
The Small Project Observatory

Mircea Lungu and Michele Lanza
REVEAL @ Faculty of Informatics - University of Lugano, Switzerland

Abstract

Maintenance is an important activity in software engineering with studies attributing it more
than 75% of the total cost of a system. More than half the time dedicated to maintenance is
spent on reverse engineering the code which often is the only accurate source of information.
In this context, among the many approaches, software visualization tools have long been seen
as an important asset to support the comprehension process, offering facilities to understand a
given software system.

However, systems do not exist in isolation, but they exist in the context of organizations,
research groups or open-source communities. We call these larger contexts, that contain version
repositories for multiple systems in parallel, “super-repositories”. We argue that there is a need
for software visualization tools that support the reverse-engineering of such super-repositories.
We present a tool called the Small Project Observatory (SPO) that supports the visualization
and interactive exploration of super-repositories.

Key words: reverse engineering, visualization, tools, super-repositories

1. Introduction

Change is fundamental to software. According to Lehman (18), this is the result of
the software development process being a multi-input, multi-output process involving
feedback at many levels (18). Parnas showed that the changes which are not done in
concordance with the initial design of the system - either because the programmers are
not familiar with the code base or due to “ignorant surgery” - will result in a system
which is harder to maintain. He called this phenomenon software aging (27). In a more
recent study on a large telecommunications system, Eick et al. showed that as the initial
architecture of the system degrades, code quality decreases too, the modularity of the

Email addresses: mircea.lungu@lu.unisi.ch (Mircea Lungu), michele.lanza@unisi.ch (Michele

Lanza).

1



code becomes less crisp and maintenance becomes increasingly difficult and expensive
(8). Alan Perills epigrammed this: “In the long run every program becomes rococo - then
rubble”(28).

In this context, a very important part of the software engineering process is dedicated to
software maintenance. Studies by Sommerville (29) and Davis (5) attribute maintenance
between 50% and 75% of the total engineering effort spent in developing a system. A
very large part of maintenance is dedicated to reverse engineering the code. Reverse
engineering as defined by Chikofski (1) is the process of examination of the subject
system in order to
– identify the system’s components and their interrelationships and
– create representations of the system in another form at a higher level of abstraction.

The research community has developed over the years a rich set of techniques and tools
that support reverse engineering such as clustering, semantic analysis, slicing, visualiza-
tion, etc. We focus on software visualization, which has a long history in the context of
program understanding with research dating back to the mid-eighties.

Software visualization tools span a wide range of abstraction levels. One of the first
visualization tools was Eick’s Seesoft (7) which summarizes changes in the software at the
level of lines of code. Increasing the level of abstraction, Lanza’s CodeCrawler used met-
rics to provide insights into the quality of the systems (15). Girba studied the evolution of
whole class hierarchies (12). Some environments focused on visualizing even higher-level
abstractions such as Rigi (25) and SHriMP (30) or our previous work on Softwarenaut
(21). Holt visualized architectural differences between two versions of a system (14).

To our knowledge, nobody went to the next level of abstraction to visualize the evolu-
tion of a software system in the larger context of other systems that are being developed
by an organization in an interactive way. In this article we present a tool for the visu-
alization and exploration of project ecosystems, which are groups of projects that are
developed together in the context of an organization.

We wanted also to experiment with providing an online software visualization applica-
tion. There are several other examples of using the Web for software engineering. Holt et
al.(9) have developed the Software Bookshelf, which is a web-based paradigm for the pre-
sentation and navigation of information representing large software systems. Mancoridis
et al.presented REportal which was aimed to be an online reverse engineering portal (23).
Recently D’Ambros et al.proposed an online framework for analysis and visualization in
a software maintenance context. Their tool, Churrasco focuses on flexibility by allow-
ing easy model extension as well as collaboration (4). Although they support loading
multiple models at the same time in churrasco, they do not consider a super-repository
as a first-class entity in their analysis. Nentwich presented BOX, an online tool that
enables software engineers to access and review UML models in the browser (26). Lin
et al.presented an interactive and customizable graph visualization engine implemented
entirely in SVG and ECMAScript (19).

2. Super-Repositories

Software systems do not exist by themselves, but they are rather developed in greater
contexts such as the software in an organization, a research group or an open-source com-
munity. Technically such a context manifests itself in the form of a “super-repository”.

2



We define a super-repository as “physical or logical collection of version repositories for
projects that are developed in the context of an organization, a research group or an
open source community”. A super-repository can be either physical or logical. Based on
the versioning system that is being used and the organization’s policy, the projects of an
organization can be stored together in a single physical repository, such as it is the case
with VisualWork’s Store, Microsoft’s SourceSafe, or IBM’s ClearCase. In the same time,
all the projects in the RubyForge.org repository are not necessarily stored in the same
physical space, but they represent the asset of a single open-source community.

The organization can have multiple forms. In our experience we have seen super-
repositories in research groups, in companies and in the open-source world. Evidently,
the various types of organizations are very different but characterizing the organization
is exactly one of the features of super-repository analysis. We have shown elsewhere how
one can compare various organizations in terms of their collaboration structures based
on the analysis of their super-repositories (20; 22).

Super-repository analysis is inherently time-dependent. We assume that for every
project we have a version repository that stores the evolution of that project. This allows
us to analyze both the way every project in the organization evolved as well as other
types of information, e.g., which developer worked on which projects at which time, to
what extent and in what form did developers collaborate etc. This added information
makes it important for a company to understand what its super-repository contains and
how it evolves.

The main characteristic of a super-repository is that it records the history of multiple
projects in parallel or how we call them, a software project ecosystem. Conforming to
this definition, both the extremes of a developer’s project portfolio and the collection
of projects in sourceforge can be considered super-repositories. However, the analysis
that can be done on each of them and the questions that need to be answered are
different. In our work until now, we have studied super-repositories which belong to a
single organization and for which the histories of the rpojects are stored in a SToRE
versioning system (2).

3. The Small Project Observatory

The vehicle that drives our super-repository research is the online visualization plat-
form: The Small Project Observatory 1 (SPO). It implements a catalog of visualization
perspectives that are relevant in the context of understanding super-repositories. SPO
(see Figure 1) is interactive, presents multiple live perspectives on the system, provides
details on demand and comes with a rich set of filters to address complexity. It obtained
the first place in the Innovation Awards competition at ESUG 2007 2 .

3.1. Who is interested in exploring super-repositories?

In our work we consider super-repositories as first class entities. We believe that there
are benefits from analyzing them and understanding them and understanding them as

1 Available online at http://www.inf.unisi.ch/phd/lungu/spo
2 15th International Smalltalk Conference - http://www.esug.org

3



Fig. 1. The user interface of the Small Project Observatory

a whole. Three main categories of stakeholders that should be interested in information
about the evolution of the code in a super-repository are project managers, developers,
and quality assessment.
Project Managers may ask questions such as “how do teams work?”, “how do projects

evolve?”, or “who has worked on a similar project already?”. Organizational charts only
show the team structure in a static, and often poorly maintained, form. Revealing the
activity and collaboration of developers and the projects they work on, shows how the
actual work is being performed (11) and how the collaborations between developers
evolved over time. Moreover, since in general successful projects need to continuously
change (17; 18), a project manager needs to be up to date with how projects change
and what their current status is.

Developers may have questions such as “who should I ask if I want to learn about this
feature?”, “what dependencies does the system I am working on have and to which
applications?”, or “what do applications on which my application depends on look like,
and what is their current status?”. One important source of information for developers,
especially for newcomers to a project, are other developers. Thus, developers need to
know whom to ask (3). Also, not only the details of a particular project are relevant,
but also the inter-project dependencies are important. For example, in the case of a
framework, it is important to know who the clients are so that they can be updated.

4



Similarly, when an application is built out of components, developers need to know
what components have changed. In the open-source context there are also developers
looking for interesting projects they can contribute to. Since not all of them have equal
chances of success, it is useful to gain insights about the evolution, activity and the
people involved regarding a particular project.

Quality assessment is interested in the continuous supervision of the evolution of the
projects in the super-repository. In this context, alerts can be defined based on various
heuristics. One example of heuristic is: “if a developer who recently joined the company
is adding a dependency between two code modules which is contrary to the status-quo,
the dependency should be tagged as needing review, and it should be added automatically
to the next code review. Another type of analysis which can benefit from the continuous
monitoring of the system is searching for code patterns that appear multiple times
inside a project or across projects. Having detected such code patterns can be a first
step towards reusing them. Metrics are an important tool in quality assesment (16).
However, one problem with metrics is that there are no universal rules for defining
thresholds for all the software systems. By mining the information inside an ecosystem
the organization can tune the tresholds for its own metric-based alerts.

3.2. Interactivity in SPO

The interactive view. The central view displays a specific perspective on a super-
repository. In Figure 1 we see the growth in size over a period of 5 years of the projects in
one of our case studies; each colored layer in the view represents a different application.
The view is interactive in the sense that the user can select and filter the depicted projects,
obtain contextual menus for the graphical elements in the view, navigate between various
perspectives, or change the time interval of interest. The graphical view is not an image
but an interactive SVG element in which every component can be interacted with.

Multiple Perspectives. SPO provides multiple perspectives on a repository such
that a user can choose the ones which are appropriate for the type of analysis he needs.
The available perspectives panel presents the list of perspectives, some of which we will
discuss in the article.

Filters. Given the sheer amount of information residing in a super-repository, filters
need to be applied on the super-repository data. The panel lists the active filters (in this
case only multi-authors projects are depicted in the interactive view), and the user can
choose and combine other filters. A user can also apply filters through the interactive
view, for example by removing a project or focusing on a specific project using the
contextual menu.

3.3. The architecture of SPO

Figure 2 presents the architecture of SPO. The main elements are briefly described:
Import and Automatic Update. The import module is responsible for interfacing
with the super-repository and pulling data from it. Currently the only type of super-
repository that we support is the one for Store. One of the reasons is that we knew
that for Store there were no visualization mechanisms. The second reason is that store
keeps track of information about the inter-project dependencies so we obtained that

5



information for free. Currently, importing the data about a few hundred projects can
be done in a matter of minutes.

The Internal Representation. At a given moment, in the system there can be multi-
ple super-repositories loaded. Each of them is represented in memory by a model which
keeps track of the multiple versions of projects and packages as well as developers and
their activity.

Internal Representation
Projects, Developers, HistoriesInternal Representation
Projects, Developers, Histories

Super-
Repository

SVN

CVS

Store

Super-
Repository

SPO

Seaside
Web 

Development 
Framework

Internal Representation
Projects, Developers, Histories

Analysis
Metrics, 

Aggregation

Visualization
Layout Engine, 

JS/SVG 
Generator

Import and Automatic Update

SVN

CVS

Store
SVG Enabled

Super-
Repository

Web 
Browser

Cache

Fig. 2. The architecture of SPO

Alalysis. The analysis module is responsible with computing statistics, metrics and
any other derived information from the repository.

Cache. Due to the highly interactive and exploratory nature of the tool, SPO generates
dynamically all the web pages and all the visualizations they contain. In order to speed
up the view generation the cache module caches all the information that is needed in
order to speed-up the view generation process. Even so, the first time a certain type
of analysis is done, the user will observe the performance problem.

Visualization. The visualization module takes as input information from the internal
representation, analysis and cache modules and generates views from it. The module
contains the layout engine and the SVG generator. The Javascript interaction code is
generated dynamically for every view. Some of the views, use externally the dot graph
layout engine 3 .

Seaside. Seaside is a web application framework which suppports interaction by em-
phasizing a component based approach to web applicatoin development. Seaside offers
a unique way to have multiple control flows on a page, one for each component (6).

4. Visualizing Super-Repositories

We have applied SPO on multiple project repositories - some public open-source, some
research groups and some industrial ones. In Table 1 we provide a brief numerical overview
of these repositories.

3 http://www.graphviz.org/

6



The oldest and largest of them is the Open Smalltalk Repository hosted by Cincom
Systems. The next two are maintained at the Universities of Bern and Lugano, in Switzer-
land. The last one is a repository maintained by Soops BV, a Dutch software development
company. The data provided in Table 1 needs to be considered with care as the numbers
are the result of a simple project counting. Super-repositories accumulate junk over time,
as certain projects fail, some die, short-time experiments are performed, etc. This is in-
herent to the nature of super-repositories, and only supports the claim that they need to
be understood in more depth.

Super-Repository Projects Classes Contributors Active Since

Cincom 288 19.830 147 2000

Bern 190 10.600 76 2002

Lugano 43 2.088 11 2005

Soops 249 11.413 20 2002

Table 1
The analyzed super-repositories

In the following we present a few of the visual perspectives provided by SPO.

4.1. Inter-project Dependency

This perspective presents the static dependencies between projects in a super-repository.
Such an overview pinpoints the critical projects in a company.

There are multiple ways of computing the dependencies between projects. In the case-
studies that we have been working on up to now, the dependencies are specified directly
in the versioning system (22).

The layout of the projects is hierarchical in such a way that the projects which are
mostly depended upon are at the bottom. Various metrics computed for the individual
projects can be mapped on the color of the nodes representing the project.

Fig. 3. Inter-project dependencies between a subset of projects in Bern

7



Figure 3 shows the dependencies between the projects which were active during the
month of June 2007 in the Bern super-repository. The convention for the color is that
the darker the shading of the project the older it is. The view shows that the oldest
project from the projects which are still active is also the one on which the most projects
depend on. The project in this case is MooseDevelopment, the reengineering flagship of
the Bernese research group.

4.2. Developer Collaboration

This perspective shows how developers collaborate with each other across project bound-
aries withing a super-repository

We say that two developers collaborate on a certain project if they both make modi-
fication to the project for a certain number of times above a given threshold. Based on
this definition, we construct a collaboration graph where the nodes are developers and
the edges between them represent projects on which they collaborated.

To represent the collaboration graph for a super-repository we draw the collaboration
graph using a force-based layout algorithm which positions connected nodes together (10).
Thus, developers which collaborate will be positioned closer together. The color of the
nodes representing developers is obtained by mapping various metrics selected from the
user interface. The color of an arc between two nodes is fixed and represents the project
on which the two developers collaborate. If two developers collaborate on more than one
project, there will be multiple arcs between them, each one with its corresponding color.

Fig. 4. Developer Collaboration in Bern and at Soops

Figure 4 presents the collaboration perspectives in both the Bern and the Soops super-
repositories. The intensity of a node is proportional with the overall activity in the
repository of the corresponding developer.

One can see that the two organizations have very different ways of developing software.
Although the collaboration perspective in Bern shows a coupled community with many
people collaborating on different projects, the density of collaboration in Soops is im-
pressive - to the point where our layouting algorithm was almost overwhelmed. Indeed,
after talking to the people at Soops we found out that the policy in the company is that
after a certain amount of time, people switch projects such that everybody gets to work
on every project.

8



On the other hand, in the case of Bern, where there were no rules imposed on the
collaboration between the developers, collaboration patterns are more visible. For example
the two extremes of collaboration are what we called loners - the people who work alone
on their projects - and mavericks - developers who collaborate with multiple people on
multiple projects. Figure 4 has instances of both types.

4.3. Developer Activity Lines

This perspective presents a visual summary of the periods when developers were active
in the organization.

Each contributor to the super-repository has an associated activity line which summa-
rizes his activity by marking the periods in time when (s)he was committing changes to
the super-repository.

A

B

C

Fig. 5. Developer ActivityLines perspective for the Bern.

Figure 5 presents the history of developer contributions in the Bern super-repository
between 2002 and 2007. The figure reveals that the majority of the contributors are
active for short periods of time (e.g., C), such as the master students who work on their
thesis project. There are also developers who contribute for long periods of time (e.g.,
A and B), mostly PhD students and Post-docs. In terms of continuity we see that some
developers contribute intermittently (B) while others contribute continuously (A and C).

9



4.4. Metric Evolution

This perspective illustrates the evolution of the projects in the super-repository with
respect to various metrics.

The visualization principle is that of a stacked graph. The horizontal axis shows time,
while the vertical presents a metric that can be chosen from the user interface. The time
interval of interest is divided in months, but can be divided also in days or weeks.

Each project has a specific color and is represented as a surface. All the project surfaces
are stacked to provide an overview of the total super-repository size evolution. The order
in which they are stacked is chronological starting with the oldest projects at the bottom.

Size is Constant

Size is Changing

P
ro

je
ct

 O
rd

er
in

g

New

Old

Fig. 6. Size Evolution perspective of the Lugano Super-repository (2005 - 2007)

Figure 6 illustrates the Size Evolution perspective on a subset of the projects from
the Lugano super-repository between 2005 and 2007. Since we are working with projects
written in object-oriented languages, we consider number of classes to be a good estimator
for the evolution of the size of the projects (13).

The view emphasizes both the evolution in size and the specific time intervals when
each project’s size changes: the brightness of the project color is higher in the periods
when the size remains constant. With this convention we can read from Figure 6 that
the oldest project in the repository, has been discontinued after an initial and steady
increase as opposed to the next-oldest project which kept growing with a few periods of
stagnation.

10



5. Tool Building Experience

5.1. Validation

The first thing we did in order to validate the usefulness of our tool was to use it
ourselves. We used it on several open-source super-repositories and we found that it
helped discover the developer relationships that existed in those repositories as well
as provide insight into the evolution of the projects in the super-repository. Section 4
presents a few examples of information that can be recovered. However, currently there
are no guidelines that would suggest a methodological approach to the super-repository
exploration. Part of the future work is the write a methodology which would present the
ways in which the tool can be used to analyze a super-repository.

However, we also wanted to validate the tool also in an industrial context. While
looking for an industrial case-study for our tool we approached Soops b.v, a Dutch
software company specialized in Smalltalk, if we could analyze their super-repository
using SPO. Due to privacy reasons they denied, but offered instead to install the tool on
their own, experiment with it themselves, and report back. We present their experience
in detail in (22).

5.2. Usability

The experiment with Soops was the first time that we handed over one of our tools
away to be tested without our presence. Although we did not have control over the
experiment we were satisfied to see that the developers were interested in using the tool
and reporting on its usage. However, as soon as they tried to apply it, they discovered
that the way they were defining their projects was using a convention that we did not
foresee and we had to adapt the tool. The lesson learned is that one needs to be ready
to adapt the tools to the peculiarities of the case studies.

A second source of information about usability aspects were informal studies in which
we asked colleagues to use the tool and recorded their interactions with the tool. From
the analysis of the movies we learned that interaction modes which to us seemed intuitive,
proved not to be so for other users. For example, when clicking on the name of a developer
in any of the views, the users expected to see a new view with details about the author,
but the action that was carried out was to keep the same view and add a filter to remove
all the projects that did not belong to that author.

5.3. Flexibility

Each time we presented the tool to a colleague, sooner or later, we got the question: but
could you represent that differently? or could you visualize that other type of information
too?. This is an instance of a more general type of problem: our users are smart. In
Section 3.1 where we present the potential users of our tool it is evident that most of
them are technically savvy. For such users, there will be times when they will want to
explore a view which is not already implemented, or modify slightly a certain view. In
order to accomodate such a scenario, we need to provide more flexibility in view building

11



and customization. Currently, the only way in which one can implement a new view is
by writing a new view class. One possible approach is to let the views be declaratively
defined, such as in our work on the Mondrian visualization engine (24).

5.4. Developing for the web

One of the reasons for implementing SPO as an online tool was because we wanted
to experiment with the possibilities that web applications offer when it comes to visual-
ization and interaction. In our opinion, the benefits availability and ease of update that
derive from having an online tool for reverse engineering compensate for the limitations
that doing graphics in the browser impose. We present here a few of the issues related
to providing interactive visualization with SVG and Javascript.

Scalable Vector Graphics (SVG) is an XML specification and file format for describing
two-dimensional vector graphics, both static and animated. SVG offers anti-aliased ren-
dering, pattern and gradient fills, sophisticated filter-effects, clipping to arbitrary paths,
text and animations.

SVG is a W3C specification and most of the recent versions of the major browsers
support it by default (Firefox 1.5+, Opera 8+, Safari 3) and for the others plugins are
available (the most notable is Internet Explorer which supports a specific version called
VML). However, although all browsers support it, not all the browsers have the same
speed in rendering it and this makes the user experience hard to predict. To illustrate
this, we wrote a simple javascript script which calculates the rendering speed of various
browsers. We run the script in OS X on a Powerbook G4 running at 1.5GHz with 1G of
RAM. The differences betwen the browsers are very large and presented in Table 2:

Browser Elements per second

Safari 311 77

Firefox 2.0.0.4 220

Opera 9.50 595

Table 2

Different browsers render svg at very different speeds

This simple benchmark shows two of the greatest limitations of SVG: the amount
of visual elements that one can count on rendering is limited (at least currently) and
the user experience is hard to predict as the timings will be different for different users
using different system configurations. Moreover, we did encounter problems with the
same pop-up menu being rendered different in two different browsers. These limitations
are probably part of reasons for which, at the time of writing this article, the trend for
interactive visualization applications is biased towards using Adobe’s Flash platform.

The interaction part (mouse-over effects, selection, pop-up menus) were implemented
usnig Javascript. In terms of expresivity and flexibility, Javascript is a very powerful
programming language. The problem that we have encountered when writing Javascript
code was the lack of a good integrated development environment and debugging tools.
The Firebug plugin for the Mozilla Firefox browser is the best debugging tool we found.

We conclude that using SVG and Javascript both the graphics and interaction are
satisfactory and part of our future work will be integrating some of the other software
visualization perspectives that we have been working on up to now into SPO.

12



6. Conclusions and Future Work

In this paper we have presented the Small Project Observatory, an online visualization
tool aimed at the visualization and analysis of super-repositories. We presented some of
the visualization perspectives that SPO offers at super-repository level and showed that
super-repositories contain information about the organization as well as about the code
that is produced by the organization.

We believe that super-repository visualization and analysis is a promissing research
direction and we plan to continue working on it. Some of the directions in which we
would like to focus our efforts are improving the flexibility of the tool as well as providing
finer-grained information and supporting other types of super-repositories besides Store.

Analyzing fine-grained information. The visual perspectives that we presented
show information only about the elements that are relevant at the abstraction level
of an entire super-repository: projects, developers, inter-project relationships. However,
there are cases in which the application should support navigating to a lower-level of
abstraction such as an inter-module dependency perspective inside a project or the in-
dividual method calls that are responsible for an inter-project dependency. Our current
super-repository model currently does not support such fine-grained information. We are
currently working to extend it and allow the navigation down to the code level.

Supporting other types of super-repositories. We mentioned in the related work
section the work of D’Ambros et al.on the online framework for analysis and visualization
they call Churrasco. Churrasco supports the online visualization of information recovered
from SVN and CVS repositories as well as Bugzilla information. They only analyze single
projects but we are considering collaborating with them and integrating features form
Churrasco and SPO.

Last but not the least, we want to continue our work by researching new perspectives
and implementing new ways of visualizing super-repositories.

References

[1] E. J. Chikofsky, J. H. C. II, Reverse engineering and design recovery: A taxonomy,
IEEE Softw. 7 (1) (1990) 13–17.

[2] Cincom, Team Development with VisualWorks. Cincom Technical Whitepaper
(2000).

[3] D. Cubranic, G. Murphy, J. Singer, K. Booth, Hipikat: a project memory for software
development, Software Engineering, IEEE Transactions on 31 (6) (2005) 446–465.

[4] M. D’Ambros, M. Lanza, A flexible framework to support collaborative software
evolution analysis, in: Proceedings of CSMR 2008 (12th European Conference on
Software Maintenance and Reengineering), IEEE Computer Society, 2008.

[5] A. M. Davis, 201 principles of software development, McGraw-Hill, Inc., New York,
NY, USA, 1995.

[6] S. Ducasse, A. Lienhard, L. Renggli, Seaside: A flexible environment for building
dynamic web applications, IEEE Software 24 (5) (2007) 56–63.

[7] S. Eick, J. Steffen, E. S. Jr., Seesoft - a tool for visualizing line oriented software
statistics, IEEE Transactions on Software Engineering 18 (11) (1992) 957–968.

[8] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, A. Mockus, Does code decay?

13



assessing the evidence from change management data, IEEE Trans. Softw. Eng.
27 (1) (2001) 1–12.

[9] P. J. Finnigan, R. C. Holt, I. Kalas, S. Kerr, K. Kontogiannis, H. A. Müller, J. My-
lopoulos, S. G. Perelgut, M. Stanley, K. Wong, The software bookshelf, IBM Syst.
J. 36 (4) (1997) 564–593.

[10] T. M. J. Fruchterman, E. M. Reingold, Graph drawing by force-directed placement,
Softw. Pract. Exper.

[11] T. Girba, A. Kuhn, M. Seeberger, S. Ducasse, How developers drive software evolu-
tion, in: IWPSE ’05: Proceedings of the Eighth International Workshop on Principles
of Software Evolution, IEEE Computer Society, Washington, DC, USA, 2005.

[12] T. Gı̂rba, M. Lanza, S. Ducasse, Characterizing the evolution of class hierarchies,
in: Proceedings of 9th European Conference on Software Maintenance and Reengi-
neering (CSMR’05), IEEE Computer Society, Los Alamitos CA, 2005.

[13] T. Grba, S. Ducasse, M. Lanza, Yesterday’s weather: Guiding early reverse engi-
neering efforts by summarizing the evolution of changes (2004).
URL citeseer.ist.psu.edu/article/girba04yesterdays.html

[14] R. Holt, J. Y. Pak, Gase: visualizing software evolution-in-the-large, in: WCRE ’96:
Proceedings of the 3rd Working Conference on Reverse Engineering (WCRE ’96),
IEEE Computer Society, Washington, DC, USA, 1996.

[15] M. Lanza, S. Ducasse, Polymetric views - a lightweight visual approach to reverse
engineering, Software Engineering, IEEE Transactions on 29 (9) (Sept. 2003) 782–
795.

[16] M. Lanza, R. Marinescu, Object-Oriented Metrics in Practice, Springer-Verlag, 2006.
[17] M. Lehman, Programs, life cycles, and laws of software evolution, Proceedings of

the IEEE 68 (9) (Sept. 1980) 1060–1076.
[18] M. Lehman, D. Perry, J. Ramil, W. Turski, P. Wernick, Metrics and Laws of Software

Evolution - The Nineties View, in: METRICS ’97: Proceedings of the 4th Interna-
tional Symposium on Software Metrics, IEEE Computer Society, Washington, DC,
USA, 1997.

[19] Y. T. Lin, F. Zou, H. Kienle, H. Müller, A customizable svg graph visualization
engine, SVGOpen 2007.

[20] M. Lungu, T. Gı̂rba, A small observatory for super-repositories, in: Proceedings of
International Workshop on Principles of Software Evolution (IWPSE 2007), 2007.

[21] M. Lungu, A. Kuhn, T. Gı̂rba, M. Lanza, Interactive exploration of semantic clus-
ters, in: 3rd International Workshop on Visualizing Software for Understanding and
Analysis (VISSOFT 2005), 2005.

[22] M. Lungu, M. Lanza, T. Girba, R. Heeck, Reverse engineering super-repositories, in:
WCRE ’07: Proceedings of the 14th Working Conference on Reverse Engineering,
IEEE Computer Society, Washington, DC, USA, 2007.

[23] S. Mancoridis, T. Souder, Y.-F. Chen, E. Gansner, J. Korn, Reportal: a web-based
portal site for reverse engineering, Reverse Engineering, 2001. Proceedings. Eighth
Working Conference on (2001) 221–230.

[24] M. Meyer, T. Gı̂rba, M. Lungu, Mondrian: an agile information visualization frame-
work, in: SoftVis ’06: Proceedings of the 2006 ACM symposium on Software visual-
ization, ACM, New York, NY, USA, 2006.

[25] H. Muller, K. Klashinsky, Rigi: a system for programming-in-the-large, Software
Engineering, 1988., Proceedings of the 10th International Conference on (1988) 80–

14



86.
[26] C. Nentwich, W. Emmerich, A. Finkelstein, A. Zisman, Box: Browsing objects in

xml, Software Practice and Experience 30 (15) (2000) 1661–1676.
[27] D. L. Parnas, Software aging, in: ICSE ’94: Proceedings of the 16th international

conference on Software engineering, IEEE Computer Society Press, Los Alamitos,
CA, USA, 1994.

[28] A. J. Perlis, Special feature: Epigrams on programming, SIGPLAN Not. 17 (9)
(1982) 7–13.

[29] I. Sommerville, Software engineering (5th ed.), Addison Wesley Longman Publishing
Co., Inc., Redwood City, CA, USA, 1995.

[30] M.-A. D. Storey, H. A. Müller, Manipulating and documenting software structures
using SHriMP Views, in: Proceedings of ICSM ’95 (International Conference on
Software Maintenance), IEEE Computer Society Press, 1995.

15


