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Abstract

We describe the toolset for the behavioural specification language mCRL2. The purpose of the
toolset is to analyse abstract models that describe the communication behaviour of software
based systems. With the help of the toolset we want to efficiently detect and prevent problems
in software, preferably before it is built. The tools allow to transform specifications, generate
and visualise state spaces, verify modal properties, and much more. In order to facilitate reuse
of the code most of the functionality is included in libraries. This makes the toolset suitable as
a platform for third party tool development and for other specification languages as well. The
toolset is distributed under the Boost license, which permits such use.

1. Introduction

The mCRL2 language is a specification language for describing communication be-
haviour among systems. In general we consider communicating computers and computer
programs, but the language is also suitable for other systems that exchange messages (for
instance business processes or social networks). The language is supported by a toolset
enabling simulation, visualisation, behavioural reduction and verification of software re-
quirements. The purpose is to efficiently study and understand the communication pat-
terns in software, which can be extremely complex, especially in parallel and distributed
systems. As such the toolset is versatile, employing the power of automated tools when
necessary, and human intuition and ingenuity when needed.

The behavioural part of the language is based on process algebra and by which the
toolset is rooted in the same methodology as CADP [1], µCRL [2] (which is the direct
predecessor of mCRL2) and FDR2 (based on CSP [3]). Like UPPAAL [4], mCRL2 allows
to specify real-time behaviour. Other process specification formalisms are directly based
on automata or a mixture of automata and programming languages (such as Promela
[5]).
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The data part of the language is based on higher-order abstract equational data types.
It contains quantifiers, (unbounded) integers, (infinite) sets and bags, structured types,
lists and real numbers. All these concepts are set up to be as close to their mathematical
counterparts as possible. This means that the language is very expressive and it is easy to
write down undecidable properties. For the decidable part advanced algorithms have been
devised (such as just-in-time compiling rewriting [6]) giving the tools high performance
despite the generality of the data types.

There is also a property specification language based on the modal µ-calculus [7] ex-
tended with data and time. We do not know of other property specification formalisms
with the same expressivity, especially regarding its data part.

The mCRL2 toolset is based on human-guided transformation of specifications. Fig-
ure 1 illustrates the basic concepts of the mCRL2 toolset. Generally, an mCRL2 spec-
ification is first translated into a linear process where all parallel operators have been
removed. There are several tools to optimise linear processes. Subsequently, they can be
transformed into transition systems or, in combination with modal formulas, to param-
eterised boolean equation systems. For transition systems and parameterised boolean
equation systems also a family of transformation tools exist. We experienced that for
non-trivial verification tasks, human-guided application of the tools together with a good
understanding of the specification, is the only route to success. To further aid the under-
standing, several visualisation tools are available.

We believe that it is important that not only the tools themselves but also their design
and implementation are shared among the scientific community, much in the same way as
scientific ideas are communicated and elaborated among groups of people. Therefore, we
provide the toolset as open source under the Boost Software License [8], which allows free
use of the software and its source, as long as the authors of the tools are acknowledged.
Furthermore, we invested heavily in documenting the software to make the toolset a
practical starting point for other behavioural analysis environments.

In this article we provide a short overview of the structure of the toolset. The toolset
itself is available from the mCRL2 website [9].

2. Overview of the toolset

The mCRL2 toolset is comprised of several tools that allow the user to conduct ver-
ification and validation of systems specified in the mCRL2 language. An abstract view
on the mCRL2 toolset is given in Figure 1. For instance, there are converters that allow
importing other formalisms such as coloured Petri nets [10], χ [11] and µCRL [2]. The
actual list of tools per category can be found on the mCRL2 website [9].

Every analysis of an mCRL2 specification (see Section 4.1 for examples) starts by a
transformation of the specification into linear form. This is achieved by the lineariser,
which transforms a restricted yet practical subset of mCRL2 specifications to linear pro-
cess specifications (LPSs). These LPSs are a compact symbolic representation of the
labelled transition system of the specification. Due to its restricted form, an LPS is espe-
cially suited as input for tools; there is no need for such tools to take into account all the
different operators of the complete language. (See [12] for the details of the linearisation
process.)

Once an LPS has been generated from an mCRL2 specification, the user has several
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Figure 1. The structure of the mCRL2 toolset. Rectangles represent the tools, and ovals represent the

objects that are manipulated by the tools. Doubly lined ovals correspond to tools that manipulate the
objects. Curved arrows indicate export and import facilities to external tools.

options to continue the analysis. Validation of LPSs is supported by LPS simulation
tools. Using simulation one can quickly gain insight into the behaviour of a system. For
instance it is possible to manually select transitions, but traces can also be generated
automatically (and subsequently inspected), using breadth-first, depth-first or random
exploration.

Verification is supported using theorem proving and model checking. With theorem
proving technology it is possible to check invariants on an LPS. Validity of boolean data
expressions can also be checked using external SAT solvers. Furthermore, it is possible
to detect confluence [13], which can subsequently be used to simplify the generation of
labelled transition systems (LTSs), which are explicit representations of the state spaces.
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To apply model checking, a modal formula must be provided that states some func-
tional requirement on the mCRL2 specification. Modal formulae can be specified in a
variant of the modal µ-calculus extended with regular expressions [14], data and time
(see Section 4.1 for examples). In combination with the LPS this formula is transformed
into a parameterised boolean equation system (PBES) [14,15] by the PBES generator ;
solving this PBES answers the encoded problem. Several tools are available for solving
PBESs.

Verification and validation can be proceeded at a more concrete level by mapping LPSs
to LTSs, and PBESs to boolean equation systems (BESs). This is achieved by dedicated
generators. The resulting LTSs and BESs can be further manipulated by mCRL2 tools,
or serve as input to external toolsets.

Verification at the level of LTSs is possible by means of equivalence checks between
two LTSs using equivalences such as strong and branching bisimulation. Furthermore
the presence or absence of deadlocks or certain actions can be checked, together with
witnessing traces if desired.

Validation of LTSs is supported by the LTS visualisation tools. With such tools one
can gain insight into systems up to millions of states large. Each tool has a different way
of visualising an LTS: either by using automatic positioning algorithms or by clustering
states based on state information. These visualisation tools have proven to be useful
in detecting complex properties such as symmetry and invariance. Figure 2 shows a
visualisation of an LTS using a technique from [16]. Based on their distance from the
initial state, states are clustered and positioned in a 3D structure similar to a cone
tree [17], with the emphasis on symmetry.

Figure 2. Visualisation of the structure of an LTSs of the alternating bit protocol [18,19]. This instance
of the protocol is capable of transferring up to two different data elements. The structure is completely
symmetric: the left and right part precisely correspond to the transfer of the two different data elements.
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To make verification and validation feasible often reductions and simplifications must
be applied. There are several LPS, PBES and LTS manipulation tools available for this
purpose. For instance LPSs and PBESs can both be simplified by removing unused or
constant parameters, and LPSs can be simplified by removing or instantiating summa-
tion variables [20], renaming actions, or removing time. LTS manipulation consists of
minimisation with respect to various equivalences (e.g. trace equivalence, and strong and
branching bisimilarity) and the conversion to different formats.

3. Design of the toolset

The mCRL2 toolset is developed in the C++ programming language. In mCRL2 the
functionality is put into libraries with well-defined interfaces, which enables a high degree
of code reuse. This is a departure from the tool-centered design of µCRL, the predecessor
of mCRL2. The mCRL2 tools are a thin user interface layer on top of functionality
provided by libraries. There are four main libraries:
– the Data library, containing functionality related to the data language like a parser, a

type-checker and a rewriter
– the LPS library, containing algorithms for transforming linear processes and for the

generation of state spaces
– the PBES library, containing algorithms for computing and solving PBES equations
– and the LTS library, containing functionality like property preserving reductions and

equivalence checking.
Primary motivations for the choice of C++ were advanced language facilities for cre-

ating library interfaces, the availability of the C++ Standard Library, and facilities for
generic programming.

Generic programming not only reduces the duplication of code, it also makes it easier
to adapt algorithms. For example, a common operation is to determine equality between
two data expressions. This is usually done using a rewriter, but sometimes a dedicated
prover can give better results. Such operations are best implemented using a template
argument, thus abstracting from the actual implementation. As a side effect, this increases
the reusability of algorithms even outside the toolset.

Apart from the C++ Standard Library the mCRL2 toolset relies heavily on the ATerm
Library [21] and on the Boost C++ libraries [8]. The ATerm Library (short for Annotated
Terms Library), provides “an abstract data type designed for the exchange of tree-like
data structures between distributed applications” [22]. An important property of the
ATerm Library is maximal sharing of subterms, which allows memory-efficient storage
of large terms. This is essential for the toolset, since memory is often the limiting factor
when dealing with large state spaces. Boost is a diverse collection of peer-reviewed C++
libraries, some of which have been adopted in the proposal for the next generation of the
C++ Standard Library.

The shift in focus towards the development of libraries instead of tools prompted for
a change in working procedures. Following the Boost model, library design and public
interfaces are required to be properly documented. Changes to library interfaces and asso-
ciated documentation are peer-reviewed. The Boost testing framework has been adopted
for testing library functionality with different platforms and compilers.
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4. Applications

The mCRL2 toolset has been used in a number of academic and industrial case studies.
We give an example of a simple academic case study, and give an overview of some
industrial case studies.

4.1. Academic case study: dining philosophers

A classic example of a concurrent system is the dining philosophers problem [23]. It
tells the story of a group of philosophers sitting at a table at which each philosopher
has its own plate. In between every pair of neighbouring plates there is precisely one
fork. The dish they are served requires two forks to be eaten. In other words, each pair
of neighbouring entities (philosophers) share one resource (fork). For simplicity we only
consider three philosophers. This situation is depicted in Fig. 3.

p1

p2p3

f1

f2

f3

Figure 3. Dining table for three philosophers.

An mCRL2 model of the problem is presented below.

sort PhilId = struct p1 | p2 | p3;
ForkId = struct f1 | f2 | f3;

map lf , rf : PhilId → ForkId ;
eqn lf (p1) = f1; lf (p2) = f2; lf (p3) = f3;

rf (p1) = f3; rf (p2) = f1; rf (p3) = f2;

act get, put, up, down, lock, free : PhilId × ForkId ;
eat : PhilId ;

proc Phil(p : PhilId) = (get(p, lf (p)) · get(p, rf (p)) + get(p, rf (p)) · get(p, lf (p))) · eat(p)·
(put(p, lf (p)) · put(p, rf (p)) + put(p, rf (p)) · put(p, lf (p))) · Phil(p);

Fork(f : ForkId) = sum p : Phil.up(p, f) · down(p, f) · Fork(f);

init allow({lock, free, eat}, comm({get | up→ lock, put | down→ free},
Phil(p1) ‖ Phil(p2) ‖ Phil(p3) ‖ Fork(f1) ‖ Fork(f2) ‖ Fork(f3)));
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In this model the sort PhilId contains the philosophers. The nth philosopher is de-
noted by pn. Similarly, the sort ForkId contains the forks (fn denotes the nth fork). The
functions lf and rf designate the left and right fork of each philosopher, respectively.

Actions get(pn, fm) and put(pn, fm) are performed by the philosopher process. They
model that the philosopher pn gets or puts down fork fm. The corresponding actions
up(pn, fm) and down(pn, fm) are performed by the fork process. They model the fork
fm being taken or put down by philosopher pn. The action eat(pn) models philosopher
pn eating. For communication purposes we have added actions lock and free. These will
represent a fork actually being taken, respectively put down by a philosopher.

The process Phil(pn) models the behaviour of the nth philosopher. It first takes the
left- and right-hand forks (in any order), then eats, then puts both forks back (again in
any order), after which it repeats this behaviour.

The process Fork(fn) models the behaviour of the nth fork (i.e. the fork on the left of
the nth philosopher). It can be taken by any philosopher p, after which it is put down
again by the same philosopher and then repeats this behaviour.

The whole system consists of three Phil and three Fork processes in parallel. By en-
forcing communication between actions get and up and between put and down, we ensure
that forks agree on being taken or put down by the philosophers. The result of these
communications are lock and free, respectively. Note that the comm operator only en-
sures that communication happens when possible. The allow operator makes sure that
nothing else happens by blocking all actions other than lock, free or eat.

We are looking for a solution to this problem that adheres to the following require-
ments, expressed in the modal µ-calculus:
– deadlock freedom: nuX.[true]X && 〈true〉true;
– starvation freedom: nuX.[true]X && forall p : PhilId .muY.([!eat(p)]Y && 〈true〉true).
The first formula expresses that in any state it should be possible to perform an action.
The second formula expresses that in any state it should be possible to eventually perform
an eat(p) action, for any philosopher p.

We check the properties on the model by first linearising the model to an LPS. For
each formula, we then generate a PBES from the LPS and the formula. When solving the
PBESs, we find out that they are not valid. Alternatively, we check for deadlock freedom
(the first requirement) while generating the LTS from the LPS. This shows us that the
trace lock(p1, f1) · lock(p2, f2) · lock(p3, f3) leads to a deadlock. It represents the situation
in which each of the philosophers has taken one fork and waits for the other one, without
being able to put the first one down. This also shows that the second requirement is not
met: no philosopher will eventually be able to eat and they will all starve.

A standard solution to the dining philosophers problem is to use scheduling, by intro-
ducing a waiter from which the philosophers must ask permission to pick up the forks.
One way of modelling a waiter is as follows:

act ack get;
proc Waiter = ack get(p1, lf (p1)) · ack get(p1, rf (p1))·

ack get(p2, lf (p2)) · ack get(p2, rf (p2))·
ack get(p3, lf (p3)) · ack get(p3, rf (p3)) ·Waiter;

The Waiter process is put in parallel with the other processes; the ack get action is
synchronised with the communication of the get and up action to enforce the schedule:
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init allow({lock, free, eat}, comm({ack get | get | up→ lock, put | down→ free},
Waiter ‖ Phil(p1) ‖ Phil(p2) ‖ Phil(p3) ‖ Fork(f1) ‖ Fork(f2) ‖ Fork(f3)));

Using the same procedure as before, we check the requirements on the updated model
and observe that they are now satisfied.

4.2. Industrial case studies

For a comprehensive list of industrial case studies using the mCRL2 toolset we refer
to the mCRL2 website [9]. Below we present a description of some of them.

4.2.1. Automated Parking Garage
Parking garages that stow and retrieve cars automatically are becoming viable solu-

tions for parking shortages. However, these are complex systems and a number of severe
incidents involving such garages have been reported. Many of these are related to safety
issues in software.

In the Automated Parking Garage case study we have applied verification techniques
to the development of a software design for an automated parking garage. In order to
focus on the safety aspect, we have split the design of the software into three separate
layers: an algorithmic layer and a hardware layer with a safety layer in between.

The safety layer has been formally specified, and subsequently validated and verified.
A custom visualisation plug-in for the LPS simulator was developed to assist in the
validation, and led to the discovery of some serious design flaws. Initally, verification
was not feasible since the original specification would have resulted in an estimated 640
billion states. After a number of abstractions of the specification, the state space went
down to 3.3 million states and 98 million transitions. On this state space we have been
able to verify all safety requirements.

For more information we refer to [24]. The full mCRL2 specification is available as an
appendix of [25].

4.2.2. Aia ITP load-balancer
Aia Software is one of the world’s leading companies for software for print job distribu-

tion over document processors (high volume printers). The core of the software consists of
7.5 thousand lines of C code. In order to understand the job distribution process better,
a large part of this software system has been modelled and analysed using mCRL2. Six
critical issues were discovered. Since the model was close to the code, all problems that
were found in the model, could be traced back to the actual code resulting in concrete
suggestions for improvement of the code. All in all, the analysis significantly improved
the quality of this system and led to its certification by the Laboratory for Quality
Software [26].

The following concrete actions were performed in the project. The session layer of
the load-balancer implementation was modelled in mCRL2 based on the C code. The
underlying network socket administration layer and the upper application layers were
modelled in an abstract way.

By means of state-space exploration (breadth-first search) the system was checked for
deadlocks and violations of safety properties. For the configuration consisting of 3 clients
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and 1 server, 1.9 billion states were generated. Large experiments were performed on an
8-core AMD 64-bits machine with 128Gb RAM. For more information on this case study
we refer to [27]. The full mCRL2 model is available as an appendix of [28].

4.2.3. Pacemaker
Vitatron (Medtronic SQDM/Vitatron in full) develops medical appliances such as pace-

makers. The embedded software of a pacemaker is a complex composition of collaborating
and interacting processes.

In this project the firmware design of Vitatron’s DA+ pacemaker has been checked
using both mCRL2 and UPPAAL. Unfortunately, UPPAAL could only be used for the
initial models because it was unable to cope with the full complexity of the software.

In mCRL2, most requirements have been verified by explicit state space generation
using breadth-first search. One of the requirements was validated by symbolic model
checking using a PBES solver. The size of the state space depends on the configuration
of the formal heart model. For the initial model of the heart, the state space contained far
more than a billion states. Verifications have been carried out on restricted models with
state space sizes ranging from several thousands to approximately 500 million states. The
model in which we found a known violation of the requirement contained 714.464 states.

5. Conclusion

In this paper we have given an overview of the mCRL2 toolset for behavioural speci-
fications, and some case studies.

The toolset has grown rapidly over the years. Maintainability of the software has
become an important issue. To deal with this, practices from the Boost C++ Libraries
have been adopted.

Quite a number of practical studies with the toolset have been done, and most of them
revealed serious design flaws. In most cases existing software was modelled. In other cases
the models were designs which have been transformed into working systems, of which
no serious problems have been reported up till now. Expressing software models in the
mCRL2 language is quite doable after some proper training. However, it still requires
great skill to design models in such a way that properties about them can be efficiently
checked using the toolset.

In the future we intend to further develop the system. Not only do we want to increase
its general capabilities by developing improved algorithms and data structures, we are
also on our way to modularise and document the toolset to open it up for other languages
than mCRL2.
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