
Monitoring Java Code Using ConGu

V.T. Vasconcelos, I. Nunes, A. Lopes, N. Ramiro, P. Crispim
Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa

1749–016 Lisboa, Portugal

Abstract

The ConGu project aims at developing a framework to create property-driven algebraic spec-
ifications and to test Java implementations against these specifications. We present a brief
overview of the framework’s fundamental components—specifications, modules, refinements—
and describe the ConGu tool both from the user’s and from the architect’s point of view. The
tool allows users to test Java bytecode against a module of specifications, and to discover viola-
tions of specified properties. Towards this end, the tool generates intermediate classes equipped
with contracts, and wraps the bytecode under test in newly generated classes that allow contract
monitoring, in a way that is transparent to the clients of the original classes.

1. Introduction

The formal specification of software components is an important activity in the process
of software development, insofar as formal specifications are useful, on the one hand,
to understand and reuse software and, on the other hand, to test implementations for
correctness.

Design by Contract (DbC) [13] is widely used for the specification of object-oriented
software. There are a number of languages and tools (e.g., [4,5,11,12]) that allow equip-
ping classes and methods with invariants, and pre- and post-conditions, which can be
monitored for violations at runtime. In the DbC approach, specifications are class inter-
faces (Java interfaces, Eiffel abstract classes, etc) annotated with contracts expressed in
a particular assertion language, which is usually an extension of the language of boolean
expressions of the OO language.

To build contracts using these languages one must observe the following: (i) contracts
are built from boolean assertions, thus procedures (methods that do not return values)
cannot be used; (ii) contracts should refer only to the public features of the class because
client classes must be able not only to understand contracts, but also to invoke opera-
tions that are referred to in them—e.g., clients must be able to test pre-conditions; (iii)
to be monitorable, a contract cannot have side effects, thus it cannot invoke methods

1

that modify the state. These restrictions bring severe limitations to the kind of proper-
ties we can express directly through contracts. Unless we define a number of, otherwise
dispensable, additional methods, we are left with very poor specifications.

Model-based approaches to DbC, like those proposed for Z [15], Larch [8], JML [12],
and AsmL [3], overcome this limitation by specifying the behavior of a class, not via
the methods available in the class, but else through very abstract implementations based
on basic elements available in the adopted specification language. Rather than a model
based approach, we instead adopted a property based algebraic approach to specifications,
introduced in reference [14].

The key idea of our approach is to reduce the problem of testing implementations
against algebraic specifications to the run-time monitoring of contract annotated classes,
supported today by several run-time assertion- checking tools. The tool reads algebraic
specifications and a mapping relating specification and Java entities, and generates a
number of classes that are used to test the original implementation against the given
specifications. All specification properties are checked against implementations; moni-
torable JML contracts are generated that cover them all. The tool has been in use since
2005 in the context of an undergraduate course on algorithms and data structures at the
University of Lisbon, where student’s code for all data-structures covered in the course
is checked against algebraic specifications.

This paper presents ConGu (Contract Guided System Development [6]), a framework
to create property-driven algebraic specifications and to fully test Java implementations
against these. Support for checking implementations against algebraic specifications is,
as far as we know, restricted to a few approaches (see [7,9] for a survey), which are
either tailored to the specification of properties of OO implementations [10], or requires
programming an abstract mapping from the class to the specification [2].

ConGu can be used from the command line or from within Eclipse. In either case it
requires JDK 1.5 or above, JML 5.4 or above, and runs on multiple platforms (Windows
XP and Vista, Mac OS X, and Linux). The current version of the Eclipse plugin includes
customized editors, allowing for syntax highlighting and problem marking, as well as
menu options for verification and compilation.

The next section describes Congu from a user’s point of view by means of a running
example. Section 3 presents a brief overview of the input/output behaviour of the tool,
and the following section, a description of its architecture. Section 5 discusses the features
and limitations of ConGu, and Section 6 concludes the paper.

2. Using ConGu

The inputs to the tool are specification modules and refinements, and of course, Java
code to be monitored. The specifications we use in this context are algebraic, property-
driven insofar as they define sorts and operations on those sorts, determining classes of
algebras (models) which can be regarded as possible implementations of the specified data
types. Operations, which can be interpreted by partial functions, are defined through their
signature, restrictions on their domain, and axioms defining their properties. The exact
nature of the specification language is described in references [1,14]; here we introduce
its main features based on an example.

The screenshot in Figure 1 shows a module composed of two specifications.

2

Fig. 1. A module composed of two specifications

Each specification defines exactly one sort, Sortable and SortedSet in this case. Operations
are classified as constructors, observers, or others. These categories comprise, respectively,
the operations from which all values of the type can be built, the operations that provide
fundamental information about the values of the type, and the remaining operations.
Predicates can only be classified as either observers or others.

In the example we find two constructors for SortedSet, one that builds an empty set;
the other that builds a set from a given set and an element. As observers we have two
predicates (to check whether the set is empty, and to verify whether a given element
belongs to a set), and an operation (to obtain the largest element in the set).

The largest operation may not be defined for an empty set; that is the reading of the
domains section. The last section, axioms, describes the relationship between the various
operations. For example, the first axiom reads: an empty set (that is, the set constructed
with the empty operation) is empty, and the last axiom states that insertion order is
irrelevant.

The specification for Sortable elements defines a standard total order relation: transitive,
antisymmetric, and total. The two specifications together are self-contained, in the sense
that all external references are defined therein. We call such a collection of specifications
a module.

Figure 2 presents an example of the two classes to be monitored against the specifica-
tions presented in Figure 1. In general an application will have many classes, of which
only a subset is to be monitored. In our example, the application besides these two
classes comprises two other classes: PersonComparator to be used in the search tree that
implements Population, and RandomTest which simply executes a fixed number of randomly
chosen operations of class Population.

Classes under test must have proper equals methods, expressing that objects are equal
if it is not possible to distinguish between them using any observers of their type (also
called similarity). Moreover, the classes under test that define mutable types, must be
cloneable with clone methods that go deep enough in the structure of the object so that

3

any shared reference with the cloned object cannot get modified through the invocation
of any of the methods that implement the specification operations. In our example, class
Person defines a immutable type (i.e., the state of objects of this type never change)
and does not implement Cloneable while class Population defines a mutable type and does
implement Cloneable.

The last ingredient of ConGu links the world of specifications (in Figure 1) to the
world of Java implementations (in Figure 2). A refinement mapping indicates which sort
is implemented by which class, and which operation is implemented by which method.

Fig. 2. The Java classes to be monitored

The mapping in Figure 3 links sort Sortable to class Person and sort SortedSet to
class Population. On what concerns operations, one can see that, for example, operation
greaterThan is mapped to method older in class Person. The example also shows that not
all methods need to be the target of refinements: class Person is composed of five public
methods of which one only (older) will be directly monitored by the tool.

Fig. 3. A mapping from the module in Figure 1 and the classes in Figure 2

4

Once all problems regarding specifications, refinements and Java code have been fixed,
time comes to run the application under the scrutiny of the contracts generated by
ConGu. For this purpose, the plugin provides a new entry in the Run Dialogue facility
of Eclipse, as shown in Figure 3.

Fig. 4. Monitoring the application

Running the original application under Congu may produce pre-condition exceptions
due to domain condition violations or to post-condition exceptions due to axiom viola-
tions. The first case is always a manifestation of a ill-behaved client, i.e., a client that
invoked a method in a situation in which the method shouldn’t be invoked. For instance,
in our example, a pre-condition exception would be produced if RandomTest class calls the
oldest method on an empty population. The second case is a manifestation of a faulty
supplier class. One of the classes under test is failing to ensure at least one of the specified
properties.

The output produced by ConGu then guides the developer into the violated domain
condition or axiom, from where she can start looking for the defect. The screenshot in
Figure 5 indicates a post-condition error, revealing a fault on the supplier class Population,
while monitoring axiom largest (insert (S,E)), immediately after a particular execution of
method add. This suggests to start looking for the defect in method oldest or add in class
Population.

Fig. 5. The console showing a post-condition error, thus signaling a defect in the producer

5

3. Overview of the tool

The general idea underlying the tool is to automatically generate contracts from spec-
ifications, in order to monitor the execution of classes that implement the specifications.
Towards this end, ConGu replaces the original program by another program equipped
with contracts that can be monitored for axiom and domain conditions violations.

Fig. 6. The input and the output of ConGu

Figure 6 shows that the input of ConGu consists of a specification module, a refine-
ment, and Java bytecode. For each class C mentioned in the refinement, the tool renames
C.class bytecode file into C Original.class, and creates a new C.class that wraps
and substitutes the original code. It further generates a static class, C Contract.java,
equipped with contracts regarding specifications axioms and domain conditions, that is
used by the wrapper class to force contract checking.

Fig. 7. Traditional versus ConGu workflow

Contracts are generated in the The Java Modeling Language (JML [12]). The new
program must be executed using jmlrac 1 rather than java, in order to monitor the

1 A script for running java programs compiled with the JML runtime assertion checker compiler.

6

contracts that the tool generates. The process is described in Figure 7, where standard
Java-based workflow is depicted above the dashed line, and the ConGu’s workflow below
the same line.

4. Architecture

ConGu is divided into two projects: the compiler and the Eclipse plugin. The compiler
exposes its functionality as an API that is used both by the plugin and by a command
line executor.

The plugin extends in several ways the features and facilities provided by the Eclipse
IDE and its Java Development Tools, therefore requiring the latter to be installed. Ex-
tending the typical Java project, the ConGu project adds contract monitoring func-
tionality, providing module directories for the contract specifications files. Furthermore,
specifications development is enhanced by customized editors, allowing for syntax high-
lighting and problem marking, as well as menu options for verification and compilation,
also available as toolbar buttons. Compiler output is integrated into the problems tab,
providing easy navigation to the respective file and even line by double-clicking on the
problem, as well as into the console tab, at several degrees of verbosity, allowing a more
detailed description of the problems. In addition to that, execution of the application in
monitoring mode is also possible from within Eclipse and its output presented in the con-
sole tab, in coherence with the IDE’s environment. All these features, and more, can be
configured in the Eclipse preferences menu, some being project-dependent and modified
in the respective project’s properties dialog.

The compiler is organized in several logical components, as described in Figure 8.
Components Specification Module Analyzer, Refinement Binding Analyzer, and Bytecode
Analyzer make up the front-end of ConGu. The back-end, formed by various generators
and the Class Renamer, produces and compiles Java code. The classes generated (and
compiled) by the tool fall into four categories:
Contract (static) classes that contain a version of every method in the original classes,

and that are equipped with JML contracts reflecting the axioms and the domain con-
ditions in the specification;

Wrapper classes that contain instances of the original classes, and that force contract
monitoring in every call to the methods in the original classes;

Pair classes to hold state-result pairs for non-void methods in the original classes;
Range class to be used in forall expressions in contracts.

Only Contract classes are compiled with jmlc, since all JML assertions are gathered
at these classes. The remaining generated classes are compiled with javac. The Class
Renamer component prepares a newly assembled Java bytecode, C Original.class from
an original bytecode C.class, for each class C mentioned in the refinement.

The Wrapper Generator component creates a wrapper class for each class mentioned in
the refinement: the wrapper for class C has the same set of public methods and declares
an instance of the original C class (in the meantime renamed to C Original) as its only
attribute.

The Pair Generator component generates a series of classes defining new types used in
the representation of state-value pairs. State-value pairs are required for non-void methods
that change the state of the object; the typical example being the pop method included

7

Specification
Module Analyzer

Bytecode Analyzer

Refinement Binding
Analyzer

Wrapper Generator

Assertion Generator

Contract Generator

For-all Generator

Pair Generator

jmlc

javac

Class Renamer

Specification
Module

Refinement
Binding

Client
Bytecode

Bytecode
Data

Refinement
Data

Specification
Data

Java code

Java code

Bytecode

Bytecode

Fig. 8. The architecture of the ConGu compiler

in some stack implementations (including the one in the Java API) that removes and
returns the element at the top of the stack.

The Assertion Generator generates JML assertions (pre and post-conditions) that trans-
late the specification domain restrictions and axioms, respectively. These assertions are
then inserted in a class prepared by the Contract Generator. The modularity thus obtained
allows to quick replace the language used to express the contracts.

Full details, including the rules for contract generation are described elsewhere [1,14].
Given a class C, a static class named C Contract is created, containing one method
for each public method in C. Each method of C Contract includes a parameter for
each in the original method, plus one extra: an instance of C Original. It then invokes
the method over a clone of this object and returns the result and/or the object itself,
depending on the return type of the original method.

Figure 9 shows an excerpt of the output produced for class PersonSet Contract.
These contracts are not meant to be read by humans; they are usually quite long and
intricate, due to the four reasons discussed below.

Range class. The translation of certain forms of axioms require forall expressions in
contracts. One such example is axiom

i s I n (i n s e r t (S , E) , F) i f f E = F or i s I n (S , F) ;

that becomes a post-condition to method PopulationOriginal add in Figure 9. In order
to iterate over all Sortable F, an attribute Range range equips the contract class. Class
Range implements a bounded collection, allowing to generate JML code of the form

8

Fig. 9. The contracts produced for class Population

(\ forall Person f ; range. contains(f); ...) . All Person objects (parameters to the methods of
the contract class or returned by these) are placed in the range object. The maximum size
of this collection is one of the factors that more affects the running time of the monitoring
process; see reference [14] for benchmarks.

Wrap and unwrap. Class C under test coexists with the surrogate class prepared
by ConGu. After running the tool the former is called C Original , while the latter C.
There are occasions when conversion is required: contracts deal with C Original objects;
client code expects C objects. Obtaining a C Original from a C object is easy since the
latter holds the corresponding C Original as an attribute. For the reverse direction, each
wrapper class maintains a (static) hash table that collects mappings < C Original,C>. Such
a scheme guarantees the correct behavior of the == operator in client code, when used
with objects of classes under test.

Clone and equals. ConGu checks that classes either both declare a clone method
and implement Cloneable, or do neither. In the latter case it alerts to the fact that objects
will not be cloned, which should happen only for contract classes (the case of class Person

in Figure 2, for example). The tool prepares contracts for clone and for equals in class
C Contract. For the former, the following code is generated.

//@ ensu re s equa l s (t , \ r e s u l t) . va lue ;
s t a t i c /∗@pure@∗/ pub l i c Popu l a t i on c l o n e (P o p u l a t i o n O r i g i n a l t) {

r e t u r n t . c l o n e () ;
}

For the latter, we take the view that any two terms that are regarded as equal must
produce equal values for every observer operation and predicate. In order to check the
consistency of an implementation in what respects these properties, we generate post-
conditions for the equals method that test the results returned by all methods that im-
plement observer operations and predicates [14].

Strong equality. The meaning of an equality t1 = t2 in the axioms of a specification
is that the two terms are either both defined and have the same value, or they are both
undefined. Then, definedness condition of an operation invocation is the conjunction of

9

the definedness conditions of its arguments and the domain condition of the operation
itself [14]. The screenshot above shows a redundant “(true && true && true) ==>” in the
contract for method add, since, at the time of this writing, we do not simplify the generated
assertions.

5. Applicability and Limitations

– Although ConGu generates contracts meant to be monitored with the JML run-
time assertion checker, its architecture is general enough to encompass other assertion
languages and checkers: there is one single class with contracts per specification in the
input module and the component that generates these contracts can be easily replaced
by a different one generating pre and pos-conditions in a different assertion language.
Notice that although JML provides support for a variety of aspects, such as, invariants,
abnormal behaviour, model variables, etc, ConGu relies exclusively on assertions for
pre and post-conditions.

– ConGu requires bytecode only as input, rather than source code. This strategy has
two advantages: i) it allows users to test implementations for which source code is
unavailable, thus permitting to check large programs incorporating both trusted parts
(such as the Java API), and parts not completely trusted but that we would like to
make sure it behaves as expected, i.e., conforms to a given specification; ii) it simplifies
the implementation of ConGu by avoiding the need to parse and analyze Java source
code.

– Java code is kept separated from specifications, allowing several Java classes or pack-
ages to be tested against the same specification.

– Java code is kept separated from refinement bindings, meaning that the same Java
code can be easily tested against different specifications, even if this requires a bit of
an overhead with respect to, say, Java annotations.

– Partial class specification is supported; the wrapper class produced contains a method
for each public method in the original class, irrespective of the methods mentioned
in the refinement. In our example, it is conceivable that class Person has a lot more
methods than those appearing in the refinement.

– Constructor operations can be refined into the null expression. This is particularly
useful for methods that return null on particular cases. One such example is the get

method of a map that returns null if the key is not in the map.
– Refinement into classes of the Java API is supported, subject to the restriction that

java . lang classes can only be used as long as all operations are refined into null , the
reason being that JVM internally uses objects of these classes, making it difficult to
monitor their execution.

– Refinement into Java 5 generic classes is supported as long as the upper bound of the
type parameters is Object. This allows, for example, to refine the specification of a map
into, say, HashMap<Key, Value>.

– Refinement into Java interfaces is not yet supported, nor is inheritance.
– The tool does not support changes to the state of objects passed as parameters. Al-

though this feature is not particularly important for implementing abstract data types,
this limitation does not allow to uncover changes of parameters introduced inadver-
tently by programmers.

10

6. Further Work

In this paper, we presented a tool for runtime monitoring of Java programs against
property-driven, algebraic specifications. The tool was developed with the goal of helping
the adoption of formal specifications in the realm of abstract data types implementations.
Our experience of using it in the context of an undergraduate course on algorithms and
data structures has been confirmed that these specifications are indeed accessible and
the approach is effective in helping to find errors.

As future work, we intend to pursue investigation on detecting the side-effects in con-
tract monitoring due to changes in the state of method parameters.

The relation between domain conditions of specifications and exceptions raised by
implementing methods is also a topic to investigate and develop, insofar as it would
widen the universe of acceptable implementation classes.

A further topic for future work is the generation, from specifications and refinement
mappings, of Java interfaces annotated with human readable contracts. Once one is
convinced that given classes correctly implement a given module, it is important to make
this information available in the form of human-readable contracts to programmers that
want to use these classes and need to know how to use and what they can expect from
them.

Acknowledgments. This work was partially supported by FCT, through the Multi-
annual Funding Programme.

References

[1] João Abreu, Alexandre Caldeira, Antónia Lopes, Isabel Nunes, Lúıs S. Reis, and Vasco T.
Vasconcelos. Congu—checking Java classes against property-driven algebraic specifications.
DI/FCUL TR 07–7, Department of Informatics, Faculty of Sciences, University of Lisbon, March
2007.

[2] S. Antoy and R. Hamlet. Automatically checking an implementation against its formal specification.
IEEE Transactions on Software Engineering, 26(1):55–69, 2000.

[3] M. Barnett and W. Schulte. Spying on components: A runtime verification technique. In Workshop
on Specification and Verification of Component-Based Systems, 2001. Published as Iowa State
Technical Report 01-09a.

[4] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming system: An
overview. In Construction and Analysis of Safe, Secure, and Interoperable Smart Devices, volume
3362 of LNCS, pages 49–69. Springer, 2004.

[5] D. Bartetzko, C. Fisher, M. Möller, and H. Wehrheim. Jass, Java with assertions. In Proceedings
of the First Workshop on Runtime Verification, volume 55 of ENTCS. Elsevier, 2001.

[6] Congu: Monitoring Java code against algebraic specifications. http://gloss.di.fc.ul.pt/congu/.

[7] John D. Gannon, Marvin V. Zelkowitz, and James M. Purtilo. Software Specification: A Comparison
of Formal Methods. Greenwood Publishing Group Inc., 1994.

[8] John V. Guttag and James J. Horning. Larch: Languages and Tools for Formal Specification.
Springer, 1993.

[9] J. Henkel and A. Diwan. Discovering algebraic specifications from Java classes. In Proceedings of
the 17th European Conference on Object-Oriented Programming 2003, volume 2743 of LNCS, pages
431–456. Springer, 2003.

11

http://gloss.di.fc.ul.pt/congu/

[10] Johannes Henkel and Amer Diwan. A tool for writing and debugging algebraic specifications. In
ICSE ’04: Proceedings of the 26th International Conference on Software Engineering, pages 449–
458. IEEE Computer Society, 2004.

[11] Rachel Henne-Wu, William Mitchell, and Cui Zhang. Support for design by contract in the C#
programming language. Journal of Object Technology, 4(7):65–82, 2004.

[12] JML: Java Modelling Language. http://www.jmlspecs.org/.

[13] B. Meyer. Object-Oriented Software Construction. Prentice-Hall, 2nd edition, 1997.

[14] Isabel Nunes, Antónia Lopes, Vasco T. Vasconcelos, João Abreu, and Lúıs S. Reis. Checking the
conformance of Java classes against algebraic specifications. In Proceedings of the International
Conference Formal Methods and Software Engineering, volume 4260 of LNCS, pages 494–513.
Springer, 2006.

[15] J. M. Spivey. The Z notation: a reference manual. Prentice Hall, 1992.

12

http://www.jmlspecs.org/

	Introduction
	Using ConGu
	Overview of the tool
	Architecture
	Applicability and Limitations
	Further Work
	References

