
Building a Refactoring Tool for Erlang ?

Zoltán Horváth, László Lövei, Tamás Kozsik, Róbert Kitlei,
Anikó Nagyné Vı́g, Tamás Nagy, Melinda Tóth, Roland Király

Eötvös Loránd University, Budapest, Hungary

Abstract

This paper presents RefactorErl, a refactoring tool for the Erlang programming language.
Based on experience obtained during a major redesign of this tool, we describe some general
principles that proved to be important for developing refactoring tools – not only for Erlang,
but for other languages as well.

Key words: refactoring, Erlang, RefactorErl tool

1. Introduction

This paper presents a refactoring tool for the Erlang programming language and de-
scribes some general principles we found important for building that tool. We believe
that these principles apply not only to Erlang, but to other languages as well.

Erlang [1] is an eager, impure, dynamically typed functional programming language
developed by Ericsson. It was designed for building concurrent and distributed fault-
tolerant systems with soft real-time characteristics, like telecommunication systems. The
Erlang language consists of simple functional constructs extended with message passing
to manage concurrency. Processes are fairly cheap in Erlang; the idiom to express a
(thread-safe) stateful object is to use a process with a tail-recursive event loop and to
achieve abstraction with a module. Erlang has a module system with export/import
lists. It provides exception handling and reflective programming facilities, preprocessing
mechanism to support macros and file inclusion, and a comprehensive standard library.

? Supported by Ericsson Hungary and ELTE IKKK.
Email addresses: hz@inf.elte.hu (Zoltán Horváth), lovei@inf.elte.hu (László Lövei),

kto@elte.hu (Tamás Kozsik), kitlei@elte.hu (Róbert Kitlei), viganiko@inf.elte.hu (Anikó Nagyné
Vı́g), lestat@elte.hu (Tamás Nagy), melinda toth@mad.hu (Melinda Tóth),
kiralyroland@inf.elte.hu (Roland Király).

1

Refactoring [6,7] means changing the program code without changing what the code
does. Tool support for performing refactoring is available for many object-oriented pro-
gramming languages, and for some functional ones as well [10,21]. The refactoring tool
not only automates systematic transformations of programs, but also ensures that the se-
mantics of the refactored programs are preserved. For this reason the refactoring tool will
analyse the structure of the refactored program (based on the syntactic rules of the un-
derlying programming language), and it will also collect and use semantical information
about the program.

The rest of the paper is structured as follows. In Sect. 2 RefactorErl, our experimental
research tool, a refactorer for Erlang is briefly described. Sect. 3 introduces our theses
on how to build a refactoring tool for Erlang, and how these theses apply to building
refactoring tools for other languages. Finally, Sect. 4 concludes the paper.

2. The RefactorErl tool

From technical point of view, there are two major versions of our Erlang refactorer. The
first major version has been made available for public as a prototype tool (RefactorErl 0.2
at [5]), and the second one is being developed currently (not yet released). The first major
version, thereafter referred to as “old tool”, provides seven refactoring transformations:
– renaming a variable,
– renaming a function,
– extracting a new function definition,
– changing the order of function arguments,
– turning consecutive function arguments into tuples,
– substituting occurrences of a variable with its definition and
– discovering multiple occurrences of an expression and replacing them with a newly

introduced variable.
Finally, there is a draft implementation of a transformation that turns tuples into records.
The tool itself is written in Erlang, and it is available on several platforms. Its user
interface is integrated into the Emacs editor, which is very popular among programmers
who use Erlang in the software industry.

Experiments with the old tool led us to redesign and reimplement essentially the whole
tool. The second major version of RefactorErl, thereafter referred to as “new tool”,
improves efficiency and usability significantly. However, many of the transformations
available in the old tool are not yet implemented in the new tool, and for this reason the
new tool is not released yet. Besides the eight transformations mentioned above, we are
currently working on the following refactorings:
– renaming a module, a record or a record field,
– moving a function, a macro or a record definition into another module,
– inlining a function definition,
– turning a tuple argument of a function into consecutive arguments and
– generalizing a function definition by introducing further arguments.
The transformation that can turn tuples into records is the theoretically most challenging
one – and there is a strong industrial demand for it [14]. In the future we are also
going to research refactorings that interact with inter-process communication. Currently,
however, most of our efforts goes into the development of a stable and robust refactoring

2

infrastructure, which can be easily extended with further transformations. Our aim is that
once the new tool is released, it should be possible to use it in an industrial environment.

RefactorErl represents an Erlang program as a graph containing all relevant lexical,
syntactical and semantical information. At first glance, this graph can be regarded as an
enriched abstract syntax tree (see Sect. 2.2). To make refactoring of large programs more
efficient, the construction of graphs representing programs is incremental: the graphs are
persisted in a database, so a (sub)graph representing a module needs to be recomputed
only when the module is altered manually (i.e. not with the refactoring tool). This ap-
proach is especially useful when a large number of refactoring transformations are to be
applied on a program without intervening editing of the code by programmers. This hap-
pens, for instance, before introducing a new feature into an (otherwise fully functional)
program, which may require a substantial reorganization of the code.

2.1. Limitations in refactoring Erlang programs

Some features of the Erlang language are advantageous for refactoring: side effects
are restricted to message passing and built-in functions, variables are assigned a value
only once in their lifetime, and code is organised into modules with explicit interface
definitions and static export and import lists. There are, however, some features that are
disadvantageous for refactoring, e.g. the possibility to run dynamically constructed code,
and the lack of programmer defined types. For a more detailed analysis see [9].

Refactorings, by definition, should preserve semantics. Unfortunately, it is practically
impossible to guarantee this in the case of a language supporting reflection. Worse still,
industrial Erlang code makes use of such facilities very frequently. On the one hand, if
we design a conservative refactoring tool that always refuses to perform transformations
which might alter the meaning of the refactored program, we might end up with a
tool that, albeit perfectly safe, is completely useless in practice. On the other hand, a
tool offering insufficient support for the preservation of semantics will never be used in
practice: nobody will ever dare to refactor large programs with it. A good refactoring tool
will be sufficiently safe, but not too restrictive. To achieve this, the decision mechanism
in the tool should be customizable and/or interactive.

Since in general it is not possible to completely determine the meaning of an Erlang
program by static analysis, a refactoring tool might decide to compensate for otherwise
unsafe transformations. Inserting dynamic checks into the refactored programs often
helps to bring a refactoring into effect depending on run-time information. Consider the
(admittedly extreme) example in Fig. 1. In Erlang it is possible to construct a function
call by computing the name of the function to be called and the actual arguments, and
pass them to the built-in function apply. If factor/1 is a prime-factorization function
returning the list of prime factors of a given number, then the code fragment on the
left will apply a:egg/2 (that is the binary egg function from module a) on the actual
arguments 2 and 3. The list_to_atom function is a built-in function that takes a string
– represented as a list of ISO Latin-1 codes in Erlang – and creates an atom from it.
Function and module names are atoms in Erlang. A refactoring tool has no chance to
find out by static analysis that a:egg/2 is executed here. The only way to preserve
program behaviour when refactoring a:egg/2, for example when swapping its arguments
is to insert dynamic checks. The previous call to apply/3 could be replaced with the

3

apply(list_to_atom(factor(97))

, list_to_atom(factor(1071509))

, factor(6)

)

→

begin

M=list_to_atom(factor(97)),

F=list_to_atom(factor(1071509)),

A=factor(6),

case {M,F,A} of

{a,egg,[A1,A2]} -> a:egg(A2,A1);

_ -> apply(M,F,A)

end

end

Fig. 1. Compensation for swapping the arguments of the function a:egg/2.

expression shown on the right-hand side of Fig. 1, assuming that M, F, A, A1 and A2 are
fresh variables.

Although this was an extreme example, it is important to note that production Erlang
code regularly utilizes the built-in function apply/3 and the alike. Compensation tech-
niques, such as the one above, are often applicable, but they also degrade the readability
and the efficiency of the resulting code, and hence must be used with care.

2.2. The model used by the new tool

RefactorErl represents an Erlang program as a “program graph”: a directed, rooted
graph with typed nodes and edges. The skeleton of this graph is the abstract syntax
tree of the program. Apart from syntactical information, the graph contains lexical and
semantical information as well. These latter kinds of information are provided as ad-
ditional nodes and edges in the graph. For example, each function in the program is
represented as a semantic node in the graph; the definition of the function and all the
calls to the function are linked to this semantic node with semantic edges. The main-
tenance of semantic information is useful for boosting side condition checking. Usually,
the hardest part of refactoring is not the application of the requested transformation,
but the evaluation of the conditions that are required to hold for the refactoring to be
safe. These conditions often depend on a large amount of semantical information – which
can be efficiently picked out from the program graph. Apparently, the stored semantical
information, similarly to the AST, must be updated when a transformation is applied.

Lexical information, such as the tokens produced by the scanner, is also essential. Even
information about the whitespace separating the tokens must be kept available so that
the refactoring tool can preserve the layout of the refactored program.

The kinds of semantic information to be gathered and maintained by the refactoring
tool depend on the transformations the tool supports. The new RefactorErl tool is de-
signed to be open-ended: it should be possible to implement a new refactoring with the
relevant semantical analysis and add them to the refactoring framework. To achieve this
goal, the different kinds of semantical analysis are organized into independent modules,
and result in independent sets of semantic nodes and edges in the program graph. Ex-
amples of semantic analysis modules are analysing scopes, analysing function definitions
and calls, or analysing variable bindings.

The new tool also includes a query language, similar to XPath [27], for retrieving
information from the program graph. Links of the graph can be traversed forwards and

4

backwards, and filtering by semantical information is also supported.
To optimize the shape of the program graph for fast information retrieval, the syntax

of the language is reflected in the tool at two levels of abstraction. In the more abstract
view there are four syntactical categories: files, forms, clauses and expressions. Files
(including header files) contain forms. Forms can be, among others, function definitions,
which are made up of one or more clauses (clauses are basic building blocks of several
compound expressions as well, such as case-expressions). The right-hand side of a clause
is a sequence of expressions (and the left-hand side of a clause contains further expressions
such as patterns and guards). The rich syntactical structure of Erlang (reflected in the
close to fifty rules of the grammar) can be abstracted into these four kinds of graph
nodes. Many details of the syntax are encoded in the types of the graph edges, forming
the less abstract syntactic view of the language.

The low number of types of syntax nodes improves efficiency of the queries written in
the query language. Another important source of efficiency is that chains of applications
of the same production rule are not represented by an unbalanced tree, but rather by a
single graph node, which collects all of the syntax edges of the productions, retaining the
order of the edges.

In order to improve the reusability of the refactoring infrastructure, one could design
the model of the refactored programs as general and language-independent as possible.
Our experience in refactoring Clean [21] and Erlang did not foster this approach. Even in
these two functional languages the syntactic and semantic differences are so significant
that it is not worth to introduce a common model, not even with language-specific ex-
tensions (like in [22]). Our approach is to keep the focus of the tool on a single language,
and achieve a level of precision and efficiency that is sufficient to make the tool applicable
in practice.

3. Building a refactoring tool for Erlang

This section explains why we decided to redesign and reimplement RefactorErl after
experimenting with the old tool, and how this decision is justified by experiences with
the new tool. Eight theses are presented here, which, according to our position, describe
important rules to keep in mind [20,19] when building a refactoring tool – either for
Erlang or for other languages.

3.1. Language specific model

Besides a general, language-independent refactoring software infrastructure [3,4,22,24]
a language specific model supporting refactoring concepts is required. Based on that
model a model-driven architecture should be developed. In order to guarantee consistency
and to avoid ad-hoc and conflicting solutions, all the components of the refactoring tool
(i.e. the parser, the semantic analyser, the code generator, the construction utilities for
insertion and replacement of code parts, and the source code formatter) should either
be generated from, or controlled by, the same model. This is a declarative approach
which maintains the refactoring-specific lexical, syntactical and static semantical rules of
the investigated language as data. Modifying these data should result in the (as far as
possible) automatic adaptation of the code of all the components of the refactoring tool.

5

For example, our new tool represents the model as an XML-document containing
information about the lexical and syntactical rules of Erlang together with instructions for
creating the internal graph representation of programs. This format was chosen because
it is easy to maintain, should the language definition change. Furthermore, it can be
handled easily with XMErl [29], a standard Erlang tool for traversing XML documents,
and it can be easily transformed with e.g. XSLT tools.

Two refactorings are already implemented in the new tool. One of them is extracting
functions, which was supported by the old tool as well. The new implementation is about
half the size of the old one, and it is much more comprehensible. Most of this achievement
comes from the usage of the graph query language, which can follow semantic links the
same way as AST links, and from the fact that much of the work is performed by code
auto-generated from the model.

3.2. Full support for preserving layout

The refactoring-specific model of the investigated programming language enables the
maintenance of lexical information in such a way that the layout of refactored programs
can be preserved during the transformations – except maybe for code fragments directly
affected by the transformations. In our experience, the preservation of layout is essential
for the tool to gain industrial acceptance.

The old tool used standard Erlang scanners, pre-processors and parsers (basically those
used also in the compiler). These tools removed all lexical information that was irrele-
vant for syntactical and static semantical checking and compilation of programs, includ-
ing indentation, redundant parentheses in expressions, and comments. Furthermore, the
refactoring tool could not access the original (before pre-processing) source code, hence
refactoring programs containing macros [8] (that is every interesting, commercial code)
was practically impossible.

The problem with macros is that they can cross-cut the structure of the parse tree:
code containing macro applications do not fit into an AST. One way to tackle this
problem is to restrict the use of macros in such a way that they can be treated as
syntactic entities. This excludes some complex cases, but it makes macros part of the
syntax. This is the approach taken in Xrefactory [25]. A more advanced approach does
not impose restrictions on the use of macros. Proteus [28] is based on an extended, layout
preserving AST which uses recorded macro expansion. This tool, applicable to refactor
C++ programs is similar to our approach in many respect.

Our new tool introduces its own lexical and syntactical analyzers (generated automat-
ically from the model) that preserves layout information, i.e.

(i) whitespace is preserved in the lexical layer;
(ii) redundant parentheses are not removed when building the AST;

(iii) the preprocessor stores information about include files, macro definitions and macro
applications.

The lexical and syntactical analyzers of the new tool maintain information on both the
original and the pre-processed source code (see Fig.2).

6

Fig. 2. Scanning, preprocessing and parsing in RefactorErl

3.3. Create your own parser

As a consequence of Sect. 3.1 and 3.2, it is worth to create a parser and a storage
back-end for the refactorer instead of relying on the compiler interface. The generation
of a parser and a back-end from an appropriate model is usually straightforward, and
due to the model-driven approach, the parser remains consistent with the rest of the
refactoring tool.

Although Erlang is a language defined by its compiler, the above argument about being
independent from the compiler is still valid. If the language (and the compiler) changes,
it is not more expensive to update the model than to adjust the rest of the refactoring
tool to the changed compiler interface.

As revealed in Sect. 2.2, a further advantage of a refactoring-specific parser is that the
model mentioned in Sect. 3.1 enables the representation of the abstract syntax tree in
a way that is optimized for refactoring – this is not possible with the standard Erlang
parser.

3.4. Step-by-step syntactical and semantical coverage

It is not feasible to figure out all aspects of the syntax of the investigated language dur-
ing the design (and before the implementation) of the refactoring tool. First, the language
might change, and so might its syntax. Furthermore, based on experience on using the
tool and user feedback, novel, refactoring-specific syntactical categories may be necessary
to introduce. For example, in Erlang there are no static type declarations, but program-
mers often provide type information in comments (in the future these typing comments
may become part of the language proper [17]). Since programmer provided type infor-
mation can facilitate data-centric transformations, it might become necessary to extend

7

the model with the processing of such comments long after the general infrastructure of
the tool has been built.

The same reasoning is valid for semantical coverage – it is not possible to know in ad-
vance which kinds of semantic information is useful for future transformations. Moreover,
there is a theoretical obstacle as well: it is not feasible to cover every semantical property
by static analysis [19], especially in a language that emphasises dynamic semantic rules,
like Erlang.

In practice it is not very useful to try to maximize syntactic and semantic coverage.
It is more useful to focus on your users, on the properties of the code that your users
want to refactor. The capabilities of the refactoring tool should be improved to support
commercial code as much as possible, taking coding conventions and company policies
into account.

There might be features in a language that are rarely (if ever) used in production code,
like packages in Erlang. There might be features that make static refactoring transfor-
mations practically impossible.

To support step-by-step semantical coverage, the new RefactorErl tool introduces a
framework for semantical analyses, which can be extended with novel semantic analysis
modules.

3.5. Accept rebuilding semantic information

Experience with the development of the new tool showed us that semantic informa-
tion might be better maintained differently than syntactic and lexical information: it is
slower to figure out how to modify semantic nodes and edges during a transformation
(during the modification of the AST and related lexical information) than to recompute
the semantic nodes and edges of the modified subgraph based on the resulting AST.
Redirecting semantic edges in a graph representation of the refactored program requires
complex graph rewrite rules, which usually requires hand-crafted code (they are hardly
possible to automatically generate from the model). We found that recomputing the se-
mantic information in the subgraph affected by a transformation improves the safety of
the transformation as well.

3.6. Improve queries with shortcuts

During the checking of side conditions and the computation of transformation results
the refactoring tool often collects information that is scattered in an AST or in a seman-
tical graph. The näıve approach, also used by the old RefactorErl tool, to collecting such
information is to traverse the graph. This proved to be both tedious to implement and
slow in practice.

Therefore in the new tool we decided to reduce the depth of queries and traversals by
introducing frequently needed shortcuts (redundant edges) in the graph. These provide
connections between nodes that are distant in the syntax tree but close in meaning.
By adding or removing analyser modules, the number of the semantic edges can be
controlled. This is a trade-off between the number of semantic edges in the graph and
the complexity of refactorings. This enriched semantic graph provides enough information
for the refactorings to verify the side conditions and reach the nodes to be transformed in

8

an efficient way. Moreover, semantical analyses are possible to perform in the background
(while the programmer browses the source code) or even lazily – these techniques conserve
the responsiveness of the refactoring tool even in the presence of many semantical edges.

3.7. Ensuring safety with cross-testing

RefactorErl is developed in collaboration with University of Kent, where another refac-
toring tool for Erlang, the Wrangler [12] is being developed. Wrangler has a design and
an internal graph representation different from that of RefactorErl, but building an inter-
face for data interchange between the two systems is possible [23]. The transformations
implemented in the two tools are not the same either. We plan to integrate the two
systems in the near future.

There is, however, another possibility for collaboration. Since the objectives of both
tools are the same, cross-testing seems to be the adequate way to increase trust in the
tools, like in [2].

3.8. Reuse of analyses is possible

The syntactic and semantical analyses that a refactoring tool applies for checking side
conditions turn out to be useful for solving other problems as well. They can be used to
understand the structure of large and complex software systems, and to partition that
structure into subsystems. Currently we are experimenting with different clustering and
remodularization algorithms for such purposes using information about (few MLOC)
software collected with the analysis modules of RefactorErl.

4. Conclusions

This paper presented some principles on how to build a refactoring tool and supported
these principles by describing experiments with a refactoring tool for the Erlang language.
First of all, all the components of the refactoring tool are based upon a refactoring specific
model of the investigated language. This model can support the preservation of layout.
The parser and the storage back-end of the tool should be generated from the model. It is
reasonable to refine this model step-by-step to reach the desired level of syntactic and se-
mantical coverage. Instead of writing ad-hoc hand-crafted code fragments for redirecting
semantic edges with respect to different transformations, it is better to recompute some
parts of the semantic graph representing the refactored program. Efficiency of queries for
the evaluation of side conditions can be improved by adding redundant semantic edges
to the graph. Cross testing between different refactoring tools for the same programming
language provides invaluable help for increasing trust in the tools. Finally, analyses de-
veloped for the refactorer often turn out to be reusable in other tools. Applying these
principles for redesigning RefactorErl led to increased performance (acceptable response
time for huge bodies of commercial code) and also to more maintainable software.

9

References

[1] Barklund, J., Virding, R., Erlang Reference Manual, 1999.

Available from http://www.erlang.org/download/erl spec47.ps.gz.

[2] Brett D., et al., Automated Testing of Refactoring Engines, In Proc. of the the 6th joint meeting of
the European software engineering conference, pages 185-194, Dubrovnik, Croatia, 2007.

[3] Charles, P., Fuhrer, R.M., and Sutton, Jr., S., M., IMP: a meta-tooling platform for creating
language-specific IDEs in Eclipse, In Proc. of the 22nd IEEE/ACM International Conference on

Automated Software Engineering, pages 485-488, Atlanta, Georgia, USA, 2007.

[4] Ducasse, S., Gı̂rba, T., and Nierstrasz, O., Moose: an Agile Reengineering Environment In

Proceedings of ESEC/FSE 2005, September 2005, pages 99-102.

[5] Eötvös Loránd University, Refactoring Erlang Programs (project homepage).

http://plc.inf.elte.hu/erlang/

[6] Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts, D., Refactoring: Improving the Design

of Existing Code., Addison-Wesley, 1999.

[7] Fowler, M., Refactoring Home Page. http://www.refactoring.com/.

[8] Garrido, A., Program Refactoring in the Presence of Preprocessor Directives. Tesis Doctoral. Univ.

of Illinois at Urbana-Champaign Technical Report No. UIUCDCS-R-2005-2617.

[9] Kozsik, T., Csörnyei, Z., Horváth, Z., Király, R., Kitlei, R., Lövei, L., Nagy, T., Tóth, M., Vı́g, A., Use

Cases for Refactoring Erlang Programs. To appear in Central European Functional Programming

School, Revised Selected Lectures, Springer LNCS series.

[10] Li, H., Reinke, C., and Thompson, S. J., Tool support for refactoring functional programs. In
Proceedings of the ACM SIGPLAN workshop on Haskell, Uppsala, Sweden, pages 27–38, 2003.

[11] Li, H., Thompson, S.J., Lövei, L., Horváth, Z., Kozsik, T., Vı́g, A., and T. Nagy, T., Refactoring
Erlang Programs. In Proceedings of the 12th International Erlang/OTP User Conference, November

2006.

[12] Li, H., Thompson, S.J., Testing Erlang Refactorings with QuickCheck. In Proc. of the 19th

International Symposium on Implementation and Application of Functional Languages, IFL2007,

Freiburg, Germany, Septemper 2007.

[13] Lövei, L., Horváth, Z., Kozsik, T., Király, R., Vı́g, A., and Nagy, T., Refactoring in Erlang, a

Dynamic Functional Language., In Proceedings of the 1st Workshop on Refactoring Tools, pages
45-46, Berlin, Germany, July 2007.

[14] Lövei, L., Horváth, Z., Kozsik, T., Király, R., Introducing records by refactoring. In Proceedings of

the 2007 ACM SIGPLAN Erlang Workshop, pages 18-28. ACM Press, 2007.

[15] Lövei, L., Horváth, Z., Kozsik, T., Király, R., and Kitlei, R., Static rules of variable scoping in

Erlang, In Proceedings of the 7th International Conference on Applied Informatics, volume 2, pages

137-145. 2008.

[16] Mitchell, B.,S., A heuristic search approach to solving the software clustering problem, PhD thesis,

Drexel University, Philadelphia, PA, USA, 2002.

[17] Nyström, S., A soft-typing system for Erlang, Proceedings of the 2003 ACM SIGPLAN workshop

on Erlang, pp. 56-71, Uppsala, Sweden, 2003.

[18] Robbes, R., Lanza, M., The ”Extract Refactoring” Refactoring, In Proceedings of WRT 2007 (1st
International Workshop on Refactoring Tools), pp. 29 - 30, Berlin, Germany, 2007.

[19] Roberts, D.: Practical Analysis for Refactoring, PhD thesis, University of Illinois at Urbana
Champaign, 1999.

[20] Roberts, D., Brant, J., and Johnson, R., A Refactoring Tool for Smalltalk, Theory and Practice of
Object Systems. V3 N4, October 1997.

[21] Szabó-Nacsa, R., Diviánszky, P., and Horváth, Z., Prototype environment for refactoring Clean
programs., In The Fourth Conference of PhD Students in Computer Science (CSCS 2004), Szeged,

Hungary, July 1–4, 2004. Full paper is available at http://aszt.inf.elte.hu/~fun ver/ (10 pages).

[22] Tichelaar, S., Ducasse, S., Demeyer, S., and Nierstrasz, O., A Meta-model for Language-Independent

Refactoring, Proceedings of International Symposium on Principles of Software Evolution (ISPSE
’00), IEEE Computer Society Press, 2000, pp. 157-167, Kanazawa, Japan, November 2000.

[23] Vinju, J.J.: Uptr: a simple parse tree representation format, In Software Transformation Systems
Workshop, October 2006.

10

[24] Vinju, J.J, Analysis and Transformation of Source Code by Parsing and Rewriting, PhD thesis,

November 2005.

[25] Vittek, M., Refactoring Browser with Preprocessor. In Proceedings of the Seventh European
Conference on Software Maintenance and Reengineering, page 101, 2003.

[26] Wloka, J., Hirschfeld, R., and Hänsel, J., Tool-supported Refactoring of Aspect-oriented Programs,

In Proceedings of the Conference on Aspect-oriented Software Development (AOSD), pages 132-143,
Brussels, Belgium, March 31 - April 4, 2008.

[27] World Wide Web Consortium: XML Path Language (XPath) Version 1.0. W3C Recommendation,

Nov. 16, 1999, http://www.w3.org/TR/xpath.html
[28] Waddington, D. G., Yao, B. High Fidelity C++ Code Transformation. In Boyland, J. and Hedin, G.,

editors, Proceedings of the 5th workshop on Language Descriptions, Tools and Applications (LDTA

2005), 2005.
[29] Wiger, U., XMErl – Interfacing XML and Erlang, In the Sixth International Erlang/OTP User

Conference (EUC 2000), Stockholm, Sweden, October 3, 2000.
http://www.erlang.se/euc/00/xmerl.ppt

11

