
Compose*: a Language- and Platform-Independent
Aspect Compiler for Composition Filters

A. de Roo, M. Hendriks, W. Havinga, P. Dürr, L. Bergmans
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

Abstract

This paper presents Compose*, a compilation and execution framework for the Composition
Filters model. The Composition Filters model is designed to improve the composability of
object-based programs. It is claimed that this approach is largely language-independent, and
has previously been applied to languages such as Smalltalk, Java and C++. However, building a
new Composition Filters compiler for each target language results in the duplication of compila-
tion technology. Therefore, one of the aims of Compose* is to provide a language and platform
independent compiler framework for the Composition Filters model. This paper provides the
design rationale behind a tool architecture that supports this language and platform indepen-
dence. It explains the use of language independent abstractions of the base program structure
and how to include existing tools, such as compilers, to interface with the target language. The
language and platform independence of Compose* has been verified by applying the compiler
framework to multiple languages of the .NET platform, the Java language and platform and the
C language.

Key words: Compiler implementation, Composition Filters, Aspect Oriented Programming, Software
Composition

1. Introduction

A key design goal of the Composition Filters model is to improve the composability
of programs written in object-based programming languages. The Composition Filters
model has evolved from the first (published) version of the Sina language in the late
1980s [2,1], to a version that supports language independent composition of crosscutting
concerns [22,5].

In this paper we discuss the Compose* tool, which implements the Composition Filters
model for several languages and platforms. We will discuss the goals and design criteria
for Compose*. We will very briefly discuss the key concepts of the Composition Filters
model that are important for understanding this paper.

1



Fig. 1. Overview of the Composition Fil-

ters model

The Composition Filters model can be ap-
plied to object-based systems. In such a system,
objects can send messages between each other,
e.g. in the form of method calls or events. In the
Composition Filters model, these messages can
be filtered using a set of filters, as shown in fig-
ure 1. Each filter has a filter type, which defines
the behavior that should be executed if the fil-
ter accepts the message and the behavior that
should be executed if the filter rejects the mes-
sage. The matching behavior of a filter is spec-
ified by a sequence of filter expressions, which
offer a simple declarative language for state and
message matching. Filters defining related func-
tionality are grouped in so-called filter modules.
Such filter modules can also encapsulate some internal state or share state with other
objects.

To indicate which filter modules should be applied (superimposed) to which objects,
we use superimposition selectors. A superimposition selector selects a set of classes using
a Prolog-based selector language. A specified filter module is applied to this selected set
of classes. The result is that all messages sent to and received by all instances of those
selected classes, are subjected to the filters within the filter module.

The Composition Filters model can be applied to many different languages, and his-
torically we have done so, e.g. in SmallTalk [23], Java [24] and C++ [12]. Recently, we
started to develop a new tool, called Compose* , which not only supports .NET, but also
Java and C. In this paper we discuss and report on the requirements and impact of these
requirements on the development of this language and platform agnostic tooling.

Note that, although the Composition Filters model applies naturally to dynamically
typed languages as exemplified by earlier implementations [21,23,3], this paper focuses
on addressing issues that occur when creating tools for statically typed environments,
such as .NET and Java.

This paper is organized as follows. Section 2 introduces the goals and design criteria
of Compose*. Section 3 gives a high level overview of the architecture of Compose*. The
design rationale of two criteria, language independence and platform independence, is
explained in section 4. Section 5 discusses related work. Section 6 concludes the paper.

2. Goals and Criteria

The Compose* tool has been developed with two goals in mind:
(i) To provide a framework to experiment with new language concepts & features
(ii) To provide the ability for researchers and practitioners to apply the Composition

Filters language
Besides these two goals for the tool, we list the four most important criteria for the

design of Compose*:
(i) Language independence: We claim that the Composition Filters model can be ap-

plied to any programming language that supports the notion of message passing

2



between objects. Implementing a new compiler for each target language results,
however, in the duplication of a substantial part of the Composition Filters spe-
cific implementation. Therefore, Compose* should implement this technology in
a language independent way (as discussed before, we limit ourselves to statically
typed languages). This results in a framework that can be used to create a language
specific compiler for any target language.

(ii) Platform independence: Language independence is related to platform indepen-
dence. Using Compose* for several platforms, like the .NET platform or the Java
platform, implies that we cannot depend on the language tools, such as compilers,
of one particular platform. Instead, Compose* should be able to operate with many
different target language compilers and other language tools.

(iii) Evolvability : One goal of Compose* is to experiment with new concepts and features
in the Composition Filters model. These new concepts and features are varying in
nature, from new static analysis techniques to changes in the execution model of
Composition Filters. The design of Compose* should facilitate experimentation by
making it easy to extend the tool with new concepts and features.

(iv) Performance: Extending a certain programming language with the Composition
Filters model will have an impact on the compile-time and runtime performance of
the programming language. This performance overhead should be minimized. There
are, however, trade-offs with the other criteria and, accordingly, trade-offs between
the two goals for Compose*. For the first goal, evolvability is more important than
performance. For the second goal, performance becomes of greater importance.

This paper focuses on the first two criteria.

3. Top-Level Process

The Compose* compiler is divided into two parts, a platform independent part (re-
ferred to as Core) and a platform specific part. Each part contains a set of modules that
perform specific tasks of the compilation process. The top-level architectural design of
the Compose* compiler is much like the design of modern compilers, where a shared
repository is used by the various compiler parts [19]. A platform specific configuration
determines what modules are used and in which order they are executed. Not all plat-
forms use the same set of modules; this depends on the implementation for the specific
platform.

Figure 2 provides a global overview of the compilation process and how it is divided in
the Core and platform specific parts. The compiler input consists of the source files of the
base program and concern files, which contain the composition filter specifications. The
type harvester analyses the base program and produces a representation of the program in
an abstract language model. It will also create stubs of the input, which are used in a later
stage (section 4.1.3 explains stubs in detail). The input for the type harvester depends on
the used platform. This could either be plain source files or assemblies, as long as a similar
language model is produced. The code generation of the compiler has both a platform
specific part and a general part. The general part of the code generation operates on the
language and platform neutral composition filters. The platform specific part translates
this to platform specific information. The language model and concern files are used to
create a weave specification. The stubs are updated to reflect the updated interfaces of

3



Fig. 2. Compose* compiler process

the types in the base program. The original source files are compiled against the modified
stubs. The result of this process is used together with the weave specification to produce
the final executable program. Included within the Core are a couple of modules that
perform analysis and validation of the composition filter specifications. Some modules
are not required to produce the executable program, so these could be disabled. The
last part of the compilation process (concerning the Code Generation, Base Language
Compiler, and Weaver) differs for the various platform implementations.

3.1. Example Program

To illustrate how Compose* works we use a simple program to which we apply the
observer pattern. This example is used in section 4 to explain certain concepts. The
program consists of a class Shape with the methods setX and setY. Using Compose* this
class will be changed to become an observable class that sends a notification to its
observers when the setX and setY are called. Listing 1 shows a concern definition that
makes this change to the Shape class. Concern definitions do not contain any base language
specific content.

A concern definition consist of two parts: filter module definitions and a superimposi-
tion block. A filter module contains the definitions when composition filters are applied
to a message. The filter module in our example (lines 3 to 11) contains an internal decla-
ration (line 6) and two filter definitions (lines 8 to 10). An internal creates a composition
relation between the object on which this filter module is superimposed and an instance
of the type declared in the internal. The internal can be used in the filter definitions as a
destination for the message. The filter definition on lines 8 to 9 creates a dispatch filter
that forwards a message to a new destination. In this case, messages matching *.attach

and *.detach are forwarded to the internal subject. A message consists of a target and
selector: target.selector. The target is the object that receives the message and the se-
lector is the called method. The second filter in this filter module (line 10) defines an
after filter. An after filter sends a new message after a given message has returned. In
this case, the message subject.notify will be dispatched when a call to the methods setX

or setY has returned. The superimposition block (lines 13 to 19) determines which filter
modules will be superimposed to selected classes. The selector definition (line 16) selects

4



1 concern ObserverPattern

2 {

3 filtermodule Observable

4 {

5 internals

6 subject : Subject;

7 inputfilters

8 atdet : Dispatch = { [*. attach] subject.attach ,

9 [*. detach] subject.detach };

10 notif : After = { {[*. setX], [*. setY]} subject.notify }

11 }

12

13 superimposition

14 {

15 selectors

16 shapes = { C | isClassWithName(C, ’Shape ’) };

17 filtermodules

18 shapes <- Observable;

19 }

20 }

Listing 1. Example concern specification

Fig. 3. Transformation of the example program

a collection of program elements; in this example it selects all classes with the name
Shape. The filter module Observable is superimposed on all program elements selected by
the selector shapes on line 18. The filter definitions of a filter module form an advice. The
pointcuts are determined by the selectors and message matching in the filter definitions.

The concern definition in this example creates a composition between the class Shape

and the class Subject. The Subject class implements the logic for an observable type, it
manages the list of observers and sends notifications to them. Each Shape is associated
with a Subject instance. The result of this composition is shown in figure 3.

The Shape class is extended to contain the methods attach and detach. The execution of
these methods is delegated to the Subject class. This change makes the following statement
possible: myShape.attach(new MyObserver());. Thus the interface of the class shape has been
extended in a way similar to AspectJ’s inter-type declarations. When the call to the
methods setX and setY returns, a message is issued to Subject.notify, which will notify all
observers about a change in the Shape.

The Core will perform the transformation on the language independent model of the
base program which was created by the type harvester. The platform and language depen-
dent parts of Compose* will effectuate the transformations into an executable program.
The next section explains how these transformations are made possible. The above con-

5



cern specification can be used for any program written in any (supported) language that
has a similar model for the Shape, Subject and Observer classes.

4. Design Rationale per Criterion

4.1. Language Independence

A major design goal for Compose* is to build tooling that is language-independent to
the extent possible, viz., that shares functionality between different languages as much
as possible.

In addition, to avoid the duplication of existing functionality, we prefer to reuse exist-
ing tools (such as parsers or compilers) for particular target languages. However, close
integration (at the source code level) with existing tools typically leads to tight coupling,
thus making it harder to write tooling that would be reusable in different languages. In
addition, source code access to existing tooling is not always available.

Therefore, our approach is to use existing compilers for the target language, and then
modify its outputs (e.g., class definitions in bytecode or similar intermediate language)
according to the composition filter definitions.

Such an approach leaves several issues to be addressed:
(i) Language-dependent notion of message passing: at the behavioral level, the Compo-

sition Filters model assumes the notion of message passing between certain entities.
Thus, we need to decide what comprises the “basic entities” and “message passing
mechanism” for particular languages.

(ii) Selecting where to superimpose aspect behavior (“pointcuts”): the structure of the
program can be used as a criterion to specify where (i.e., to which entities) partic-
ular composition filters should be applied. Thus, a structural model of programs
expressed in the target language is required, so that it can be “queried” by a point-
cut language.

(iii) Object interface extension: a major issue when designing aspect language compilers
is the potential influence of aspect specifications on the type system of the target
language. If aspect languages offer additional (static) composition mechanisms,
aspect languages have to augment the existing type system. Especially in the case
of statically typed languages, this may not be straightforward. As an example,
consider intertype declarations in AspectJ, which influence the object interface of
classes to which new methods are introduced. The Java type system has to be
augmented to accommodate this; to be precise, calling a regular Java compiler
on the Java part of the program will lead to type checking errors if base classes
attempt to make calls to methods introduced by aspects. AspectJ augments the
Java compiler, solving this problem by adding introduced methods to the program
AST before the Java part of the compiler type checks the program. Compose* also
supports mechanisms that effectively extend the interface of existing objects. As we
want to reuse existing target language compilers without modification, this poses a
problem when trying to compile the non-aspect part of (statically typed) programs.

We discuss our approach to solve these issues below.

6



4.1.1. Language-Dependent Notion of Message Passing
In the Composition Filters approach, if a filter module is applied to an entity, messages

sent from or to that entity are passed through a set of filters as specified by the filter
module.

Thus, in the Compose* tool implementation, language-specific notions of “messages”
between “entities” have to be defined. In the case of object-oriented languages, such as
Java or C#, method calls between objects map naturally to this model. In a procedural
setting, such as the C language, we model function calls as messages, while groups of
functions (for example, .c-files are often used to group related functionality in C pro-
grams) are considered the basic object entities. Thus, in the C version of Compose*,
filter modules can be imposed on calls to (or from) functions in a particular group (e.g.,
.c-file).

In the Observer example presented in listing 1 and figure 3, two messages sent to
objects of type Shape are setX and setY. The After filter on line 10 accepts these messages
and thus adds behavior after the execution of the base methods. The After behavior is
implemented by the method notify in Subject.

4.1.2. Selecting where to Superimpose Aspect Behavior
In the Composition Filters model, superimposition selectors (“pointcuts”) are used

to specify where aspect behavior should be applied. Thus, a model of the structure of
the program (e.g., an Abstract Syntax Tree) is required, containing sufficient detail to
support the elements that can be “queried” by the pointcut language. We have defined
a common structural language model for class-based object-oriented languages, so that
the same kind of queries can apply to programs written in languages that fit this model.

In Compose*, we use a general purpose logic-based language (prolog) to express point-
cuts [13]. The program structure is presented to the prolog inference engine as a series
of facts about each “program element” (class, method, etc.), as well as the relations
between them. This uniform interface is defined as a view on the common structural
language model mentioned above. Pointcuts are then essentially logic queries over this
fact base. An example of such a logic query is shown on line 16 of listing 1. In this case,
all classes with name Shape are selected (which effectively is one class). On line 18, the
Observable filter module is superimposed on this set of classes.

To obtain such structural program models, we adopted two methods that do not rely
on integration with an existing compiler for the target language. The first is to create a
(partial) parser and AST-builder for the language, at least to the extent that is needed
by the pointcut language. The second option is to compile the program using an existing
compiler for the target language, then “harvesting” all necessary type information from
the compiled (bytecode/intermediate language) version using either reflection or an In-
termediate Language analyzer. If feasible, this method is preferred, because it does not
require a parser for each language that maps to a particular intermediate language (IL).
In the case of .NET, several languages map to the same IL “platform”, so we can reuse
the same type harvester for all of them.

4.1.3. Dealing with Object Interface Extension
The possibility to extend object interfaces is an important feature of the Composition

Filters model, as it allows the implementation of alternative composition strategies not

7



supported by many OO languages, such as explicit delegation or multiple inheritance.
In the Composition Filters approach, a filter may “accept” a message selector (method

name) that was not previously defined within the class(es) on which the filter is imposed.
This means it is possible to send messages (method calls) that were not previously sup-
ported by the receiving class, thus effectively extending its interface. An example of this
is shown in listing 1. The Dispatch filter on lines 8 and 9 dispatches the (previously unsup-
ported) messages attach and detach to the existing methods attach and detach in Subject.
So, the interface of Shape should be extended with the methods attach and detach.

Such additional composition mechanisms are not recognized by the target language
compiler, and thus lead to compile errors when “introduced” methods are called. One
could consider simply adding those method definitions to the base source code before
compiling the base code; however, to do so, the aspects that decide which methods are
introduced would have to be evaluated first. To evaluate the aspects, Compose* needs
type information about the program. If the type harvester (as described in the previous
subsection) depends on a compiled version of the program, this obviously does not work,
as the base program cannot yet be compiled. Besides, the ways in which the base source
code would have to be modified is likely to be highly language specific.

To deal with this, we take the following approach. First, the aspect compiler gener-
ates “stub” classes (classes with only empty method definitions) for every class in the
program. Listing 2 shows the ”stub” class for Shape from the Observer example. Fortu-
nately, the information needed to generate these “stubs” can be obtained in a relatively
language-independent way: IDE’s such as Visual Studio (for .NET) or Eclipse (for Java)
support interfaces through which such information can be extracted in a uniform way.
Unfortunately, this creates a dependency on these IDE’s; in addition, not all .NET lan-
guages actually support these interfaces completely or correctly. Therefore, we have in
some cases implemented our own partial parsers to generate these “stub” classes, while
at the same time generating the structural language model as described in the previous
subsection.

Regardless of the exact approach used, the important point is that they do not require
the source code to compile correctly – it is sufficient that it can be parsed.

1 public class Shape{

2 public void setX(int value){}

3 public void setY(int value){}

4 }

Listing 2. The ”stub” version of class Shape

Once such “stub” classes are generated using one of the methods described above, they
can be used to gather the type information that is necessary to evaluate the aspects. Dur-
ing the code generation phase, Compose* calculates the set of methods supported by each
class - potentially adding new methods that can be called because a filter specification
will handle them. The “stub” definitions are then updated to take these new methods into
account, as shown in listing 3 for class Shape. Subsequently, the existing target language
compiler can be used to compile each original (base) class against the “stub” versions
of other classes that it depends on. By compiling against these “stub” versions, calls
to methods that are not (yet) actually implemented now compile as well. Finally, the
weaver modifies the (compiled) classes to take the aspect-defined behavior into account.

8



The weaving process is described in more detail in the following section.

1 public class Shape{

2 public void setX(int value){}

3 public void setY(int value){}

4 public void attach(Observer o){}

5 public void detach(Observer o){}

6 }

Listing 3. The modified ”stub” version of class Shape

4.2. Platform Independence

There is a close relation between language independence and platform independence.
Platform, as used within Compose*, relates to the execution environment of the base
program, and the availability of tools or methods to apply composition filters to the base
program.

The .NET programming languages all compile to the common intermediate language
(CIL) of the .NET Framework. Operating on the CIL allows Compose* to modify any
program written in a .NET language in a uniform way. The base program could also be
modified at runtime using a modified virtual machine. But this would require to develop
and maintain a custom implementation of the virtual machine, which is not within the
scope of the Compose* project.

The requirement for language independence could easily be satisfied by only support-
ing .NET languages. But then one could argue that Compose* only supports a single
(machine) language (i.e. CIL). Supporting a single platform could also lead to architec-
tural designs that are closely bound to the tools and methods of that platform. Platform
independence strengthens the language independence.

For each platform the following problems need to be resolved:
(i) Execution of the composition filters within the program: The composition filters

add new logic to the base program, which changes its behavior. The composition
filter specification cannot be directly executed by the target platform. So, this
specification needs to be translated into an executable format (e.g. code generation).

(ii) Changing the base program to integrate the composition filter advices: The second
part of the problem is to merge the executable format of the composition filters
with the base program at the correct locations. This process is called weaving .

4.2.1. Composition Filter Translation
There are multiple ways to translate the composition filters to executable code, ranging

from completely dynamic to completely static.
Dynamic execution allows the composition filters to be modified at runtime. To sup-

port dynamic execution, a runtime interpreter is needed to evaluate the composition
filter specification. This runtime interpreter needs to be called from the locations where
the composition filters are applied to. Depending on the amount of desired dynamic ex-
ecution, changes to the virtual machine are required. As mentioned previously, changing
a virtual machine is not within the scope of Compose*.

9



With static execution, the composition filter code is translated to the target language
and merged with the base program. In this case, the composition filters becomes an in-
tegral part of the base program. Static execution of the composition filters offers less
flexibility and evolvability than dynamic execution, but it does offer better runtime per-
formance.

Compose* has two implementations of composition filter translation, a completely
static implementation (inliner) and a partially dynamic implementation in the form of a
runtime interpreter. In the implemented runtime interpreter only the message handling
is interpreted. The superimposition is static.

4.2.2. Weaving Process
For the runtime interpreter approach, a platform specific weaver weaves interceptor

calls to the interpreter at each “join point shadow”. There is no platform independent
part for this approach.

The inliner approach is divided into two stages, to optimize platform independence. In
the first stage, the composition filters are translated to specific advice code for each join
point shadow. The advice code is represented in a platform and language independent
procedural control flow model . This model closely resembles the language paradigms of
the target platforms, which makes it straightforward to translate it to platform specific
code. Platform specific weavers translate the code model to the target language and
weave the code in the base program.

Listing 4 shows in pseudo code 1 how the filters from the Observer example are trans-
lated to code and woven in the Shape class.

1 public class Shape{

2 ...

3 private Subject subject = new Subject ();

4

5

6 public void setX(int value) {

7 // Start filter code

8 if (!<inner call flag set >){

9 // recursive call to execute base code:

10 <set inner call flag >

11 this.setX(value);

12

13 // After advice:

14 subject.notify ();

15 return;

16 }

17 <reset inner call flag >

18 // End filter code

19

20 <base code >

21 }

22

23

24 public void setY(int value) {

1 For readability, this pseudo code is written in a java-like language. Real weaving will generally be done
on an intermediate language, like java bytecode.

10



25 // Start filter code

26 if (!<inner call flag set >){

27 // recursive call to execute base code:

28 <set inner call flag >

29 this.setY(value);

30

31 // After advice:

32 subject.notify ();

33 return;

34 }

35 <reset inner call flag >

36 // End filter code

37

38 <base code >

39 }

40

41 public void attach(Observer o) {

42 subject.attach(o);

43 }

44

45 public void detach(Observer o) {

46 subject.detach(o);

47 }

48 }

Listing 4. Code generation and weaving in the Shape class

The internal subject is woven as an instance variable subject (Line 3).
The After filter that matches setX and setY is translated to a block of filter code. The

After advice needs to be executed after the execution of the base code. Because the
base code might have multiple exit points, weaving the After advice is not trivial. We
implemented this in the following way: The block of filter code is inserted in the method
in front of the base code. To select between the execution of the filter code and the base
code, an inner call flag is used (the implementation details are not shown). This inner
call flag is normally not set, which leads to the execution of the filter code (see the check
on line 8). The After advice should be executed after the execution of the base code.
Therefore, first a recursive call is made with the inner call flag set, to execute the base
code (lines 10-11). When the recursive call to the base code has returned, the After advice
will be executed by calling subject.notify (line 14). The execution of the filter code ends
with a return (line 15).

We choose this type of weaving and not weaving on each exit point, for example, to
prevent code duplication and to have a consistent weaving strategy for all filter types
(the behavior of all filter types can be located into a single filter code block). More details
about this solution can be found in [8].

The Dispatch filter that matches attach and detach is translated to a delegation method
call to subject.attach respectively subject.detach.

5. Related Work

The GNU Compiler Collection (GCC) [11] is a compiler framework that supports mul-
tiple programming languages and target platforms. GCC is set up such that it is easy

11



to add support for new programming languages, which can be compiled to any of the
supported platforms. It is also possible to add new platforms, to which all supported pro-
gramming languages can be compiled. To accomplish this GCC makes use of a generic
intermediate language (GIMPLE) to which all supported languages are translated. Com-
pose* resembles GCC in the sense that both have a platform and language independent
core that performs most of the processing, in addition to language-specific front ends (for
parsing/type harvesting) and platform specific back-ends (for weaving/code generation).
However, in Compose* the language and platform support are not independent from each
other as is the case within GCC.

Reflex [20] is an AOP kernel providing a framework that facilitates the implementation
of multiple AOP languages on top of Java. In contrast, Compose* is an implementation
of a specific approach to AOP (i.e., the Composition Filters model), and applies this
model to several target languages and platforms.

The Aspectbench compiler, or “abc” [4] is an alternative compiler for the AspectJ
language. Like Compose*, it is set up as a compiler framework that allows for exten-
sions, thus aiming to facilitate the implementation of experimental language features.
The project focuses on extending the AspectJ language, as well as providing optimized
implementations of the language. As compared to Compose*, abc does not try to address
multiple target languages or platforms.

Weave.NET [16,15] describes a weaver for .NET that supports multiple target lan-
guages. Aspects are specified using XML notation, the specifications are based on a
subset of the joinpoint types and matching patterns used in AspectJ. As compared to
this, the Composition Filters model uses a more expressive language, and in addition
Compose* implements several static analysis and checking modules to check aspects for
potential interference (with each other or the base program). Also, Compose* targets
several platforms and supports several weaving strategies, such as code inlining, or based
on runtime interpretation of filter specifications.

XWeaver [6,18] is an aspect weaver for C/C++ and Java where weaving is performed
at the source code level. XWeaver uses srcML [7] to convert the input source into an XML
representation. On this XML representation transformations are performed according to
the instructions as defined in XWeaver’s aspect language: AspectX. The code modifica-
tions defined in the AspectX sources are base language specific; they often contain code
fragments written in the base language. Because of this, XWeaver/AspectX cannot truly
be considered a language independent aspect weaver and aspect language.

6. Discussion and Conclusion

Compose* is a language and platform independent compiler framework for the aspect
oriented Composition Filters model. The Core of the framework contains all language
independent Composition Filter compilation technology, like superimposition resolving
and static analysis techniques. We have shown how the Core is made language inde-
pendent (of the target language) by using a generic language model that contains the
representation of the base program structure.

One of the design goals of the system is to try to put as much functionality as possible
in the –generic– Core, to avoid reimplementation of the same functionality for multiple
languages or platforms. Most of the innovations of the Compose* language are imple-

12



mented in the Core. For example, the filter module (advice) ordering specifications 2

[17], the algorithm for detecting ambiguous inter-type declarations [14] and (run-time)
aspect interference detection [9,10]. The architecture of the compiler has enabled the
incremental implementation of such innovative features in a highly modular way.

To apply the framework to a specific target language, a type harvester and a weaver
need to be built. The type harvester is used to extract the language model informa-
tion from the base program. The weaver then modifies the base program to apply the
composition filters. To create these components, existing tools are used as much as pos-
sible, instead of implementing dedicated solutions. Adopting existing tools may cause
difficulties, for example type checking problems. We have shown how to cope with these
difficulties.

We have developed Compose* implementations for the .NET platform, the Java plat-
form and the C language. Table 1 shows for each implementation the total size of the
implementation, the size of the language and platform specific part of the implementation
and the relative size of the reused Core in the implementation. The table shows that the
reused Core occupies a relatively large part in each implementation, e.g. relatively little
effort is needed to build an implementation of Compose* for a specific platform. This
confirms the language and platform independence of Compose*.

Platform Total SLOC Platform SLOC 3 % Core

Core 4 39908 - -

Runtime Interpreter Core 5 6838 - -

.NET (interpreter) 56604 12190 78%

.NET (inliner) 58543 18635 68%

Java (interpreter) 49208 4794 90%

C (inliner) 43930 4022 91%

Table 1: Physical source lines of code of Compose* platforms

References

[1] M. Akşit, L. Bergmans, and S. Vural. An object-oriented language-database integration model: The
composition-filters approach. In O. L. Madsen, editor, Proc. 7th European Conf. Object-Oriented

Programming, pages 372–395. Springer-Verlag Lecture Notes in Computer Science, 1992.

2 Although part of these is performed at run-time, hence affecting the interpreter/inliner
3 This includes only the code to create the compiler for the specific platform. Code for other functionality,

such as IDE integration, has been excluded.
4 This contains all Core compiler code, including the platform independent inliner code. The latter is

not included with the interpreted platforms.
5 The runtime interpreter is written in Java and is source compatible with VisualJ#.

13



[2] M. Akşit and A. Tripathi. Data abstraction mechanisms in sina/st. In Proceedings of the conference

Object-Oriented Systems, Languages and Applications, volume 23 of ACM Sigplan Notices, pages

267–275, 1988.
[3] M. Aksit. On the Design of the Object-Oriented Language Sina. PhD thesis, University of Twente,

Mar 1989.

[4] P. Avgustinov, A. Christensen, L. Hendren, and S. Kuzins. abc: an extensible aspectj compiler.
In Proceedings of the 4th conference on Aspect Oriented Software Development, AOSD 2005, Jan

2005.
[5] L. Bergmans and M. Akşit. Principles and design rationale of composition filters. In R. E. Filman,

T. Elrad, S. Clarke, and M. Akşit, editors, Aspect-Oriented Software Development, pages 63–95.

Addison-Wesley, Boston, 2005.
[6] I. Birrer, P. Chevalley, A. Pasetti, and O. Rohlik. An Aspect Weaver For Qualifiable Applications.

Proceedings of the 14-thDigital Avionics Systems in Aerospace (DASIA), 2004.

[7] M. Collard. Addressing source code using srcml. IEEE International Workshop on Program
Comprehension Working Session: Textual Views of Source Code to Support Comprehension

(IWPC05), 2005.

[8] A. J. de Roo. Towards more robust advice: Message flow analysis for composition filters and its
application. Master’s thesis, University of Twente, The Netherlands, Mar. 2007.

[9] P. Dürr. Resource-based Verification for Robust Composition of Aspects. PhD thesis, University of
Twente, June 2008.

[10] P. E. A. Durr, L. M. J. Bergmans, and M. A. sit. Static and dynamic detection of behavioral conflicts

between aspects. In O. Sokolsky and S. Tasiran, editors, Proceedings of the Seventh International
Workshop on Runtime Verification, Vancouver, Canada, volume 4839 of Lecture Notes in Computer

Science, pages 38–50, Berlin, December 2007. Springer Verlag.

[11] GCC team. GCC, the GNU Compiler Collection. http://gcc.gnu.org/.
[12] M. Glandrup. Extending C++ using the concepts of composition filters. Master’s thesis, University

of Twente, 1995.
[13] W. K. Havinga. Designating join points in composestar - a predicate-based superimposition selector

language for compose*. Master’s thesis, University of Twente, The Netherlands, May 2005.
[14] W. K. Havinga, I. Nagy, L. M. J. Bergmans, and M. A. sit. Detecting and resolving ambiguities

caused by inter-dependent introductions. In AOSD ’06: Proceedings of the 5th international
conference on Aspect-oriented software development, Bonn, Germany, pages 214–225, New York,

2006. ACM Press.
[15] D. Lafferty. Aspect-based Properties. PhD thesis, University of Dublin, Trinity College, Oct 2004.

[16] D. Lafferty and V. Cahill. Language-independent aspect-oriented programming. In Proceedings of

the OOPSLA 2003 conference, Jan 2003.
[17] I. Nagy, L. Bergmans, and M. Aksit. Composing aspects at shared join points. In A. P.

Robert Hirschfeld, Ryszard Kowalczyk and M. Weske, editors, Proceedings of International
Conference NetObjectDays, NODe2005, volume P-69 of Lecture Notes in Informatics, Erfurt,
Germany, Sep 2005. Gesellschaft für Informatik (GI).

[18] P&P Software. XWeaver. http://www.xweaver.org.

[19] M. Shaw and D. Garlan. Software architecture: perspectives on an emerging discipline. Prentice-
Hall, Inc. Upper Saddle River, NJ, USA, 1996.

[20] E. Tanter and J. Noyé. A versatile kernel for multi-language aop. In Proceedings of the 4th ACM

SIGPLAN/SIGSOFT Conference on Generative Programming and Component Engineering, GPCE
2005, Jan 2005.

[21] A. Tripathi, E. Berge, and M. Akşit. An implementation of the object-oriented concurrent
programming language sina. In Software Practice and Experience 19, volume 3, pages 235–256,
1989.

[22] University of Twente. Compose*. http://composestar.sourceforge.net.
[23] W. van Dijk and J. Mordhorst. CFIST, Composition Filters in Smalltalk. Graduation Report, HIO

Enschede, The Netherlands, May 1995.

[24] J. C. Wichman. The development of a preprocessor to facilitate composition filters in the Java
language. Master’s thesis, University of Twente, 1999.

14


