
The Nix Build Farm: A Declarative Approach to
Continuous Integration

Eelco Dolstra, Eelco Visser
Delft University of Technology

Abstract

There are many tools to support continuous integration (the process of automatically and con-
tinuously building a project from a version management repository). However, they do not have
good support for variability in the build environment: dependencies such as compilers, libraries
or testing tools must typically be installed manually on all machines on which automated builds
are performed. The Nix package manager solves this problem: it has a purely functional language
for describing package build actions and their dependencies, allowing the build environment for
projects to be produced automatically and deterministically. We have used Nix to build a con-
tinuous integration tool, the Nix build farm, that is in use to continuously build and release a
large set of projects.

1. Introduction

Continuous integration (Fowler and Foemmel 2006), also known as “daily builds”,
is a simple technique to improve the quality of the software development process. An
automated system continuously or periodically checks out the source code of a project,
builds it, runs tests, and produces reports for the developers. Thus, various errors that
might accidentally be committed into the code base are automatically caught. Such a
system allows more in-depth testing than what developers could feasibly do manually:
– Portability testing : The software may need to be built and tested on many different

platforms. It is infeasible for each developer to do this before every commit.
– Likewise, many projects have very large test sets (e.g., regression tests in a compiler,

or stress tests in a DBMS) that can take hours or days to run to completion.
– Many kinds of static and dynamic analyses can be performed as part of the tests, such

as code coverage runs and static analyses.

Email addresses: e.dolstra@tudelft.nl (Eelco Dolstra), visser@acm.org (Eelco Visser).

1



– It may also be necessary to build many different variants of the software. For instance,
it may be necessary to verify that the component builds with various versions of a
compiler.

– Developers typically use incremental building to test their changes (since a full build
may take too long), but this is unreliable with many build management tools (such as
Make), i.e., the result of the incremental build might differ from a full build.

– It ensures that the software can be built from the sources under revision control. Users
of version management systems such as CVS and Subversion often forget to place
source files under revision control.

– The machines on which the continuous integration system runs ideally provides a clean,
well-defined build environment. If this environment is administered through proper
SCM techniques, then builds produced by the system can be reproduced. In contrast,
developer work environments are typically not under any kind of SCM control.

– In large projects, developers often work on a particular component of the project,
and do not build and test the composition of those components (again since this
is likely to take too long). To prevent the phenomenon of “big bang integration”,
where components are only tested together near the end of the development process,
it is important to test components together as soon as possible (hence continuous
integration).
In its simplest form, a continuous integration tool sits in a loop building and releas-

ing software components from a version management system. For each component, it
performs the following tasks:

(i) It obtains the latest version of the component’s source code from the version man-
agement system.

(ii) It runs the component’s build process (which presumably includes the execution of
the component’s test set).

(iii) It presents the results of the build (such as error logs) to the developers, e.g., by
producing a web page.

Examples of continuous integration tools include CruiseControl (ThoughtWorks 2005),
Tinderbox (Mozilla Foundation 2005), Sisyphus (van der Storm 2005), Anthill (Urban-
code 2005) and BuildBot. However, these tools have various limitations. First, they do
not manage the build environment. The build environment consists of the dependencies
necessary to perform a build action, e.g., compilers, libraries, etc. Setting up the environ-
ment is typically done manually, and without proper SCM control (so it may be hard to
reproduce a build at a later time). Manual management of the environment scales poorly
in the number of configurations that must be supported. For instance, suppose that we
want to build a component that requires a certain compiler X. We then have to go to
each machine and install X. If we later need a newer version of X, the process must be
repeated all over again. An ever worse problem occurs if there are conflicting, mutually
exclusive versions of the dependencies. Thus, simply installing the latest version is not an
option. Of course, we can install these components in different directories and manually
pass the appropriate paths to the build processes of the various components. But this is
a rather tiresome and error-prone process.

The second problem with existing continuous integration tools is that they do not
easily support variability in software systems. A system may have a great deal of build-
time variability: optional functionality, whether to build a debug or production version,
different versions of dependencies, and so on. (For instance, the Linux kernel now has

2



over 2,600 build-time configuration switches.) It is therefore important that a continu-
ous integration tool can easily select and test different instances from the configuration
space of the system to reveal problem, such as erroneous interactions between features.
In a continuous integration setting, it is also useful to test different combinations of ver-
sions of subsystems, e.g., the head revision of a component against stable releases of its
dependencies, and vice versa, as this can reveal various integration problems.

This paper briefly describes the Nix build farm, a continuous integration tool that solves
these problems. (“Build farm” refers to the large set of different machines necessary for
portability testing (Hemel 2003).) It is built on top of the Nix package manager (Dolstra
et al. 2004b,a; Dolstra 2006; Nix project 2008), which has a purely functional language
for describing package build actions and their dependencies. This allows the build envi-
ronment for projects to be produced automatically and deterministically, and variability
in components to be expressed naturally using functions.

2. The Nix build farm

The Nix package manager (http://nixos.org/) has precisely the properties needed
to address the problems of managing the build environment and supporting variability.
As a source-based deployment system, Nix has a lazy purely functional language (the
Nix expression language) to describe how to build packages and how to compose them.
This allows the build environment to be expressed in a self-contained and reproducible
way, and it enables variability to be expressed by turning packages into functions of
the desired variabilities. Laziness is important because it prevents function arguments,
typically representing large package build actions, from being evaluated when they are
not needed. The functional language also abstracts over multi-platform builds — Nix
automatically dispatches the building of subexpressions to machines of the appropriate
type.

Nix also stores packages in such a way that variants of packages do not interfere with
each other (e.g., overwrite each other) and that prevents undeclared dependencies. The
build result of each package instance is stored in the file system under a cryptographic
hash of all inputs involved in building the package, such as its sources, build scripts, and
dependencies such as compilers. For instance, a build of a particular package instance
(e.g. Firefox) might be stored under
/nix/store/1wxsnm40dvlfcb4cqff0kjb1dqllrr3v-firefox-2.0.0.14/

where 1wxsnm40dvlf... is a 160-bit cryptographic hash. The directory /nix/store is called
the Nix store. If any input differs between two package build actions, then the resulting
packages will be stored in different locations in the file system and will not overwrite each
other. Thus, conflicting dependencies such as different versions of a compiler no longer
cause a problem; they are stored in isolation from each other. At the same time, if any
two packages between different build farm jobs have the same inputs, they will be built
only once. This prevents unnecessary rebuilds.

An added advantage of the hash approach is that it prevents undeclared build-time
dependencies in build actions. If a build action does not explicitly declare an input, then
it won’t be able to find the input (e.g., the package won’t appear in the C compiler’s
header search path). This is in contrast to build tools such as Make (Feldman 1979) or
Ant (Apache Software Foundation 2005), which have no way to verify the completeness of

3



{nixpkgs, patchelfCheckout}:

...

rec {

patchelfTarball = makeSourceTarball {
src = patchelfCheckout;
inherit stdenv;
buildInputs = [autoconf automake];

};

patchelfNixBuild = doCoverageAnalysis: pkgs: nixBuild {
src = patchelfTarball;
inherit (pkgs) stdenv;
lcovFilter = ["/nix/store/*" "tests/*"];
inherit doCoverageAnalysis;

};

patchelfRPMBuild = diskImage: rpmBuild {
inherit diskImage;
src = patchelfTarball;

};

patchelfDebianBuild = diskImage: debianBuild { ... };

patchelfRelease = makeReleasePage {
fullName = "PatchELF";
contactEmail = "e.dolstra@tudelft.nl";
sourceTarball = patchelfTarball;
nixBuilds = [

(patchelfNixBuild false pkgsi686Linux)
(patchelfNixBuild false pkgsx86_64Linux)

];
coverageAnalysis = patchelfNixBuild true pkgsi686Linux;
rpmBuilds = [

(patchelfRPMBuild vmTools.diskImages.redhat9i386)
(patchelfRPMBuild vmTools.diskImages.fedora2i386)
(patchelfRPMBuild vmTools.diskImages.fedora3i386)
(patchelfRPMBuild vmTools.diskImages.fedora5i386)
(patchelfRPMBuild vmTools.diskImages.fedora7i386)
(patchelfRPMBuild vmTools.diskImages.fedora8i386)
(patchelfRPMBuild vmTools.diskImages.suse90i386)
(patchelfRPMBuild vmTools.diskImages.opensuse103i386)

];
nodistBuilds = [

(patchelfDebianBuild vmTools.diskImages.ubuntu710i386)
(patchelfDebianBuild vmTools.diskImages.debian40r3i386)

];
};

}

Fig. 1. patchelf.nix: Nix expression for the PatchELF job

dependency specifications. (This is why Make users often have to do a make clean before
a build to ensure that everything that should be rebuilt really is.) The hash approach also
allows runtime dependencies to be found generically by scanning for hashes in binaries, a
technique reminiscent of how conservative garbage collectors find pointers (Dolstra et al.
2004b).

Figure 1 shows the Nix expression for the build farm job for a simple Unix package,
PatchELF, a tool to modify ELF executables. Testing and releasing this package involves
a number of actions:
– The sources from the version management repository must be turned into a proper

source distribution by generating a variety of files, such as a configure script. This is

4



done using tools such as Autoconf and Automake.
– This source distribution must then be compiled on a variety of platforms, in this case

Linux distributions such as various versions of Fedora, openSUSE, Ubuntu and Debian.
– A code coverage analysis is also performed by building an instrumented binary, running

the test suite and generating a coverage report.
– Finally, a web page is generated that contains build logs and the coverage report as

well as end-user downloadable packages.
All these actions have specific dependencies that must be present, in the right ver-

sions, on the machines on which they are performed. For instance, building the source
distribution requires specific versions of Autoconf and Automake, while the coverage
analysis requires a tool called lcov. Different build farm jobs can have conflicting version
dependencies, but this is no problem due to Nix’s hashing scheme; different versions are
installed in different locations of the file system automatically.

The expression in Figure 1 is a function that takes two arguments — nixpkgs and
patchelfCheckout — and yields an attribute set (a set of name/value pairs) containing
the build actions of the job. Functions are defined by the syntax args: body. Attribute
sets are defined as {name1 = value1; ... namen = valuen;}. The keyword rec before an
attribute set makes the set recursive, i.e., values can refer to other attributes.

The build farm calls the job with a value for the function argument patchelfCheckout
containing a copy in the Nix store of the sources of the package obtained from its version
management repository. The argument nixpkgs contains the source of the Nix Packages
collection, a set of Nix expressions for hundreds of common Unix packages (such as
autoconf or gcc).

The attribute patchelfTarball is defined as the result of a call to the function make-
SourceTarball, which applies Autoconf and Automake to build a source distribution (in
.tar.bz2 format) in the Nix store. The attribute patchelfNixBuild is a function that builds
the source distribution patchelfTarball on a platform defined implicitly by the function
argument pkgs, which contains the dependencies of the build, such as the C compiler to
be used. For instance, if called with the argument pkgsx86 64Linux, the build is performed
on a 64-bit x86 Linux machine. The argument doCoverageAnalysis determines whether a
normal build is done, or a build that uses lcov to generate a code coverage report.

The function nixBuild performs a “typical” Nix build, with the dependencies stored
in the Nix store. For instance, the C compiler gcc would reside in a path such as
/nix/store/13b5y3n2jfzx...-gcc-4.2.3/bin/gcc rather than /usr/bin/gcc. For portability test-
ing, this is a problem: while it tests compatibility with platform characteristics such as
endianness, it doesn’t build in the “native” way for that platform, i.e., using tools in
the conventional locations for that platform. Thus, there are also functions such as rpm-
Build and debianBuild that perform a build action in a virtual machine instantiated and
started on the fly (for Linux distributions based on the Red Hat Package Manager (Foster-
Johnson 2003) and on the Debian Packager, respectively). In the virtual machine, the
package is compiled and installed in the “native” way, e.g. in /usr/bin/patchelf, and a
binary package for that particular platform is generated.

Finally, the attribute patchelfRelease uses the function makeReleasePage to generate a
web page containing the results of the build jobs. A release page produced by patchel-
fRelease is shown in Figure 2.

The importance of a functional language for describing build jobs is that it makes
it easy to build a package in various variants. For instance, we may want to test the

5



Fig. 2. Release page for PatchELF

package with several versions of the GNU C compiler. The package stdenv, which provides
a standard Unix build environment and which patchelfNixBuild uses, contains a default
version of GCC, but this can be overriden. For instance, we can add a function argument
gcc to patchelfNixBuild, allowing specific versions of GCC to be passed in:
patchelfNixBuild = doCoverageAnalysis: pkgs: gcc: nixBuild {
src = patchelfTarball;
stdenv = overrideGCC pkgs.stdenv gcc;
...

};
We can then call this function with the desired versions of GCC:
nodistBuilds = [
(patchelfNixBuild false pkgsi686Linux pkgsi686Linux.gcc295)
(patchelfNixBuild false pkgsi686Linux pkgsi686Linux.gcc34)
(patchelfNixBuild false pkgsi686Linux pkgsi686Linux.gcc42)
(patchelfNixBuild false pkgsi686Linux pkgsi686Linux.gcc43)

];
Of course, if we also want to do these builds on x86 64, we can turn this expression

into a function over pkgs, and call it once for each platform. Another example of the
usefulness of the purely functional approach is the construction of virtual machine disk

6



images. For instance, the disk image in the value vmTools.diskImages.fedora8i386 is built
by a function that creates a disk image from a subset of RPM packages that constitute
an RPM-based Linux distribution. This image doesn’t contain all RPMs; for instance, it
doesn’t contain the readline package. If we need this for our build, we can easily synthesise
a new VM disk image that does contain it:
fedora8i386Extra = vm.diskImageFuns.fedora8i386 {
packages = fedoraPackages ++ ["readline"];

};
...
rpmBuilds = [
(patchelfRPMBuild fedora8i386Extra)
...

];
Thus, virtual machine images are not created manually, as is typical, but are instead
automatically instantiated from a declarative specification.

The declarative specification of the PatchELF build farm job in Figure 1 abstracts over
physical machines and platform types. That is, it doesn’t mention on what particular ma-
chines specific build actions must be performed. Rather, Nix takes care of automatically
distributing build actions to machines of the appropriate type (such as x86 64-linux),
performing actions in parallel on multiple machines if possible. All function inputs (de-
pendencies) are automatically copied to the machine on which the function is executed.
For instance, the various calls to rpmBuild will be distributed over multiple machines, and
the dependencies (such as the virtual machine software, the disk image, and the source
distribution) will be copied automatically. No system administrator action is necessary
to install dependencies on the appropriate machines.

3. Experience

The Nix build farm has been in use for a number of years by a variety of projects.
It is used to build NixOS, a Linux distribution with a purely functional configuration
model built on top of the Nix package manager, and the Nix Packages collection (Nixp-
kgs), which alone consists of over 600 package builds (see http://nixos.org/releases).
Another major use is to build and release the Stratego/XT program transformation
toolset (Visser 2004) and its ecosystem of related projects (see http://strategoxt.
org/releases). Nixpkgs contains Nix expressions for many common dependencies such
as compilers and runtime environments for many languages, making it easier to add jobs
to the build farm.

Nix itself is written in C++, using the ATerm term manipulation library (van den
Brand et al. 2000) to concisely implement the language evaluation machinery using term
rewriting (Dolstra 2008). One might ask whether the Nix expression language could not
be implemented as an embedded DSL in a language such as Haskell. While this would
have definite advantages, such as the availability of the libraries of such a host language,
it has the significant downside of creating a dependency on a large piece of software such
as GHC. A deployment tool should itself be easy to deploy, which is not the case if it has
large external dependencies. Second, embedded DSLs make it harder to provide syntax
convenient to the domain at hand.

7



4. Future work

The main focus of future research is automatic testing in large configuration spaces.
When testing a component with a large amount of variabilities, the build farm should
automatically select interesting configurations in order to maximize the amount of useful
knowledge that it produces for the developers. For instance, if a certain configuration
succeeds and another does not, the build farm should explore the configuration space,
building different configurations, to discover which parameter causes the failure. Simi-
larly, if a certain configuration fails while it did not previously, the build farm should try
to isolate the specific commit that introduced the fault.

Another interesting direction is to discover possibly troublesome configurations using
source code analysis. For instance, nested #ifdefs in C programs conditional on options in
the configuration space may indicate a potential feature interaction that must be tested
specifically.

5. Conclusion

A build farm is an indispensable tool in any software development project, but existing
implementations have serious limitations: they are hard to maintain because the build
environment is not managed, have poor reproducibility, and have no explicit support for
building variants of systems. The Nix-based build farm, by virtue of its purely functional
component description language, solves these issues.

With respect to tool development, the Nix build farm supports the development of
other tools in several ways. First, continuous integration improves the quality of tools
built in the build farm, just as with any other package. Second, the continuous release
of source and binary packages by the build farm improves dissemination of the tool, and
thus the underlying research results. This should help to prevent the common problem
of interesting tools fading into obscurity because they are not available in an easily
installable form. Finally, the build farm serves as a test bed for analysis tools (such as
dynamic tools like coverage analysers or static tools like FindBugs (Hovemeyer and Pugh
2004)), which can be plugged into the build farm and applied to the large “corpus” of
software built by it.

Acknowledgements. The authors would like to thank the anonymous reviewers
for their comments. This research was supported by the NIRICT LaQuSo Build Farm
project.

References

Apache Software Foundation, 2005. Apache Ant. http://ant.apache.org/, accessed 15
August 2005.

Dolstra, E., Jan. 2006. The purely functional software deployment model. Ph.D. the-
sis, Faculty of Science, Utrecht University, The Netherlands, http://www.cs.uu.nl/
∼eelco/pubs/phd-thesis.pdf.

Dolstra, E., Apr. 2008. Maximal laziness — an efficient interpretation technique for
purely functional DSLs. In: Eighth Workshop on Language Descriptions, Tools and

8



Applications (LDTA 2008). Electronic Notes in Theoretical Computer Science. Elsevier
Science Publishers, to appear.

Dolstra, E., de Jonge, M., Visser, E., Nov. 2004a. Nix: A safe and policy-free system for
software deployment. In: Damon, L. (Ed.), 18th Large Installation System Adminis-
tration Conference (LISA ’04). USENIX, Atlanta, Georgia, USA, pp. 79–92.

Dolstra, E., Visser, E., de Jonge, M., May 2004b. Imposing a memory management
discipline on software deployment. In: Proceedings of the 26th International Conference
on Software Engineering (ICSE 2004). IEEE Computer Society, pp. 583–592.

Feldman, S. I., 1979. Make—a program for maintaining computer programs. Software—
Practice and Experience 9 (4), 255–65.

Foster-Johnson, E., 2003. Red Hat RPM Guide. John Wiley & Sons, also at http:
//fedora.redhat.com/docs/drafts/rpm-guide-en/.

Fowler, M., Foemmel, M., 2006. Continuous integration. http://www.martinfowler.
com/articles/continuousIntegration.html.

Hemel, A., Aug. 2003. Using buildfarms to improve code. In: UKUUG Linux 2003 Con-
ference.

Hovemeyer, D., Pugh, W., 2004. Finding bugs is easy. SIGPLAN Notices 39 (12), 92–106.
Mozilla Foundation, 2005. Tinderbox. http://www.mozilla.org/tinderbox.html.
Nix project, 2008. Nix homepage. http://nixos.org/.
ThoughtWorks, 2005. Cruise Control. http://cruisecontrol.sourceforge.net/.
Urbancode, 2005. Anthill. http://www.urbancode.com/projects/anthill/default.
jsp, accessed 21 August 2005.

van den Brand, M. G. J., de Jong, H. A., Klint, P., Olivier, P. A., 2000. Efficient annotated
terms. Software—Practice and Experience 30, 259–291.

van der Storm, T., Sep. 2005. Continuous release and upgrade of component-based soft-
ware. In: 12th International Workshop on Software Configuration Management (SCM-
12).

Visser, E., Jun. 2004. Program transformation with Stratego/XT: Strategies, tools, and
systems in StrategoXT-0.9. In: Lengauer, C., et al. (Eds.), Domain-Specific Program
Generation. Vol. 3016 of Lecture Notes in Computer Science. Spinger-Verlag, pp. 216–
238.

9


