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Abstract

The increasing interest in unit testing in recent years has resulted in lots of persistent test code
that has to co-evolve with production code in order to remain effective. Moreover, poor test
design decisions, and complexity introduced during the course of evolution harm the maintenance
of these test suites – making test cases harder to understand and modify. Literature about xUnit
– the de facto family of unit testing frameworks – has a fairly clear set of anti-patterns (called
test smells). In this paper we present TestQ , a tool that allows developers to (i) visually explore
test suites and (ii) quantify test smelliness. We present the feature set of this tool as well as its
architecture, and demonstrate its use on a C++ test suite of considerable size.
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1. Introduction

Both the rise of agile development methodologies as well as the need to find defects
earlier in the development cycle has resulted in a rise in interest in unit testing – and
the xUnit family of testing frameworks in particular [1]. However, testing also has an
associated cost in the form of continuous maintenance, as test code needs to co-evolve
with the production system.

Just like for production design, instances of well known anti-patterns (test smells) for
test code harm the understanding and modification of test cases [2,3]. In this work we
propose a tool called TestQ 1 to (i) visually explore the design of test suites and (ii)
quantify the presence of static test smells (i.e. smell instances that can be identified by
inspecting the design and source code of a test suite). As such, this tool is intended to

1 http://tsmells.googlecode.com
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assessment of the maintainability of the test code, seeking to answer the question How
maintainable is my unit test code? Test engineers and regular developers alike can use
this information to spot refactoring opportunities. As TestQ is based on a formalism for
the xUnit family of testing frameworks [1], it targets language-independent analysis. The
case studies in this work use the popular JUnit and CppUnit implementations variants
of xUnit.

After a summary of related work in Section 2, we expand upon the detection strategy
for test smells in Section 3. Next, we describe the main features of TestQ by means of
a running example in Section 4. We continue with describing the architecture of the tool
and the lessons we learned as tool builders in Sections 5.1 and 5.2.

2. Related Work

We identified the following work in the domain of test suite analysis, with a focus on
test suite design and maintainability aspects.

Several authors have been describing and cataloging test smells. Van Deursen et al.
introduced the concept of a test smell as a poorly designed test [2]. Meszaros broadens
the scope of the concept, by describing test smells that act on a behavior or a project
level, next to code-level smells [3]. Reichhart et al. propose TestLint, a rule-based tool to
detect static and dynamic test smells in Smalltalk SUnit code [4]. Neukirchen and Bisanz
composed a catalogue of code smells for TTCN-3 test suites, and offer tool support [5]. In
previous work we introduced a formalism for xUnit tests [6]. We proposed and evaluated
a set of metrics to detect two test smells, General Fixture and Eager Test.

Considering reverse engineering and visualizing test suites, Agrawal et al. introduce a
set of techniques to enhance program understanding, debugging and testing [7]. Among
others, the χSuds tool suite assist developers in achieving high test coverage, locating
errors as well as minimizing regression sets. Via source code coloring, the developer
perceives the coverage level, erroneous locations or execution frequency. Gaelli et al.
observe that not all unit tests are alike [8]. Therefore, a taxonomy that distinguishes
unit tests based on the focus on one or more methods, type of expected outcome, etc.
Their automated classification approach for SUnit tests using heuristics achieves a high
overall precision (89%) and a moderate recall (52%). One of the steps the authors identify
as future work involves making explicit the relationship between unit tests and methods
under test. Van Geet and Zaidman hypothesize that unit tests covering multiple units are
less suited as documentation as such tests are harder to understand [9]. In a case study
involving the Ant project, the median number of methods executed by a test command is
more than 200, which make them conclude that the test suite of this particular project is
not well suited for documentation purposes. To gain knowledge about the inner working of
a software system, Cornelissen et al. use sequence diagrams obtained from test execution
[10]. The use of abstraction, separation of test stages and stack depth limitations make
such diagrams scalable.

Some other studies investigated the co-evolution a test suite has to undergo in order
to remain up-to-date with the evolving code. Elbaum demonstrated how small changes
to the system resulted in major coverage drops [11], while Moonen et al. describe how
refactorings can even invalidate tests [12]. As such, the larger the test suite, the more
‘regressions’ can be expected.
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3. Test Smell Detection Strategy

In this section we expand upon the detection strategy for test smells used in TestQ
. First, we reflect upon terminology and some important concepts of xUnit, then we
present the set of test smells that we target and the proposed metrics to detect and
quantify them.

We summarize the terminology and xUnit concepts as described in [6]:
Production code – Code developed by the project team that will end up in the released

product.
External libraries – The set of software libraries a system uses, but that are not developed

by the project. One of the external libraries is the testing framework.
Test code – Code developed by the project team to conduct developer tests. We subdivide

it into test cases and other test types, such as suites, runners and helpers. This code
typically does not end up in a production release.

The test code contains a set of test cases, typically implemented as classes in an
object-oriented implementation of xUnit. Every test case has a fixture, a set of instance
variables of the test case describing the unit under test as well as data objects. Before
every test command, a container for an individual test (typically a method of the test
case), the fixture is initialized in the test case setup method. Test helpers are methods
that support test commands by abstracting e.g. recurring verification behavior. In this
work, we consider the static test smells in Table 1 and a metrics-based detection strategy
in terms of xUnit concepts. These smells were introduced by Van Deursen et al., Meszaros
and Reichart [2,4,3]. We interpreted these informal descriptions and translated them into
a formalism based upon set theory. In appendix A, we detail how we formally define these
metrics. In TestQ , the user can configure metrics thresholds, i.e. indicate from which
value on a particular test entity exhibits a test smell.

In general no agreement exists about this set of test smells, and there may well exist
reasons to design tests what others consider as a smell. As an example, consider the
Eager Test example. Van Deursen et al.use the term Eager Test to refer to a test method
checking several methods of the object to be tested [2]. They say that dependencies
between the enclosed implicit tests make such tests harder to understand and maintain.
The xUnit family of testing frameworks, as exemplified by JUnit, advises its users to
avoid dependencies between tests. Test methods are supposed to be independent artifacts,
sharing at most a (re-initialized) fixture constituting the unit under test. Fewster and
Graham state that the efficiency benefit of such long tests (where setup and tear-down is
only performed once) is far outweighed by the inefficiency of identifying the single point
of failure [13]. On the other hand, Meszaros uses the term ChainedTests to point to this
test design [3], motivating that it may be a valid strategy for overly long, incremental
tests. Test frameworks such as TestNG [14] and JExample 2 even provide facilities to
make dependencies between tests explicit. Kuhn et al. present a case study where the
introduction of dependencies between tests reduce the number of failed tests on average
by 90% for single defects introduced in the system under test [15].

2 http://www.iam.unibe.ch/˜scg/Research/JExample/
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Name Description Metric Why

Assertionless Test commands that do not in-
voke asserts.

Number of invoked framework
asserts.

Absence of verification results
in useless tests.

AssertionRoulette Test commands with lots of as-
serts without description

Number of invoked description-
less asserts.

Negatively influences defect lo-
calization and readability.

DuplicatedCode Sets of test commands that
contain the same invocation
and data access sequence.

Length of similar sequences of
invocations and accesses.

Directly affects maintenance
cost

EagerTest Test commands that exercise
too much at once.

Number of invoked production
methods.

Multiple tests inside one test
command make it harder to
identify test objectives and in-
troduce implicit dependencies.
Hard to track single point of
failure.

EmptyTest Test commands without a
body.

Number of invocations and ac-
cesses.

Indicates forgotten, stubbed or
commented-out code.

ForTestersOnly Production methods or func-
tions which are introduced
specifically to make the unit
under test testable.

Invocation of production enti-
ties only in test code.

Exposure of internals results in
fragile tests.

GeneralFixture A test case fixture that is too
large.

We use metrics introduced in
[6], characterizing the fixture
size.

Hard to understand logic and
objective of test case

IndentedTest Overuse of loops and condition-
als in test code.

Number of decision points. Tests should be simple and lin-
ear.

IndirectTest Test commands that exercise
components via other compo-
nents.

Number of production types. Impacts defect localization.

MysteryGuest Use of external resources in test
commands.

Invocation of a standard set of
I/O entities.

Harms stability and isolation.

SensitiveEquality Verification by dumping an ob-
ject’s characteristics to string.

Number of invocations of
toString methods (typical Java
implementation).

Is easy and fast, yet makes tests
fragile to small changes.

VerboseTest Long test command bodies SLOC Affects readability.

Table 1
Smells with detection strategy

4. Tour of TestQ

In this section, we highlight the two main features of TestQ . The first feature,
called Test Suite Topology, targets test suite wide structural analysis, thereby already
providing an indication of some size characteristics of individual test cases. An integrated
set of views realize this feature. A second set of views enriches test entities with raw
metric values and smell information (i.e. interpreted metrics) to constitute the Test Smell
Detection feature.

The environment facilitates switching between both features (and their views) as well
as the level of detail, by offering menu entries, navigational tree views, zooming and right-
click context menus. The views can be manipulated and queried both through the GUI as
well as through custom scripts executed by an interpreter. This interpreter furthermore
eases the process of creating new views.

We demonstrate both features here by means of a running example. Poco 3 is an

3 http://pocoproject.org/
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Expandable Suite Tree Gython Interpreter

Polymetric Suite View

TestCase view

Fig. 1. TestQ visualizing the test suite’s topology.

industrial strength C++ class library (192 kSLOC) with an extensive CppUnit test suite
of 190 test case classes (55 kSLOC).

4.1. Test Suite Topology

Motivation Allow developers to explore a test suite’s structure, with a focus on
exceptional entities via size annotations.

Description Three complementary views elaborate upon the suite’s structure. The
Expandable Suite Tree is a vertical text-based tree panel that contains the test suites,
their test cases and test methods (test commands, fixture methods setup and tear down,
and helpers). As such it maps the source tree structure to the more abstract, graph based
representations.

The leaves in the Polymetric Suite View [16] tree represent test cases grouped by
suite. Three metrics are used: (i) the number of commands in a test case determines the
height; (ii) the width is relative to the ratio of test case SLOC divided by number of com-
mands; and (iii) the coloring is based on the presence of helper and fixture methods. As
such, exceptional test cases immediately strike out as refactoring candidates: the Extract
Test Case Class refactoring operation applies to the long nodes, while the wide ones may
qualify for e.g. Extract Helper Method. Test cases without fixture are an indicator for low
cohesion, or a lot or redundant code in individual test commands.

The Test Case View is a hierarchical graph representation of a single test case. Its
methods are grouped by test commands, test helpers and fixture. Test smells are shown
as separate nodes, attached to the originating method(s) (or test case) and colored per
type. Hovering over the nodes pops up some extra information such as the associated
metric value(s).
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Case Study From the Expandable Test Suite Tree we learn that Poco’s test
code is decomposed in eight test suites that each correspond to a different production
module. Expanding any of these module nodes reveals the test cases. A quick inspection
reveals that Foundation::testsuite and net:testsuite hold the bulk of the test cases, while
Data::SQLite:testsuite only contains a single test case SQLiteTest. Yet, this test case
appears to contain 70 small test commands, hence the exceptionally long but slim node.
Splitting this test case in multiple test cases with logically related commands would
increase the readability.

In the Polymetric Suite View, a set of massive test cases from the Founda-
tion::testsuite suite strike the attention. These wide test case nodes indicate VerboseTests.
Investigation of DynamicAnyTest, one exceptionally wide and long node shows that this is
indeed a candidate for refactoring, as 64 code smells where found in the 40 test commands
(see Table 2). Especially the smells VerboseTest and AssertionRoulette are everywhere.
Moreover, we found instances of DuplicatedCode and IndentedTest. This test case con-
tains a huge amount of assertions in long commands. Browsing the source (right click
→ toSource) proves this, as the tests check multiple scenarios in a single command and
thus does not convey the intent clearly. If one of these tests start failing, the manual
inspection of the source becomes a challenging task. The metrics numbers for this test
case are (directly accessible in TestQ ):

metric value metric value

SLOC 1792 #smells 64

SLOC/mtds 40.72 #smells/mtd 1.45

min(SLOC) 0 #AssertionLess 5

max(SLOC) 104 #VerboseTest 29

#commands 40 #EmptyTest 1

#helpers 2 #AssertionRoulette 25

#DuplicatedCode 2

#IndentedTest 2

Table 2
DynamicAnyTest metrics

4.2. Test Smell Detection

Motivation Explore hot spots of test smells; quantify individual instances.
Description This set of views reveals code level test smells. Each smell is represented

as a node, connected to the test entity that is impacted. By hovering over a node, more
detailed information on each of the smell instances becomes accessible. This informa-
tion includes (i) the name of the one or more owner entities; (ii) corresponding source
file(s) and line number(s); and (iii) associated metric values. At any point a table of the
smelliness metrics for a specific entity can be printed, resembling table 2.

The Smell Flower View is a collection of graphs which show test cases as separate
‘flowers’. The center node of such a flower represent the test case itself, surrounded by
its test methods and attached smell instances. This way test cases that are smell hot-
spots strike as large colored graphs. The user can also focus on a particular smell by
either colorizing smell nodes or by removing smell-types. While most smells stay in a
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Smell Pie

Smell Flower ViewStink Parade

Clone Cluster

Fig. 2. Test Smell Detection for Poco with focus on Foundation::EventTest

single case, DuplicatedCode typically spans over multiple methods that may belong to
different flowers. This results in so called ‘Clone Clusters’.

By default the complete suite and all smell types are shown. This often result in a
crowded view. The tool’s zoom options and interactivity allows the user to shift between
the overall view and particular test cases. For example, assume that we are only interested
in VerboseTests located in Poco’s Foundation::testsuite. Narrowing the view for this
purpose requires five lines of Gython code (a domain specific extension of Jython 4 ),
injected at run-time. This results in the custom view shown in Figure 3. The second shot
was constructed identically but based on the AssertionRoulette smell. The corresponding
code is presented in Listing 1.

Listing 1. A custom view using Gython scripting

1 remove ( ( e n t i t y == ’ sme l l ’ ) & ( l a b e l != ” VerboseTest ” ) )

2 s u i t e s = ( e n t i t y == ’ package ’ ) & (name != ’ Foundation : : t e s t s u i t e ’ )
3 remove ( s u i t e s + s u i t e s . s u c c e s s o r s + s u i t e s . s u c c e s s o r s . s u c c e s s o r s )

4

5 for vb in ( l a b e l == ’ VerboseTest ’ ) :
6 vb . width = i n t ( metr i cDict [ ’ VerboseTest ’ ] [ vb . name ] [ ’LOC’ ] )

4 http://www.jython.org
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Width ~ SLOC

Height ~ number of asserts

Fig. 3. Customized Smell Flowers

Since the significance of these smells is quite subjective we have introduced the Stink
Parade. For example, one might argue that a high number of asserts does not stink
but is, on the contrary, a sign of strong verification. This Stink Parade is a table
that ranks the top-scoring test entities and their associated metric values for a smell of
choice. As such, developers can focus on the worst offenders for a selection of smells of
their interest. We see this as a pragmatic approach considering the lack of studies to
compare the impact or interaction of test smells.

The Smell Pie shows the ratio and absolute count of the different code smells in
a pie chart. Selecting a smell in the chart will highlight all the occurrences in a view.
Colorizing or removing the nodes of a certain smell-type is a couple of mouse clicks away.

Case Study When investigating Poco for the AssertionRoulette smell with the aid of
the Stink Parade, several high rollers present themselves. At the top of the list stands
PathTest.testparseVMS1(), with 60 assert invocations without descriptive messages. Such
high AssertionRoulette numbers are often the symptom for another smell, EagerTest,
i.e. multiple test scenarios in a single command. Browsing the source code, presented
in Listing 2, confirms this assumption. Smell instance concentrations in Poco become
visible in the Smell Flower View and custom derivatives. The upper left flower in
Figure 3’s both screenshots is DynamicAnyTest, which was identified before. The clone
cluster in Figure 2 shows a handful of methods linked together by DuplicatedCode smells.
When looking at the source we identify candidates for Extract Helper Method indeed.
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The Smell Pie shows a high ratio of VerboseTests and AssertionRoulettes, as well as
ForTestersOnly. The accuracy of the detection strategy for the latter smell depends upon
the completeness of the composed model, i.e. are the clients of the methods under test
part of the system. In the case of Poco, a network library, API methods used by the test
code are false positives.

Listing 2. Part of the source code of PathTest.testparseVMS1 confirming the presence of Assertion-
Roulette DuplicatedCode and VerboseTest smell instances

void PathTest : : testParseVMS1 ( ) {
2 Path p ;

p . parse ( ”” , Path : : PATH VMS) ;

4 a s s e r t (p . i s R e l a t i v e ( ) ) ;
a s s e r t ( ! p . i sAbso lu t e ( ) ) ;

6 a s s e r t (p . depth ( ) == 0 ) ;

a s s e r t (p . i s D i r e c t o r y ( ) ) ;
8 a s s e r t ( ! p . i s F i l e ( ) ) ;

a s s e r t (p . t oS t r i ng ( Path : : PATH VMS) == ”” ) ;

10
p . parse ( ” [ ] ” , Path : : PATH VMS) ;

12 a s s e r t (p . i s R e l a t i v e ( ) ) ;
a s s e r t ( ! p . i sAbso lu t e ( ) ) ;

14 a s s e r t (p . depth ( ) == 0 ) ;

a s s e r t (p . i s D i r e c t o r y ( ) ) ;
16 a s s e r t ( ! p . i s F i l e ( ) ) ;

a s s e r t (p . t oS t r i ng ( Path : : PATH VMS) == ”” ) ;

18 . . .
}

5. Tool Building

In this section, we present the architecture of TestQ and the lessons we learned as
experimental tool builders.

5.1. TestQ Architecture

Summarizing, the tool is build as an extension of the Fact Extraction Tool CHain
(Fetch) 5 , a reverse engineering tool chain. The graph exploration environment Guess 6

is customized as visual front-end for TestQ .
Fetch is a tool chain for software analysis targeting the exploration of large C/C++/Java

software systems for (i) dependency analysis; (ii) pattern detection; (iii) visualization;
(iv) metric calculation and similar types of static analysis [17]. Designed as a pipes and
filters architecture, Fetch chains a set of open source components together, most notably:

– SourceNavigator: a multilanguage integrated development environment with parsers
for multiple languages. We use these parsers in batch processing mode to extract
structural information from the source code 7 .

5 http://lore.cmi.ua.ac.be/fetchWiki/
6 http://graphexploration.cond.org/
7 http://sourcenav.berlios.de/
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– pmccabe: McCabe-style function complexity and line counting for C and C++ 8 .
– JavaNCSS: the equivalent of pmccabe for Java 9 .
– snavtofamix: unifies the output of the above tools, creates cross-referencing links

between structural components and generates a FAMIX model in Case Data Inter-
change Format (CDIF) [18].

– CDIF2RSF: translates the CDIF to a Rigi Standard Format (RSF) style fact base.
– Crocopat: a graph query engine for RSF with a Prolog-like language called RML

[19].
– Guess: a graph exploration and visualization environment.

TestQ relies on Fetch to build an RSF model of the source code. Using Crocopat this
general purpose object-oriented model is then refined with test entities following xUnit
concepts as introduced in [6], making abstraction from language and actual xUnit imple-
mentation. Currently TestQ has model constructors for multiple versions of CppUnit,
JUnit and QTestLib. However, the extension to other frameworks is straightforward,
provided the language constructs used in the xUnit implementation are present in the
composed meta-model. Listing 3 contains a sample RML query, identifying test cases
and test methods written using QTestLib, the testing framework of the popular Qt C++
application framework. Essentially, it identifies classes that belong to a file that includes
the QtTest header file as test cases, and methods of that class as test methods.

Listing 3. RML script identifying test case classes and methods among the classes in the RSF model

1 TestCaseId ( t c i d ) :=
2 EX( f id , q t e s t i d , qtes t ,

3 Class ( tc id , ) &
4 ClassBe longsToFi le ( tc id , f i d , ) &
5 Inc lude ( , f i d , q t e s t i d ) &

6 F i l e ( q t e s t i d , q t e s t ) &
7 @”QtTest” ( q t e s t ) ) ;
8

9 TestMethodId ( x ) :=
10 EX(y ,
11 TestCaseId ( y ) &

12 MethodBelongsToClass (x , y ) ) ;

Next, this test-aware model is queried for the presence of test smell instances. The
outcome is loaded in the Guess environment, or can alternatively be processed sepa-
rately with e.g. a spreadsheet for trend analysis. [20] is an interactive graph visualization
tool for software exploration, amongst others. It features graph layout, navigation and
manipulation operations. Within Guess, multiple graph views of the test suite enriched
with metric information are composed, making use of the interactivity and extensibility
features of Guess. For example, hovering over a node or edge will give access to all kinds
of information and operations for that entity. Selecting test entities in the tree pane
highlights them in the graphs. Context menu actions on test cases and methods allow
for instant source browsing.

Guess contains a scripting environment for customization purposes. Gython is a domain
specific language derived from Jython, a Java implementation of python. Through an

8 http://www.parisc-linux.org/˜bame/pmccabe/
9 http://www.kclee.de/clemens/java/javancss/
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integrated console, Gython scripts can be executed on the fly. This allows the user to
morph graphs, change visualizations and even modify the GUI. Gython scripts can be
passed on to Guess from the command line as well, to customize the tool at start-up.

5.2. Lessons Learned

Reuse. The visualizations offered by TestQ are the result of a chain of tasks that
process the source code via multiple intermediate data representations into the eventual
end-user format. Many of these tasks are well known in software development environ-
ments, and efficient algorithms and implementations have been studied extensively for
tasks such as parsing source code [21], creating object-oriented models [18], visualizing
software systems [16], querying [19] and layouting graphs [22].

Pipes and Filters. Architectures built around pipes and filters have long been praised
for their ease of extension and replacement of components. The use of files as exchange
mechanism between components facilitates debugging the tool chain at various points.
Moreover, it allows us to share these intermediate results with other tools that use a same
file format (One of our intermediate formats representing a model for an object-oriented
system is FAMIX CDIF [18], a file format that was used in earlier versions of Moose [23]).
In the context of Fetch, a success story of this architecture is the switch in code metric
tool from cccc 10 (used in [24]) to pmccabe 11 . This switch was not only implemented in a
reasonable amount of time, it moreover only required a limited amount of local changes.

Open Source. Using open source components in TestQ offered two advantages: (i)
the freedom to adapt the reusable components to our needs and (ii) an easier distribution
scheme that encourages the interested to try (and even modify) the tool. In many cases,
we slightly changed components to better serve our needs and recompiled the source code
into optimized binaries for the platforms we support.

Testability. Due to the application of non-main stream technologies, the use of ex-
isting test frameworks to verify TestQ was limited. More specifically RML/CrocoPat,
which makes up for a large percentage of the code, does not have proper testing facil-
ities, nor is writing a unit testing framework for it straightforward. To remedy this we
resorted to scripted input-output tests run inside a home grown framework. This results
in increased defect localization time and maintenance time. For the Guess extension, we
decided not to write developer tests, as:

– Guess extensions are written in this graph specific jython dialect.
– Numerous interfaces were test-unfriendly.
– Mostly of the code being GUI-related.
– The exploratory nature and short development time of the tool.

The Fetch model extractor snavtofamix, however, is accompanied with copious PyUnit
tests and an input-output suite.

Robustness. When choosing a parser, we had to choose between the criteria accuracy
and robustness, as observed in a extraction tool contest reported by Sim et al. [25].
Reasoning that we would encounter multiple variants of C++ (gcc, Visual C++, .NET
C++, plain C, etc.), we opted for a robust parser. Inevitably, this results in a certain
amount of noise in the extracted data that we had to cope with further on. Moreover,

10http://cccc.sourceforge.net
11http://www.parisc-linux.org/ bame/pmccabe/

11



it became clear that giving in to accuracy would lead to models that are not necessarily
complete, a side effect the user should be well aware of. At the bright side, we expect
the tool to deliver results, whatever C++ source code it is presented. This resulted in
successful deployments of Fetch in industrial settings as reverse engineering and internal
quality monitoring tool [17].

Performance. At one side, the tool chain benefits from selecting existing components
that were perceived as efficient. For example, Beyer et al. compared the performance of
his Crocopat tool with binary relations in Prolog and a relational database approach
citebeyer05. The pipes and filters architecture, however, does not really promote perfor-
mance. A considerable amount of CPU cycles is lost in (i) preparing the right output
for the next component and writing it to disk, and (ii) in the relatively slow interpreters
executing the many shell scripts that we used to glue the tool chain together. Moreover,
as each component fulfills exactly one task without awareness of other components, the
required model nor visualization can be built up incrementally. This results in a cycle
of multiple minutes to process source code into the graph visualizations, even for small
systems. As a consequence, TestQ is too slow to become usable in a forward engineering
context where the tool could be used during coding and testing.

Portability and Distribution. Due to the variety of components developed in many
programming languages, we quickly noticed that porting and distributing Fetch and
TestQ was not going to be easy. Still, the software requirements do not appear as the
hardest challenge, as almost all operating system distributions have pre-installed shell,
Java, Python, etc environments. The major challenge appeared to be the installation of
components that required compilation (Source Navigator, pmccabe). One of the solutions
lies in the redistribution of binaries for the platforms we support, something that the open
source licenses allow us to do.

6. Conclusion

In this paper we introduced a dual-purposed reverse engineering tool for xUnit test
suite analysis. First of all, we present a visual approach to explore the structure of a test
suite. Annotated with size metrics, developers can identify relevant test cases for further
exploration. As a second feature, TestQ contains a test smell detection engine detecting
12 static test smells, presenting the results both in a quantitative manner (in a sorted
table) as well as using visual markers on the test suite’s topology. As an evaluation, we
applied the tool on a C++ case study and discussed some of the findings. We conclude
that the use of TestQ enables us to inspect the design of a test suite at a high level, as
well as quickly identify test smell hot spots. Configurable metric thresholds allow the user
to customize the detection process as well as prioritize smells that are deemed important.
Indeed, more research is needed beyond the few empirical studies to further characterize
test smells, their interaction and impact on maintainability.

Considering the architecture of the tool, we described how TestQ is realized as an
extension of the pipes and filters architecture of Fetch and a customization of the Guess
graph exploration environment. This architecture was perceived by the authors as flexible
to extend and suited for experimentation with the meta-model, the metrics, visualiza-
tions and tool composition. The robustness of Fetch paid of in several past industrial
case studies. The lack of integration in development environments and the poor overall
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performance make it unlikely that TestQ , in its current setting, proves to be useful in
rapid code-test-refactor cycles.
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[18] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. FAMIX 2.1 - the FAMOOS information

exchange model. Technical report, University of Bern, 2001.

[19] Dirk Beyer. Relational programming with CrocoPat. In Proceedings of the 28th ACM/IEEE

International Conference on Software Engineering (ICSE 2006, Shanghai, May 20-28), pages 807–
810. ACM Press, New York (NY), 2006.

13



[20] Eytan Adar. Guess: A language and interface for graph exploration. In Proceedings of CHI, 2006.
[21] Susan Elliott Sim, Richard C. Holt, and Steve Easterbrook. On using a benchmark to evaluate

c++ extractors. In IWPC ’02: Proceedings of the 10th International Workshop on Program

Comprehension, page 114, Washington, DC, USA, 2002. IEEE Computer Society.
[22] A.K. Frick, H. Mehldau, and A. Ludwig. A fast adaptive layout algorithm for undirected graphs.

In Proceedings of Graph Drawing ’94, LNCS 894, pages 388–403. Springer, 1994.
[23] Oscar Nierstrasz, Stphane Ducasse, and Tudor Grba. he story of moose: an agile reengineering

environment. In Proceedings of the European Software Engineering Conference (ESEC/FSE’05),

pages 1–10, 2005.
[24] Tim Littlefair. An Investigation into the Use of Software Code Metrics in the Industrial Software

Development Environment. PhD thesis, Faculty of communications, Health and Science, Edith
Cowan University, June 2001.

[25] Susan Elliott Sim, Richard C. Holt, and Steve Easterbrook. On using a benchmark to evaluate c++

extractors. In Proceedings of the Tenth International Workshop on Program Comprehension, pages
114–123, 2002.

[26] Lionel C. Briand, John W. Daly, and Jurgen K. Wust. A unified framework for coupling measurement

in object-oriented systems. IEEE Transactions on Software Engineering, 25(1):91–121, 1999.
[27] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley, Boston, MA,

USA, 1999.

Appendix A

This appendix lists formal definitions for the metrics used in this work. The notation
is an extension of the framework for coupling measurement in object-oriented systems
by Briand et al. [26], and the subsequent refinement for reasoning about xUnit tests by
Van Rompaey et al. [6].

In the following a couple of symbols are, unless overridden, inherently bound:
– tc is a test case, ie tc ε TC
– tm is a test command, ie tm ε TM
– th is a test helper, ie tm ε TH
– te is a test command or helper, ie te ε TM ∪ TH

Assertionless A test command is assertion-less if it does not invoke framework checker
methods, either direct or indirect. These commands are useless and potentially mislead-
ing, thus should be avoided, tagged or at least enumerated. TTH(tm) is the set of all
test helpers invoked by command tm, directly or nested in other helpers. TIMc(tm) is
the set of all framework checker method invocations in commmand tm, either directly or
indirectly through test helpers.

TTH(tm) =

∞⋃
i=0

THi(tm)

TIMc(tm) = IMc(tm)
⋃ ⋃

t ε TTH(tm)

IMc(t)

ALESS = { tm | TIMc(tm) = φ}

Assertion Roulette High numbers of description-less checker invocations make for hard
to read tests. In case of failure manual intervention and reruns may be required. These
description-less assertions are counted for a test command and all its helpers. TCFM is
partitioned in a set containing checker methods with a description, and one without.
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TFCM = TFCMdescr ∪ TFCMnodescr

TIMcnd(te) = TIMc(te) ∩ TFCMnodescr

n ε N0, AROUL(n) = { te | | TIMcnd(te) | ≥ n}

Duplicated Code Code clones in unit tests have a bad effect on maintainability, since
modifications to the UUT may result in a multitude of changes. Duplication is considered
a strong smell since regression testing is one of the main goal of automation. Duplicate
statements should be refactored to setup, teardown or helper methods.

Detecting clones is accomplished by comparing the contents of (test) methods against
one another. Each method gets partitioned in sequences of adjacent accesses and invo-
cations. These accesses and invocations are identified on the type and declaration level.
Common partitions between methods are reported. The minimum size of these reported
partitions is configurable. We do not provide a formal definition for this smell, as the
used formalism has no concept of ordering.

Eager Test This smell was described thoroughly in [6]; metrics included.

Empty Test Tests without an implementation serve no use. It might indicate that the
test is commented out or on the contrary a stub that was never filled. The total number
of invocations and accesses in a command is used here. When this total equals zero a
test is flagged.

For Testers Only Methods only used by test code do not belong in the production
class. One can move these methods to a subclass in test code. Detecting FTO can result
in a fair share of false positives, eg when the UUT is a library. A modifiable white list
WL of methods should be used.

WL = {pm ε M(PROD) | pm is whitelisted}

FTO = (M(PROD) ∩ IM(TEST )) \ (WL ∪ IM(PROD))

General Fixture This smell was described thoroughly in [6]; metrics included.

Indented Test Loops and conditionals break the linear character of a test, and might
make it too complex. Who’s going to test the test? To fight duplication Indented Test is
flagged for commands and helpers separately.

COND(m) and LOOP(m) denote the sets of conditionals and loops used in the imple-
mentation of method m.

INDENT = {te | COND(te) ∪ LOOP (te) 6= φ}

Indirect Test Testing business logic through the presentation layer is an example of an
Indirect Test. A test case should test its counterpart in the production code. However,
pinpointing the ’tested class’ is not trivial. Instead a heuristic based on the number of
production types used (NPTU) is employed, a metric defined in [6].

n ε N0, INDIR(n) = {tm | NPTU(tm) ≥ n}
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Mystery Guest The use of external resources in unit tests is considered not done.
It lowers a tests’ documentational value. Also, the extra dependency might introduce
subtle circumstantial failures. And last but not least, I/O operations such as file access
or database connections have a negative effect on speed.

To make static detection feasible, the system should be taught about unwanted meth-
ods. Direct or indirect invocations of such blacklisted methods ε MY ST in commands
and helpers will be flagged. IMi(te) stands for the set of all invoked methods at level i
of indirection in helper or command te.

IM0(te) = IM(te)

iε N, IMi+1(te) =
⋃

tεIMi(te)

SIM(t) ∪ PIM(t)

TIM(te) =

∞⋃
i=0

IMi(te)

MY ST = {m ε M(C)| m is blacklisted}

MGUES = {te | TIM(te) ∩ MY ST 6= φ}

Sensitive Equality Verification by dumping an object’s characteristics to string is easy
and fast. However by doing so a dependency on irrelevant details like formatting char-
acters is created. Whenever the toString implementation changes, tests will start failing.
Detecting this in Java code boils down to the usage of ’toString’ in a test framework
checker method, either nested or indirect. For other languages a method blacklist SEBL
is needed. As a heuristic for ’linked to a checker method’, all invocations in a helper or
command are taken into account.

SEBL = {m ε M(C) | m dumps to string and was blacklisted}

SEQUAL = {te| IM(te) ∩ SEBL 6= φ}

Verbose Test Closely related to the Long Method code smell introduced by Fowler
[27], Verbose Tests have a negative influence on readability. We use SLOC to address
this smell.
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