russo, editor, OSS, page 7, New York, NY, 2008.

Springer.

Working with Search Results

Jamie Starke
University of Calgary

Calgary, Canada
jrstarke@ucalgary.ca

Chris Luce
University of Calgary

Calgary, Canada
cluce@ucalgary.ca

Jonathan Sillito
University of Calgary

Calgary, Canada
sillito@ucalgary.ca

Abstract

Source code search is an important activity for program-
mers working on a change task to a software system. We
are at the early stages of a research program that is aiming
to answer three research questions: (1) How effectively can
programmers express (using today’s tools) the information
they are seeking? (2) How effectively can programmers de-
termine which of the matches returned from their searches
are relevant to their task? and (3) In what ways can tools
be improved to support programmers in more effectively ex-
pressing their information needs and exploring the results
of searches? To begin answering these questions we have
conducted a study in which we gathered both qualitative
and quantitative data about programmers’ search activities.
Our analysis of this data is still incomplete, however this
paper presents several of our initial observations about how
programmers interact with the results from their searches.

1. Introduction

Code search is an important activity for programmers
working on a change task to a software system. Various
tools exist for searching source code, including tools in-
cluded with today’s Integrated Development Environments
(IDEs). Previous research studies have looked at various
aspects of search as it relates to change task activities. We
highlight just four such studies here. Ko et al. explored
the strategies of programmers in finding, understanding,
and using relevant information, in the context of a larger
change task [3]. LaToza et al. focused on how experi-
ence effects work on changes tasks and found, for example,
that more experienced programmers tend not to explore as
many irrelevant elements [4]. Robillard et al. were inter-
ested in the differences between effective, and ineffective
programmers and found that successful programmers often
performed keyword and cross-reference type searches [5].
Finally, our own research that has been previously reported
[6, 7] found that searches tend to produce many irrelevant

results and that time consuming exploration is required to
determine what is relevant.

To build on this previous work we are at the early stages
of a research program that is aiming to answer three re-
search questions: (1) How effectively can programmers ex-
press (using today’s tools) the information they are seek-
ing? (2) How effectively can programmers determine which
of their matches returned from their searches are relevant
to their task? and (3) In what ways can tools be im-
proved to support programmers in more effectively express-
ing their information needs and exploring the results of their
searches?

To begin answering these questions we have conducted
a study in which we observed programmers performing an
assigned change task. As they performed the task we gath-
ered qualitative and quantitative data about their search ac-
tivities. In this way we have gathered information about 96
search episodes. Our analysis of this data is still incomplete,
however this paper presents several of our initial observa-
tions about how programmers interact with the results from
their searches.

2. Methodology

The study we conducted involved ten participants and
ten sessions. In this paper we refer to our participants as
P1...P10. Eight of our ten participants (P2, P4, P5, P6, P7,
P8, P9, P10) had industrial programming experience. The
remaining two (P1, P3) were graduate students. All par-
ticipants had experience working with Java and the Eclipse
development environment.

Each study session lasted 30 minutes. During the ses-
sion the participant was asked to work on a change task to
a large software system called Subclipse1 (a popular open
source plugin that provides support for Subversion2 within
the Eclipse IDE3). Subclipse contains approximately 70,000

1http://subclipse.tigris.org
2http://subversion.tigris.org
3http://www.eclipse.org

lines of code and all of our participants were initially new-
comers to the system. We did not expect that our partici-
pants would have sufficient time to complete the task, and
we were primarily interested in their searching activities as
they worked on the task.

For each session we randomly assigned one of two dif-
ferent change tasks. Both tasks were taken from the Sub-
clipse project’s issue tracking system (specifically task one
was based on issue 798 and task two was based on issue
801). These issues were addressed in revisions 3993 and
4012 of the Subclipse version control system, so we had our
participants work with revision 3992 for task 1, and 4011
for task 2.

To facilitate data collection we had each participant work
as a pair [9] with one of the researchers (the second author
of this paper). The researcher was at the keyboard and the
participant directed the work on the task by giving instruc-
tions to the researcher. We took this approach as a variation
on the Think Aloud method [8]. The discussion between
the participant and the researcher was recorded and a screen
capture video was made for each session. Following the ses-
sion a second researcher (the first author of the paper), who
was also present during each session, conducted a short in-
terview with the participant to further explore issues around
their searching activities.

To carry out the change task, our participants used the
Eclipse Java Development Environment4 and they were
given a one page document describing the eight major kinds
of searches supported by Eclipse. In the following we de-
scribe only the kinds of searches used by our participants.

Open Type: Supports searching for classes or interfaces
based on a partial name or pattern.

File: Supports searching for text within all of the files in the
Workspace.

Find in File: Supports searching for a piece of text within a
specified file.

Java: For finding declarations, references and occurrences
of Java elements (packages, types, methods and fields).

References: Performs a search for all references to a speci-
fied code element or elements matching a keyword.

Declaration: Performs a search for all declarations of a
specified code element or elements matching a keyword.

Each time a participant used one of these searches we
call this a search episode. Our data set consists of 96 com-
pleted episodes and in our ongoing analysis we are using
these episodes as the basic unit of analysis.

4http://eclipse.org

File

Java

Find in File

References

Open Type

Declaration

46

16

16

13

4

1

570

91

2

3

4

12

(1)

(1)

(1)

(1)

(0)

(0)

Episodes by type Size of results (explored)

Figure 1. The number of times our partici-
pants conducted each type of search. For
each type of search the average number of
results is shown. The average number of re-
sults explored is shown in brackets.

3. Findings

3.1. Searches and Results

Figure 1 shows the number of episodes for each kind
of search that our participants performed. Also shown in
the figure are the average number of results and the average
number of results that were explored. Eclipse’s File search
was by far the most popular amongst our participants, ac-
counting for approximately half of of all search episodes.
File search is the most inclusive search and as compared to
a Java search has fewer options for scoping the search, so
it is unsurprising that on average it returns the most results
(570).

Some of our data suggests that participants use File
search when they have very little information to base their
exploration. For example, P1 began with File searches be-
cause “I don’t feel like there’s a starting point other than the
keyword.” Similarly: “when I don’t know what I’m looking
for, then usually I start with a text search” (P2). Participant
P7 performed two similar File searches consecutively (the
first search was for the keyword “image”; the second was
for the keyword “icon”) as he explored which term was used
for this concept in the system. These cases suggests that if
our participants were not newcomers to the code base or if
our sessions were longer we may have had proportionately
fewer File searches in our data set.

The average number of results in a result set was 290.
We found that the 96 search episodes could be divided into
three nearly equal categories, based on the size of the result
sets:

• No results. 30 of the 96 searches performed by our
participants returned no matches.

• 1 – 9 results. 32 of the searches performed by our
participants returned between 1 and 9 matches.

Matches Episodes Explored Time

0 30 0 27s
1–9 32 1.2 66s
10+ 34 1.0 107s

Table 1. The number of episodes, the average
number of elements explored and the aver-
age time taken for an episode for three differ-
ent categories of result sizes.

• 10 or more results. Finally, the remaining 34 searches
returned 10 or more matches. The largest result set
returned had 4770 matches.

Some quantitative data, organized around these three
“bins” is summarized in Table 1.

This means that a full one third of the time our partici-
pants did a search they got back no results. At times this was
surprising or frustrating for our participants, and in some
cases it meant that they were off track and needed to con-
sider a different approach. For example, “it should be con-
tained there” and “ why the **** is it not finding anything
then?” (P8). A very large number of matches was also dif-
ficult for our participants to deal with. We discuss this more
in the next two sections.

3.2. Time Spent

To analyze the amount of time spent on each search
episode we have given each of the 96 complete episodes
in our data set a start and an end time. We consider a search
episode to be started as soon as a participant starts to de-
scribe a search that they would like to perform. We consid-
ered this episode ended when they last explore one of the
results in the result set. If no results are explored, we con-
sidered the episode time to be complete at the latter of when
the search returned the last result into the result set, or the
participant last comments on the results.

The longest amount of time spent in a single search
episode was about five minutes and the shortest amount of
time for a particular search episode was 5 seconds. The
mean amount of time spent in a single search episode was
69 seconds and the median was 39 seconds. Table 1 shows
the average amount of time spent on episodes in each of the
bins described above (27 seconds, 66 seconds and 107 sec-
onds). On average more time was spent on episodes where
ten or more results were returned than on episodes in the
other bins. However, in our data there is not a clear trend
that would suggest that more results means more time spent.

In some cases, a large result set seemed to deter the
participants from spending much time going through the

Explored 0 1 2 3 4 5

Episodes 17 38 5 3 2 1

Table 2. The number of episodes in which a
particular number of elements were explored.

results–or in even looking at any of the results. When one
of participant P4’s searches returned 4770 matches he said
“that doesn’t seem to be especially helpful” and moved on
to another search. Later he performed a search which re-
turned 2584 matches and said “ok, so that didn’t really work
out” before abandoning the search.

3.3. Exploration Activity

For each search episode we have also tracked the number
of elements in the search result that the participant chose
to explore. For our analysis of exploration activity we are
omitting episodes in which no matches were returned. This
leaves us with 66 episodes in which there was potential for
exploration activity.

As has been noted in previous research, we found that
our participants were generally exploring only a small num-
ber of matches. The mean number of results that were ex-
plored within a single search episode was 1.06 results, and
the median was 1. Table 1 shows the average number ex-
plored by bin. Note that the average number explored goes
down slightly as the number of results increases.

As shown in Table 2, the most common behavior exhib-
ited by our participants was to explore exactly one result
from a result set, regardless of the size of the result set. In-
terestingly, another quite common behavior was to explore
none of the results.

How exactly programmers choose which items to ex-
plore is still an open question. When asked about their
choices most of our participants said that they guess that
something is relevant based on the package and element
name displayed in the results view. Participant P3 said that
in making this decision he “... looked at the result that
looked most promising”. This participant when asked how
they decide what looks promising stated that it was “To-
tally based off name” and their understanding of a similar
system. Many of our participants seemed to look for any
element that seemed relevant, rather than looking at all of
the results and selecting the most relevant element.

We also found that making such a decision simply based
on name is not always reliable. Participant P2 performed
a search that returned four matches, one of which was ar-
guably the element most directly related to the assigned
change task. He looked over the names of the elements and

decided to try a different type of search: “I’m not sure this
is useful, maybe you should do a text search for the same
string”.

The result sets that were returned by Eclipse were dis-
played by default in a tree format, with the exception of the
Open Type which was in a list with no context, and Find in
File which would jump to the elements one at a time. For
the File search the top level contained the base directory of
the project, followed by deepening levels based on the di-
rectories as far as the files. For the other tree results, the top
level of the tree contains packages and the next two levels
contains types and method or field names. If either of the
trees are expanded further, Eclipse will also show one line
of context which shows the match in context. Participant
P6 was our only participant that made use of this contextual
information.

4. Limitations

Our study involved a relatively small number of pro-
grammers, performing two specific software change tasks.
Also, our analysis of the collected data is incomplete. As a
result, care should be taken in drawing general conclusions
based on our results. In the following we discuss a few spe-
cific limitations.

Our participants were newcomers to the system we asked
them to change. In our experience this is a common sce-
nario for programmers in industry and is convenient for con-
ducting controlled studies. However, it may also mean that
our results provide limited insights into the search behavior
of programmers performing change tasks to systems with
which they are familiar.

Our study setup involved one of the researchers being
the “driver” during the session, similar to a pair program-
ming experience. This was effective as it encouraged the
participant to vocalize their intentions and allowed them to
perform searches without necessarily knowing how to per-
form it in Eclipse. While this approach was helpful, it is
an open question what effect the pairing had on the search
behavior.

5. Conclusion

The analysis of our data set is not yet complete so we
are not yet in a position to draw strong conclusions. How-
ever, we want to highlight two key observations that have
relevance to the design of source code search tools.

First, it is clear that the way that search results are pre-
sented to programmers in IDE’s such as Eclipse provides
little support for programmers. Specifically, it appears that
element names are not sufficient and we believe that more
contextual information may be helpful, though it is not yet

clear what form that should take. Programmers can obvi-
ously get significantly more information about search re-
sults by exploring the source code of an element, however
we found that when they do this, they tend not to return to
consider other results.

Second, along with only exploring a small number of
matches (often zero or one) a large set of matches is not
first examined before selecting which element(s) to explore.
Based on this we would argue that the sorting of results
should be given more attention, possibly based on confi-
dence values such as those used by the Hipikat system [1].
We have found that programmers are put off by large result
sets, but if the results were ranked in a meaningful way, it
is possible that programmers would be able to make use of
such results. How best to rank results is an open question,
however we believe that a successful ranking would likely
need to be context aware, possibly based on contextual in-
formation maintained by tools such as Mylyn [2].

References

[1] D. Cubranic and G. Murphy. Hipikat: recommending perti-
nent software development artifacts. In Proceedings of the In-
ternational Conference on Software Engineering, pages 408–
418, 2003.

[2] M. Kersten and G. C. Murphy. Mylar: a degree-of-interest
model for IDEs. In Proceedings of the International Confer-
ence on Aspect-Oriented Software Development. ACM, 2005.

[3] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung.
An exploratory study of how developers seek, relate and col-
lect relevant information during software maintenance tasks.
IEEE Transactions on Software Engineering, 32(10):971–
987, 2006.

[4] T. D. LaToza, D. Garlan, J. D. Herbsleb, and B. A. Myers.
Program comprehension as fact finding. pages 361–370. As-
sociation for Computing Machinery, 2007.

[5] M. P. Robillard, W. Coelho, and G. C. Murphy. How effec-
tive developers investigate source code: An exploratory study.
IEEE Transactions on Software Engineering, 30(12):889–
903, 2004.

[6] J. Sillito, G. C. Murphy, and K. D. Volder. Questions pro-
grammers ask during software evolution tasks. In Proceed-
ings of the SIGSOFT Foundations of Software Engineering
Conference (FSE), 2006.

[7] J. Sillito, G. C. Murphy, and K. D. Volder. IEEE Transactions
on Software Engineering, 34(4):434–451, 2008.

[8] M. W. van Someren, Y. F. Barnard, and J. A. Sandberg. The
Think Aloud Method; A Practical Guide to Modelling Cogni-
tive Processes. Academic Press, 1994.

[9] L. Williams, R. R. Kessler, W. Cunningham, and R. Jeffries.
Strengthening the case for pair-programming. IEEE Software,
17(4):19–25, 2000.

