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Abstract

It is well known that software maintenance and evolution are expensive activities, both in terms
of invested time and money. Reverse engineering activities support the obtainment of abstrac-
tions and views from a target system that should help the engineers to maintain, evolve and
eventually re-engineer it. Two important tasks pursued by reverse engineering are design pattern
detection and software architecture reconstruction, whose main objectives are the identification
of the design patterns that have been used in the implementation of a system as well as the
generation of views placed at different levels of abstractions, that let the practitioners focus on
the overall architecture of the system without minding at the programming details it has been
implemented with.

In this context we propose an Eclipse plug-in called MARPLE (Metrics and Architecture
Reconstruction Plug-in for Eclipse), which supports both the detection of design patterns and
software architecture reconstruction activities through the use of basic elements and metrics
that are mechanically extracted from source code. The development of this platform is mainly
based on the exploitation of the Eclipse framework and plug-ins as well as of different Java
libraries for data access and graph management and visualization.
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1. Introduction

A software engineering research area that is getting more and more importance for the
maintenance and evolution of software systems is reverse engineering [4,17]. A relevant
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objective of this discipline is to obtain representations of the system at a higher level
of abstraction and to identify the fundamental components of the analyzed system by
obtaining its constituent structures. Getting this information should greatly simplify the
restructuring and maintenance activities, as we obtain more understandable views of the
system and the system can be seen as a set of coordinated components, rather than as a
unique monolithic block.

Considering these components, particular relevance is given to design patterns [10].
Finding design patterns in a software system gives hints on the comprehension of a soft-
ware system and on what kind of problems have been addressed during the development
of the system itself. Their presence can be considered as an indicator of good software
design, as design patterns are reusable for their self definition. Moreover, they are very
important during the re-documentation process, in particular when the documentation
is very poor, incomplete or not up-to-date.

Both the activities related to design patterns detection (DPD) and software architec-
ture reconstruction (SAR) are particularly relevant in the context of reverse engineering.
The main objective of SAR is to abstract from the analyzed system’s details in order to
obtain general views, diagrams and evaluations on it. The extraction of such data helps
the engineers in having a global understanding of the system and of its architecture.

Different tools for DPD have been proposed in the literature (e.g. [12,7,18,23,25]). They
usually have problems in finding all the design patterns of the GoF catalogue [10], some
tools recognize only a small subset of these patterns, but the main problem is that the
found results contain many false positive DP instances and moreover they usually don’t
scale well when trying to analyze medium/large systems. Also for SAR different tools
have been proposed (e.g. Codecrawler [15], Doxygen [27], SA4J [13], Codelogic [6],ARMIN
[19] and Swagkit [21]), obtaining different views at different levels of abstraction, some
exploiting only static analysis and other exploiting both static and dynamic analysis.
Usually tools for SAR don’t perform DPD.

The aim of this paper is to describe a project, on which we are currently working,
named MARPLE (Metrics and Architecture Reconstruction PLug-in for Eclipse) that
aim to support both DPD and SAR activities, which constitute the two main modules
of the project.

MARPLE’s architecture has been designed in order to be language independent, even
if until now we have performed our analysis on java systems.

Our approach to design pattern detection is based on the detection of design pattern
subcomponents ([2,1]), which can be considered indicators of the presence of patterns.
We use static source code analysis: the ASTs of the analyzed projects are parsed in order
to obtain the structures we need for our elaboration, which we called basic elements
(BE).

DPD activity may be seen as a specialization of the more general SAR activity: DPD
provides information that is not directly obtainable by applying SAR techniques, but
the results gained with SAR tools can be useful also for the DPD process. In fact we
can detect a design pattern through the DPD module and then check the result through
some views offered by the SAR module. For this reason we found interesting to start
developing a tool able to do both DPD and SAR.

MARPLE is conceived as an Eclipse plug-in. This choice was supported by two main
reasons: first of all, Eclipse is the most used open source development framework, it is
supported by a wide community of developers, and it is strongly based on the concept of
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extending its functionalities through the implementation of plug-ins. The second reason
resides in the fact that this platform encourages the strong interaction among the various
components that constitute the framework; therefore, the implementation of our plug-in
is based on the exploitation of the functionalities of other plug-ins and modules of the
Eclipse framework. This reuse of components improves and speed up the development
process.

We aim in this paper to describe the overall architecture of MARPLE, but not to go
in details on how each module has been developed (also for space reasons). Starting from
the different problems and results obtained experimenting on the same systems many
other DPD tools, we decided to develop a new tool for DPD which exploits different
classification techniques for DPD (briefly described in Section 2).

In this paper we focus our attention on describing the results obtained through MARPLE
on DPD and in particular on the detection of the Abstract Factory DP in order to show
the full detection process of a design pattern, and the results obtained on it.

The paper is organized as follows: Section 2 introduces the overall MARPLE archi-
tecture and goes into more details about the technologies, plug-ins and libraries used
during its development; Section 3 presents some results about the already implemented
modules of design pattern detection; Section 4 briefly discusses about the opportunity
of migrating MARPLE to a distributed environment, and finally Section 5 gathers the
conclusions and outlines possible future works.

2. An overview on MARPLE

An overview of the principal activities performed through MARPLE is depicted in
Figure 1 that shows: the general process of data extraction, design pattern detection,
software architecture reconstruction and consequent results visualization.

The information that is used by MARPLE is obtained by an Abstract Syntax Tree
(AST) representation of the analyzed system.

DPD

MARPLE
Data extraction

Information
analysis

Results
output

SAR

Visualization

AST

Fig. 1. An overview to the general process.

DPD and SAR receive both the same set of basic elements and metrics that have been
found inside the system, collected in an XML file. By basic elements we mean a set
that is formed by Elemental Design Patterns (EDPs) [24], design pattern clues [16] and
micro patterns [11], that are intended as the basic information we exploit as hints for the
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presence of design patterns inside the code, and as basic relationships that may connect
two or more classes in terms of object creation, method invocation or inheritance. Figure
2 depicts the overall architecture of the MARPLE project.

Software
Architecture

Reconstruction

Information Detector
Engine

Basic Elements
Detector

Metrics
Collector

Output
generation

XML

XML

AST

Recognition
Rules

Joiner

Classifier

XML

XML

DPD

Fig. 2. The architecture of MARPLE.

The architecture is constituted by five main modules, that interact with one another
through XML data transfers. The five modules are the following:
– The Information Detector Engine which collects both basic elements and metrics start-

ing from an AST representation of the source code of the analyzed project;
– The Joiner, that extracts architectures from the project that could match those of

design patterns, basing on the information extracted by the Information Detector En-
gine;
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– The Classifier, which tries to infer whether the architectures detected by the Joiner
could effectively be realizations of design patterns or not. This module helps to detect
possible false positives identified by the Joiner and to evaluate the similarity with the
canonical design patterns by assigning different confidence values;

– The Software Architecture Reconstruction module, which obtains abstractions from the
target project basing on the elements and metrics extracted mainly by the Information
Detector Engine, but also directly from the ASTs of the analyzed system;

– The activity of Output generation provides an organic view of the project analysis re-
sults. Through this activity, the user will see both the results produced by the detection
of design patterns and the views provided by the SAR module.
Each of these modules takes part to a different stage of computation (see Figure 2).

Modules are not necessarily used for both DPD and SAR, but on the contrary some
modules are specialized and used only in one of these activities. Table 1 reports the
modules involved in each stage of computation both for DPD and SAR, and the type of
information it is produced as output from these two activities.

Data extraction Information

analysis

Output generation

DPD Information De-
tector Engine

Joiner, Classi-
fier

XML, design pat-
tern diagrams

SAR Information

Detector Engine,
AST

SAR module Abstracted

views,metrics

Table 1

The modules involved in the various stages.

As we have outlined, the MARPLE project leans on the Eclipse framework and hence
many functions did not need to be rewritten, but have been implemented by extending
the core concepts provided by the platform. Obviously, many functionalities have also
been implemented by using third party libraries, like XML data access or graph repre-
sentations. As it appears clear from Figure 2, all the modules work on XML files that
come from some previous modules. Each of these modules works on these files, both for
reading and writing, with the Apache XMLBeans library [8]. As this kind of data access
is common for every module, we won’t discuss it any further.

In the following, we will discuss the components we exploited in the implementation of
each module constituting MARPLE, discussing the reasons about the choices we made
and the effectiveness of these components in pursuing our objectives.

2.1. The Information Detector Engine Module

Currently, the Basic Elements Detector (BED) sub-module has been completely de-
veloped. The basic elements are extracted by visitors that parse an AST representation
of the source code, each of them returning instances of the basic elements if the analyzed
classes or interfaces actually implement them. The information is acquired statically and
is characterized by 100% rate of precision and recall. This value is due to the fact that
these kinds of structures are meant to be mechanically recognizable, i.e. there is always a
1-to-1 correspondence between a basic element and a piece of code. In other words, the
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basic elements are not ambiguous (as on the contrary design patterns may be), and once
a basic element has been specified in terms of the source code details that are used to
implement it, the basic element can be detected without any problem.

We didn’t implemented an AST structure from scratch, but we used the org.eclipse.jdt.core.dom
library that provides all the classes and interfaces that can be used to access a project’s
ASTs. Moreover, it provides the class ASTVisitor, that is used to visit the nodes con-
stituting the AST according to the Visitor design pattern [10]. Therefore, one visitor for
each basic element has been extended from ASTVisitor. These visitors are invoked se-
quentially on the ASTs of the classes constituting the project and visit only those nodes
that may contain the information they are able to detect (for example, the visitors that
look for method call EDPs only analyze nodes that represent a method invocation, i.e.
instances of the MethodInvocation class).

The results coming from the visitors, i.e. the instances of basic elements that have
been found inside the project, are then stored in an XML file.

The BED module has been developed also for the .NET enviroment.
As far as the Metrics Collector sub-module is concerned, the evaluation of some object-

oriented metrics that are useful for SAR has been implemented. These metrics are ex-
ploited in the generation of some of the architectural views described in the Software
Architecture Reconstruction Module sub-section.

2.2. The Joiner Module

As far as the Joiner module is concerned, no particular third party technologies have
been used. Nonetheless, this module doesn’t handle the system through its AST represen-
tation, but it manages it as a graph G = (V,E), where the set of vertex V corresponds to
the set of types (i.e. classes and interfaces) the project is constituted by, while E is the set
of basic elements that connect the types with one another. In fact, each basic element can
be seen as a relationship between a type and another one (therefore depicted as an edge
between two nodes of the graph), or as a relationship between a class and itself (depicted
as a self loop on a graph node). The system graph representation is directly derived from
the output generated by the Information Detector Engine. As we have briefly anticipated
at the begin of this section, this module tries to extract architectures that match a target
structure, defined in terms of Joiner rules. A Joiner rule is a graph that collects roles
and basic elements (edges) that must be present among the roles in order to satisfy the
rule. In particular, we have to define rules to extract candidate design pattern instances.
In this way the roles in the rule are the roles of the target design pattern. For example,
if we want to extract the couple of roles (R1, R2), where R1 has a create object and a
delegate method call to R2, we may represent this rule as shown in Figure 3.

R1 R2

createObject

delegate

Fig. 3. An example of Joiner rule.

The Joiner module tries to match and extract this kind of architectures from the graph
representing the system through an ad-hoc graph matching algorithm. The algorithm has
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been demonstrated to have linear complexity in the number of the classes of the system.
All the details of the algorithm and the complexity demonstration can be found in [28].

The extracted architectures are then inspected by the Classifier module which tries to
infer whether they can represent instances of design patterns or not.

2.3. The Classifier Module

The Joiner output is the input for the next analysis step performed by the Classifier
module. This module takes all the candidate design pattern instances and tries to evaluate
their grade of similarity to the searched design pattern in order to be able to rank the
instances given as output. Figure 4 shows an example of the classification process.

Through our current approach, we generate every possible valid mapping {(R1, C1),
(R2, C2), . . . , (Rn,Cn)} for each pattern instance, where each Ci is the class that is
supposed to play the role Ri inside the pattern. These mappings are all of fixed size (an
element for each pattern role) and each class has a fixed number of features, where the
features are the basic element retrieved in the class. In this way each mapping can be
represented as a vector of features whose length is given by (num features∗num roles).
These vectors are grouped by a clustering algorithm, producing k clusters; each pattern
instance is represented as a k -long vector, having in each position i the absence/presence
of the i -th mapping. Since we know that an instance is a DP or not directly from the
training set, we can enqueue to each vector the class attribute and use the resulting
dataset for the training of a supervised classifier.

In the Classification Module we used the clustering and classification algorithms pro-
vided in Weka [20]. All the detail of classification process can be found in [26].

2.4. The Software Architecture Reconstruction Module

One of the objectives of MARPLE is supporting the user with the visualization of
abstractions about the analyzed systems. Currently, the SAR module generates six kinds
of views on a system (see http://essere.disco.unimib.it/reverse/Marple.html for
examples of the generated views):
– The package diagram of all the packages that form the analyzed system;
– The class compact diagrams of each package constituting the system. In this view, all

the classes and interfaces belonging to the package are shown as a single graph, where
the nodes correspond to the classes and interfaces, while the edges are the relationships
connecting them;

– The class extended diagrams of each package constituting the system. This view is
characterized by many graphs, one for each class or interface belonging to the package.
Each graph reports only the relationships its subject class or interface has with the
other classes or interfaces that constitute the system. In this way, the graphs will not
be overwhelmed with a huge number of edges, letting the users focus on single classes
without minding to the rest of the system;

– A system complexity view, similar to the one provided by CodeCrawler [15];
– A type graph of the entities constituting the project, similar to the class graph of

Doxygen [27]; With the term type we mean both classes and interfaces, according to
the Eclipse JDT API specifications;
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Design Pattern Istance
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k

New Design Pattern Representation

CLASSIFIER
Wrong

Correct
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R2 R3

R1 R2 R3 R1 R2 R3

... ci ...c1 ck

Fig. 4. Classification process.

– A class blueprint diagram showing methods, attributes and relationships belonging to
each class, like the one available in CodeCrawler.
These views are obtained by different kinds of information: the package and the class

diagrams exploit the output coming from the Basic Elements Detector. In this way, we
exploit a common source of information for both DPD and SAR. More specifically, the
SAR functionalities related to the generation of the class compact and the class extended
diagrams are achieved only through the analysis of the elemental design pattterns de-
tected by the Basic Elements Detector module. These elements revealed themselves very
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useful for the identification and definition of the relationships that are typical of class
diagrams and that link the various classes constituting the analyzed project. These rela-
tionships, underlining the architectural constraints, let the users have a general overview
of the classes structures and aggregations. On the other hand, the remaining views ex-
ploit also the Metrics Collector output, which gathers some common object oriented
metrics starting from a further analysis of the ASTs. Namely, the system complexity view
is based on the inheritance relationships among the classes constituting the system, while
the complexity of each single class is measured in terms of their number of attributes
(NOA), number of methods (NOM) and lines of code (WLOC); the type graph is built
by analyzing the inheritance, implementation, association and containment relationships
of each class with the rest of the system; finally, the class blueprint view reports for each
method the number of invoked methods (NI) and its lines of code (LOC), and for each
attribute the number of local (NLA) and global (NGA) accesses.

In order to show the results we used the GEF (Graphical Editing Framework) Eclipse
plug-in [9]. GEF allowed us to take advantage of rich representation mechanisms and of
the MVC (Model-View-Controller) pattern, that allowed us to maintain the underlying
model (i.e. the ASTs of the analyzed project) separate from the implemented view.
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3. Experimental results for DPD

As MARPLE is currently a project under development, we are not able to provide the
complete results gained by exploiting every module of the project.

However, in this section we will provide some examples of outputs generated by the
various modules of MARPLE on a set composed by different systems of different size,
as reported in Table 2, which reports the size measured in number of compilation units,
where in Eclipse internals, a compilation unit is simply a Java file. We created this set
with the aim of having a reliable dataset, taken from both the industry and the academic
worlds.We described in this paper the results obtained for the detection of the Abstract
Facotry DP and hence we show the dataset tailored for the detection of this pattern.

The projects were selected searching for canonical implementations of the Abstract
Factory pattern and open source projects, taken from Sourceforge, declaring the use of
an Abstract Factory pattern implementation in their documentation.

All the experiments are executed using a 2Ghz notebook processor.

Project Number of CU

AF-earthlink 1

AF-java.net 5

jboot 6

AF-WikiPedia 7

AF-rice 8

AF-vico.org 10

AF-itec 10

JVending-Registry-CDC 11

AF-c-sharpcorner 11

AF-fluffycat 12

AF-apwebco 13

AF-javapractises 13

AF-Gamma 21

dynamicdispatcher 23

ehcache 86

Project Number of CU

fdsapi 95

sunxacml 155

doubletype 175

bexee 191

wasa 213

wfmopen 241

GroboUtils 285

Nodal 300

Rambutan 328

sparql 332

infovis 448

fipaos 459

mandarax 514

JasperReports 798

Batik 1643

Table 2

Projects in the dataset, with respective number of compilation units (CU)

3.1. Results for the Information Detector Engine Module

The Information Detector Engine module is composed by two sub-modules: a Basic
Elements Detector and a Metrics Collector : the first has to collect the basic elements
on the classes, and the second has the aim to calculate metrics on the code that will be
useful for SAR purposes.
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The detection of Basic Elements is the first step of our approach to Design Pattern
detection, so we analyzed our dataset with the Basic Element Detector, and we report
in Table 3 some performance and size indicators for each system.

Project Name Num of CU Elapsed Time (s) Memory Consumption (Mb) Num of BEs

AF-earthlink 1 5 2 54

AF-java.net 5 4 9 30

jboot 6 5 1 88

AF-WikiPedia 7 5 7 36

AF-rice 8 5 5 81

AF-vico.org 10 5 5 44

AF-itec 10 5 5 73

JVending-Registry-CDC 11 6 3 174

AF-c-sharpcorner 11 6 8 59

AF-fluffycat 12 5 4 104

AF-apwebco 13 6 5 69

AF-javapractises 13 5 6 94

AF-Gamma 21 6 8 43

dynamicdispatcher 23 6 17 528

ehcache 86 12 83 4820

fdsapi 95 10 46 4325

sunxacml 155 10 73 4702

doubletype 175 34 190 24201

bexee 191 16 115 3544

wasa 213 10 86 5597

wstx 241 15 130 16541

GroboUtils 285 15 89 10648

Nodal 300 19 163 18116

Rambutan 328 15 124 6946

sparql 332 16 136 11919

infovis 448 31 299 25929

fipaos 459 28 278 24927

mandarax 514 26 251 16905

JasperReports 798 58 671 49082

Batik 1643 143 1725 93714

Table 3

Basic Element Detector performance and size results

We can easily observe from Table 3 that Memory Consumption and Elapsed Time are
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approximately in a linear relation to the number of Compilation Units (see Figure 5):
this means that the detector scales linearly in the size of the analyzed system.
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Fig. 5. Relationship between Memory Consumption, Elapsed Time and Number of Compilation Units.

As the main objective of the Basic Elements Detector is the extraction of information
to be used in the further stages of computation for both DPD and SAR, discussing in
detail about the results provided by this module “as they are” is not really meaningful.

3.2. Results for the Joiner Module

The detection of Design Pattern Candidates is the second step of our approach to
Design Pattern detection, so we analyzed our dataset, or better the result of the BED on
our dataset, with the Joiner module. We report in Table 4 some performance and size
indicators for each system.

Since the dataset has been tailored for the detection of the Abstract Factory Design
Pattern, we tested only the Abstract Factory detection rule. The application of this rule
gave us 69 correct instances on a total of 346 candidate pattern instances, therefore the
Joiner module has, on this dataset, a precision of about 20%. This is not an high precision
value, but it is the result of two main reasons: the first is that the recognition rule has
been conceived to detect almost all the pattern instances, so it tends to maximize recall
at the expense of precision; the second is that there is an anormal project (Nodal) that
produces an high number of wrong instances and three projects that contain only wrong
instances, producing a quite unbalanced dataset. All the results have been also manually
evaluated.
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Project Num of BEs Num of Classes Found Instances Valid Instances Precision Time (ms)

AF-earthlink 54 7 1 1 100,00% 10

AF-WikiPedia 36 7 1 1 100,00% 9

AF-rice 81 10 2 1 50,00% 13

AF-vico.org 44 10 1 1 100,00% 27

AF-itec 73 10 1 1 100,00% 13

AF-c-sharpcorner 59 11 1 1 100,00% 12

AF-fluffycat 104 16 1 1 100,00% 13

AF-apwebco 69 13 1 1 100,00% 12

AF-javapractises 94 13 1 1 100,00% 13

AF-Gamma 43 23 1 1 100,00% 18

dynamicdispatcher 528 47 2 2 100,00% 19

ehcache 4820 104 4 4 100,00% 110

fdsapi 4325 122 7 0 0,00% 218

sunxacml 4702 162 8 4 50,00% 201

doubletype 24201 357 9 2 22,22% 300

bexee 3544 201 20 2 10,00% 237

wasa 5597 303 3 0 0,00% 97

wstx 16541 257 23 6 26,09% 220

GroboUtils 10648 511 16 6 37,50% 158

Nodal 18116 602 109 4 3,67% 2388

Rambutan 6946 488 33 6 18,18% 936

sparql 11919 429 32 0 0,00% 1321

infovis 25929 644 32 15 46,88% 1068

fipaos 24927 747 16 5 31,25% 257

mandarax 16905 621 21 3 14,29% 388

Table 4
Joiner performance and size results

We proved, as previously written, that the algorithm in the worst case has linear
complexity in the number of the classes. Empirically we also noticed that, on our dataset,
the detection time is approximately in a linear relation to the number of found instances,
as shown in Figure 6.
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Fig. 6. Relationship between Time and Number of Found Instances.

3.3. Results for the Classifier module

The classifier module therefore works on a dataset composed by about 20% of instances
having positive class and about 80% of instances having negative class.

In our experimentations we tried the Simple K-means clustering algorithm with many
different numbers of clusters K (NC) and a bunch of classifiers chosen through data
exploration using weka [20]; the results of some experiments are shown in Tables 6, 5
and in Figures 8, 7. All experiments are realized using Repeated Cross Validation with
10 folds and 10 repetitions.

The classifiers we tested are:
ZeroR: a classifier that predicts the mean (for a numeric class) or the mode (for a

nominal class);
NB: Näıve Bayes classifier [29];
J48: C4.5 classifier [22];
SMO: Support Vector Machine classifier [5];
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NC ZeroR NB J48-1 J48-2 J48-3 SMO-1 SMO-2 SMO-3

400 0 0,36 0,53 0,52 0,42 0,54 0,55 0,62

500 0 0,36 0,53 0,54 0,52 0,68 0,68 0,79

600 0 0,38 0,54 0,53 0,46 0,63 0,63 0,79

700 0 0,32 0,58 0,55 0,49 0,67 0,66 0,77

800 0 0,29 0,51 0,53 0,42 0,75 0,74 0,77

900 0 0,25 0,66 0,51 0,51 0,76 0,75 0,8

1000 0 0,15 0,45 0,57 0,33 0,75 0,75 0,78

1200 0 0,1 0,52 0,6 0,32 0,7 0,71 0,68

1400 0 0,13 0,36 0,59 0,26 0,58 0,58 0,61

Table 5

Experiments precision
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Fig. 7. Experiments precision graph

The first indicator we show is the precision (see Table 5). The best classifier is the
SMO-3 but SMO-2 gave a good performance too (see Figure 7); the worst, excluding
ZeroR, is the näıve bayes. The ZeroR classifier’s recall is 0 because it classifies using the
majority class, so it assigns all the instances to the negative class.
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NC ZeroR NB J48-1 J48-2 J48-3 SMO-1 SMO-2 SMO-3

400 0 0,35 0,14 0,35 0,11 0,45 0,45 0,36

500 0 0,41 0,12 0,34 0,11 0,51 0,51 0,39

600 0 0,37 0,1 0,33 0,1 0,53 0,53 0,44

700 0 0,29 0,11 0,31 0,09 0,51 0,51 0,39

800 0 0,25 0,11 0,32 0,08 0,52 0,53 0,36

900 0 0,19 0,12 0,32 0,09 0,53 0,53 0,31

1000 0 0,11 0,12 0,37 0,08 0,57 0,56 0,36

1200 0 0,07 0,14 0,31 0,07 0,49 0,49 0,36

1400 0 0,1 0,1 0,24 0,05 0,61 0,61 0,51

Table 6

Experiments recall
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Fig. 8. Experiments recall graph

The second indicator we show is the recall (see Table 6). The results evidence that the
best classifier is SMO-2 (see Figure 8); the ZeroR classifier’s recall is 0 for the same reason
explained for the precision; the worst classifiers are the J48 trees. The best precision value
is given by the Support Vector Machines on maximum numbers of clusters.

16



4. Distributed MARPLE

There is a parallel project that allows us to use MARPLE in a client-server environment
(Figure 9).

This project has been developed because loading the projects ASTs using the Eclipse
APIs required a large amount of memory (i.e. the AST of Batik, a system composed by
1643 java files, required about 1700Mb of memory). The distributed version splits the
classes of the system into k sets and the BED nodes analyze only their own set. This
solution allows us to reduce the memory requirement for the nodes; we also use this
solution in the normal version of MARPLE serializing the analysis of each set using only
one BED instance.

Another problem that convinced us toward the development of the distributed version
is the computational requirement of the classifier module. It’s well known that some
classification algorithms require a lot of time in order to classify their dataset.

For all of this reasons we decided to implement this version in order to allow users to run
their analysis through the internet on the elaboration server and to check asynchronously
the results of the elaboration.

This project is based on the J2EE v.5 platform and precisely on the Glassfish [14]
application server.

Client 1 Client n

Middle Layer

BED 1 BED n
1

Joiner
Classifier

n

Joiner
Classifier

JMSJMS

DataBase

Web Service

Fig. 9. The architecture of distributed MARPLE.
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The system architecture, as you can see in Figure 9, is composed by four main modules:
Client: this module is developed as an Eclipse plugin (maintaining MARPLE’s interface)

and allows users to use the elaboration service. Users, using this service, can send their
projects, they can check current elaboration status and they can also manage (retrieve,
modify, delete) all the already performed analysis.

Server: this module is developed on a J2EE Application Server and it implements the
middle layer of the system. It implements also the Web Service in order to receive users
requests, manage the Persistence Backend (Database) that contains all the information
of the users, and finally start the elaboration of a project. When an elaboration starts,
first the server calls in parallel all the BED Nodes and at the end of their elaboration
it calls in parallel all the Joiner-Classifier Nodes. This job serialization is necessary
because, in order to run, the Joiner-Classifier node must possess all the detected Basic
Elements.

BED Node: this module receives from the Server, through JMS, a set of classes to
analyze and the entire project source code; than it simply runs the BED on this set
and returns to the server the detected Basic Elements.

Joiner-Classifier Node: this module receives from the server through JMS a rule spec-
ifying the Pattern to find and all the detected Basic Elements. Next it runs sequentially
the Joiner and the Classifier Module and then it returns to the Server all the found
pattern instances with their classification values.

5. Conclusions and future works

In this paper we have presented MARPLE, a tool for design pattern detection and
software architecture reconstruction that is being developed as an Eclipse plug-in. We
are very interested in using such capabilities also in the context of system modernization
and in particular for what concerns systems migration to SOA. In this context, we have
explored if detecting design patterns in a system can give useful information towards
SOA migration [3].

Currently, some modules have been completely implemented, others only partially.
The Information Detector Engine has been completely developed as far as the Basic

Elements Detector is concerned. It detects all of the elemental design patterns, clues and
micro pattern we think are useful as hints for design pattern detection.

As far as the Joiner is concerned, we have defined rules for the extraction of candidates
for the Abstract Factory, the Builder, the Factory Method, the Prototype, the Singleton,
the Adapter (both based on classes and on objects), the Composite and the Proxy de-
sign patterns. Rules for the remaining patterns have to be defined and tests have to be
performed on them.

We have developed the Classifier module, which proved that we can extract informa-
tion from our representation of the problem, as the performance values are higher than
the apriori ones. We are currently analysing if, adding or removing some basic elements,
we could improve the performance.

The views provided by the SAR module have been completely developed, and we are
now working on the implementation of further views and on the evaluation of metrics
starting from the Information Detector Engine output that should be useful for SAR
purposes. The evaluation of such metrics is the core task of the Metrics Collector module
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within the Information Detector Engine. We are also interested to define some metrics
based on the basic elements to be used as indicators of the quality design assesment.

Future works are related to complete the detection of all the Design Patterns of [10],
to add new views based on both metrics and basic elements and to better integrate all
the modules: we started the implementation of MARPLE through the development of
separated modules, but now we need them to cooperate in order to enhance the user
experience and to let the tool to be more effective. Moreover we would like to define a
benchmark for the comparison of design pattern detection tools.

Since the design of MARPLE architecture has been done in order to be language
independent, future works will consider other languages as for example C++.

From our experience, the Eclipse framework demonstrated to be really useful and
flexible for the development of a project like MARPLE. Many features are available
directly from the framework (like the AST representations we have used for information
extraction, code inspection, etc) or through ad-hoc plug-ins (like the GEF framework
used for some of the views we have implemented). While the major efforts requested are
related to the extension of such functionalities and to the understanding of the rationale
and issues behind each component and plug-in we have used and the major problems we
had to face are related to the AST memory consumption.

Therefore, dealing with the design and development of MARPLE, we achieved not
only confidence with DPD and SAR techniques, but also with those instruments that
constitute the grounds of the MARPLE project itself, namely the Eclipse framework and
all the components and libraries we have cited along this paper.
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