
CScout: A Refactoring Browser for C
Diomidis Spinellis

Athens University of Economics and Business
Department of Management Science and Technology

Patision 76, GR-104 34 Athens, Greece

Abstract

Despite the maturity and popularity of the C programming language, tool support for performing even
simple refactoring, browsing, or analysis operations is currently lacking due to the identifier scope com-
plications introduced by the C preprocessor. The CScout refactoring browser analyses complete program
families, by tagging the original identifiers with their precise location and classifying them into equivalence
classes orthogonal to the C language’s namespace and scope extents. A web-based user interface provides
programmers with an intuitive source code analysis and navigation front-end, while an SQL-based back-
end enables more complex source code analysis and manipulation. CScout has been successfully applied
to a number of medium and large proprietary and open source projects identifying thousands of modest
refactoring opportunities.

Key words: C, browser, refactoring, preprocessor

1. Introduction

C is still the language of choice for developing systems applications, such as operating sys-
tems and databases, embedded software, and the majority of open-source projects [1, p. 16]. De-
spite the language’s popularity, tool support for performing even simple refactoring, browsing, or
analysis operations is currently lacking. Programmers typically resort to using either simplistic
text-based operations that fail to capture the language’s semantics, or work on the results of the
compilation and linking phase that—due to the effects of preprocessing—do not correctly reflect
the original code. Interestingly, many of the tools in a C programmer’s arsenal were designed
in the 1970s, and fail to take advantage of the CPU speed and memory capacity of a modern

Email address: dds@aueb.gr (Diomidis Spinellis).
URL: http://www.dmst.aueb.gr/dds (Diomidis Spinellis).

workstation. In this paper we describe how the CScout refactoring browser, running on a power-
ful workstation, can be used to accurately analyze, browse, and refactor large program families
written in C.

CScout can process program families consisting of multiple related projects (we define a
project as a collection of C source files that are linked together) mapping the complexity intro-
duced by the C preprocessor back into the original C source code files. CScout takes advantage of
modern hardware advances (fast processors, large address spaces, and big memory capacities) to
analyze C source code beyond the level of detail and accuracy provided by current IDEs, compil-
ers, and linkers. Specifically, the analysis CScout performs takes into account both the identifier
scopes introduced by the C preprocessor and the C language proper scopes and namespaces.

The objective of this paper is to provide a tour of CScout by describing the domain’s chal-
lenges, the operation of CScout and its interfaces, the system’s design and implementation, and
details of CScout’s application to a number of large software projects. The main contributions
of this paper are the illustration of the types of problems occurring in the analysis of real-life C
source code and the types of refactorings that can be achieved, the demonstration through the ap-
plication of CScout to a number of systems that accurate large-scale analysis of C code is in fact
possible, and a discussion of lessons associated with the construction of browsers and refactoring
tools for languages, like C and C++, that involve a preprocessing step.

2. Problem Statement

Many features of the C language hinder the precise analysis of programs written in it and com-
plicate the design of corresponding reasoning algorithms [2]. The most important culprit features
are unrestricted pointers, aliasing, arbitrary type casts, non-local jumps, an underspecified build
environment, and the C preprocessor. All features but the last two ones limit our ability to reason
about the runtime behavior of programs (see e.g. the article [3] and the references therein). Sig-
nificantly, the C preprocessor and a compilation environment based on external tools also restrict
programmers from performing even supposedly trivial operations such as determining the scope
of a variable, the type of an identifier, or the extent of a module.

2.1. Preprocessor Complications

In summary, preprocessor macros complicate the notion of scope and the notion of an identi-
fier [4–6]. For one, macros and file inclusion create their own scopes. This is for example the case
when a single textual macro using a field name that is incidentally identical between two struc-
tures that are not otherwise related is applied on variables of those structures. In the following
example, the name of the identifier len might need changing in all three definitions, although in
C the members of each data structure belong to a different namespace.

struct disk block { int len ; /∗ ... ∗/ };
struct mem block { int len ; /∗ ... ∗/ };
#define get block len (b) ((b)−>len)

In addition, new identifiers can be formed at compile time via the preprocessor’s concatenation
operator. As an example, the following code snippet defines a variable named sysctl var -
sdelay, even though this name does not appear in the source file.

2

����������
	
��
�
���
���

��� �� �	����

�

��

�
����������� ��� ��
�� �	���������

��������� ���������

Fig. 1. Program family relationships in Unix tools.

#define SYSCTL(x) static int sysctl var ## x
SYSCTL(sdelay);

An additional complication comes from the use of conditionally compiled code (see also Sec-
tion 2.2). Such code may or may not be compilable under a given compilation environment, and,
often, blocks of such code may be mutually incompatible.

2.2. Build Environment Complications

Parnas [7] defines a program family as a set of programs that should be studied by first con-
sidering the common properties of the set and then determining individual properties of family
members (see also the work by Weiss & Lai [8]). For the purposes of analyzing C source code
for browsing and refactoring purposes we are interested in program families consisting of pro-
grams that through their build process reuse common elements of source code. This is a property
of what has been termed the build-time software architecture view [9]. We have identified three
interesting instances of source code sharing in such families:
Different program configurations Often the same source code base is used to derive a number

of program configurations. As an example, the FreeBSD kernel source code is used as a basis
for creating kernels for five processor architectures. Major parts of the source code are the
same among the different architectures, while the compilation is influenced by architecture-
dependent macros specifying properties such as the architecture’s native element size (32 or
64 bits) and the “endianess” of the memory layout (the order in which an integer’s bytes are
stored in memory).

Different programs In many cases elements of a source code base are reused to create various
executable programs. Consider the case illustrated in Figure 1. Although code reuse is typically
realized in the Unix environment by creating a common library (such as the libraries math,
dbm, termcap, and telnet), which is linked with each program requiring the given functionality,
there are cases where a simpler and less structured approach is adopted. The example in Figure
1 illustrates some dependencies between three (supposedly separate) Unix programs where

3

CScout was applied: test, sh, and cp. Among them the condition evaluation utility test and the
shell sh share the source file test.c, while two source files both include the header err.h.

Program versions When there is a supported maintenance branch among different releases
of the same program, then the same source code (with typically small differences between
release-dependent versions) is reused among the different releases.
In all the cases we described above the sharing and the differentiation of the source code does

not typically happen through mechanisms of the C language, but through extra-linguistic facili-
ties. The most important of these are compiler invocation options that set macros and include file
paths, symbolic links across files and directories, environment variables affecting the build pro-
cess, macros hard-coded in the compiler, and the automated copying of files as part of the build
process. Despite these complications, a viable tool should propagate browsing and refactoring
operations across all files in a given program family.

2.3. Problem Impact

Due to the above problems, programmers are currently working with methods and tools that
are neither sound nor complete. The typical textual search for an identifier in a source code
base may fail to locate identifier instances that are dynamically constructed, or will also locate
identifiers that reside in a different scope or namespace. A more sophisticated search using a
compiler or IDE-constructed symbol table database will fail to match all macro instances, while
its results will be difficult to match against the original source code. Consequently, program
maintenance and evolution attributes are negatively affected as programmers, unsupported by
the tools they use, are reluctant to perform even a simple rename-function refactoring. Anecdotal
evidence supports our observation: consider identifier names such as the Unix creat system call
that still persist, decades after the reasons for their original names have become irrelevant [10,
p. 60]. The readability of existing code slowly decays as layers of deprecated historical practice
accumulate [11, pp. 4–6, 184] and even more macro definitions are used to provide compatibility
bridges between legacy and modern code.

3. Related Work

Tools that aid program code analysis and transformation operations are often termed browsers
[12, pp. 297–307] and refactoring browsers [13] respectively. Related work on object-oriented
design refactoring [14] asserts that it is generally not possible to handle all problems introduced
by preprocessing in large software applications. However, as we shall see in the following sec-
tions, advances in hardware capabilities are now making it possible to implement useful refac-
toring tools that address the complications of the C programming language. The main advantage
of our approach is the correct handling of preprocessor constructs, so, although we have only
tested the approach on different variants of C programs, (K&R C, ANSI C, and C99 [15–17]) it
is, in principle, also applicable to programs written in C++ [18], Cyclone [19], PL/I and many
assembly-code dialects.

Reference [20] provides a complete empirical analysis of the C preprocessor use, a catego-
rization of macro bodies, and a description of common erroneous macros found in existing pro-
grams. Two theoretical approaches proposed for dealing with the problems of the C preprocessor
involve the use of mathematical concept analysis for handling cases where the preprocessor is
used for configuration management [21], and the definition of an abstract language for capturing

4

File Metrics
– Number of: statements, copies of the file, defined project-scope functions, defined file-scope (static) functions, de-

fined project-scope variables, defined file-scope (static) variables, complete aggregate (struct/union) declarations,
declared aggregate (struct/union) members, complete enumeration declarations, declared enumeration elements, di-
rectly included files

File and Function Metrics
– Number of: characters, comment characters, space characters, line comments, block comments, lines, character

strings, unprocessed lines, preprocessed tokens, compiled tokens, C preprocessor directives, processed C prepro-
cessor conditionals (ifdef, if, elif), defined C preprocessor function-like macros, defined C preprocessor object-like
macros

– Maximum number of characters in a line
Function Metrics
– Number of: statements or declarations, operators, unique operators, numeric constants, character literals, if / switch

/ break / for / while / do / continue / goto / return statements, goto / case / default labels, else clauses, project-scope /
file-scope (static) / macro / object and object-like / unique project-scope / unique file-scope (static) / unique macro /
unique object and object-like / label identifiers, global namespace occupants at function’s top, parameters

– Maximum level of statement nesting
– Fan-in and fan-out
– Cyclomatic, extended cyclomatic, and maximum (including switch statements) cyclomatic complexity

Table 1
File and function metrics that CScout collects.

the abstractions for the C preprocessor in a way that allows formal analysis [4]. The two-way
mapping between preprocessor tokens and C-proper identifiers used by CScout was first sug-
gested by Livadas and Small [22]. A tool adopting an approach similar to ours is Xrefactory [23].
However, Xrefactory is unable to handle identifiers generated during the preprocessing stage; its
author claims that the problem is in general unsolvable. Other related work has proposed the in-
tegration of multiple approaches views, and perspectives into a single environment [24], the full
integration of preprocessor directives in the internal representation [25,26], the use of an abstract
syntax graph for communicating semantic information [27], and the use of a GXL [28] schema
for representing either a static or a dynamic view of preprocessor directives [29].

The handling of multiple configurations implemented through preprocessor directives that
CScout implements, has also been studied in other contexts, such as the removal of preprocessor
conditionals through partial evaluation [30], the type checking of conditionally compiled code
[31], and the use of symbolic execution to determine the conditions associated with particular
lines of code [32].

4. The CScout Refactoring Browser

To be able to accurately and efficiently map and rename identifiers across program families
CScout integrates in a single processing engine functions of a compiler driver (such as make
or ant), a C preprocessor, a C compiler front-end, a parser of yacc files, a linker, a relational
database export facility, and a web-based GUI.

CScout as a source code analysis tool can:
– annotate source code with hyperlinks to a detail page for each identifier
– list files that would be affected by changing a specific identifier
– determine whether a given identifier belongs to the application or to an external library, based

on the accessibility and location of the header files that declare or define it
– locate unused identifiers taking into account inter-project dependencies

5

������

���	�
����

�������

���
��	����
���	��
���

�

�
�	���
��
�����

����

�
��������
��
���

������

����

�����
�
�����

���
��	����

����������

��
������
����������

Fig. 2. CScout system operation.

– perform queries for identifiers based on their namespace, scope, reachability, and regular ex-
pressions of their name and the filename(s) they are found in,

– perform queries for files, based on their metrics or properties of the identifiers they contain
– perform queries for functions, based on their metrics, their callers, or the functions they call
– monitor and report superfluously included header files
– provide accurate metrics on identifiers, functions, and files (see Table 1)

More importantly, CScout helps programmers in refactoring code by identifying dead objects
to remove, and can automatically perform accurate global rename identifier refactorings [33].
One might question whether support for a single refactoring type merits calling CScout a refac-
toring tool. However we should take into account that the rename identifier operation is by far the
most common refactoring operation performed in practice [34], and that performing this opera-
tion reliably on production C source code is very tricky. Specifically, CScout will automatically
rename identifiers
– taking into account the namespace of each identifier: a renaming of a structure tag, member,

or a statement label will not affect, for example, variables with the same name
– respecting the scope of the renamed identifier: a rename can affect multiple files, or variables

within a single block, exactly matching the semantics the C compiler would enforce
– across multiple projects (linkage units) when the same identifier is defined in common shared

include files or even code
– across conditionally compiled units, if a corresponding workspace (a set of interrelated linkage

units) has been defined and processed,
– occurring in macro bodies and even parts of other identifiers, when these are created through

the C preprocessor’s token concatenation feature
Figure 2 illustrates the model of CScout’s operation. The operation is directed by a processing

script, which contains a sequence of imperative processing commands. These commands setup
an environment for processing each source code file. The environment is defined by the cur-
rent directory, the include file directory path, externally defined macros, and the linkage unit to

6

be associated with global identifiers. The script is a C file comprised mostly of #define direc-
tives and CScout-specific #pragma directives, like project, block enter, block exit, includepath,
clear defines, clear include, and process. In cases where the source code can contain multiple
configurations under conditional compilation the script will contain directives to process the
source code multiple times, once for each configuration.

Creating the processing script is not trivial; for a large project, like the Linux kernel, the script
can be more than half a million lines long. The script can be created in three ways.

(i) A declarative specification of the source components, compiler options, and file locations
required to build the members of a program family is processed by the CScout workspace
compiler cswc.

(ii) A separate program, csmake, can monitor compiler, archiver, and linker invocations in a
make-driven build process, and thereby gather data to automatically create the processing
script.

(iii) The build process can be instrumented to record the commands executed. This transcript
can then be semi-automatically converted into the CScout processing script. For instance, a
74-line Perl script was used to convert the 1149 line output of Microsoft’s nmake program
compiling the Windows Research Kernel into a 51,288 line Cscout processing script.

To handle conditionally compiled code, a single script can contain instructions for multiple
passes over the source code, with different options enabled in each pass.

As a by-product of the processing CScout generates a list of error and warning messages in a
standard format that typical editors (like vi and Emacs) and IDEs can process. These warnings go
beyond what a typical compiler will detect and report
– unnecessarily included header files,
– identifiers for functions, variables, macros, labels, tags, and members that are never used across

the complete workspace, and
– elements that should have been declared with file-local (static) visibility.
Many interesting maintenance activities can be performed by processing this standardized er-
ror report. In one case we automatically processed those warnings to remove 765 superfluous
#include directives (out of a total of 5429) from a 190KLOC CAD program [35].

After processing all source files, CScout operates as a web server, allowing members of a team
to browse and modify the files comprising the program family. All changes performed through
the web interface (currently rename operations on identifiers) are mirrored in an in-memory copy
of the source code. These changes can then be committed back to the source code files, optionally
under the control of a version control system. A separate backend enables CScout to export its
data structures to a relational database management system for further processing.

4.1. Web-Based Interface

The most productive use of CScout stems from its interactive web-based interface (see Figure
3).

Using the SWILL embedded web server library [36] CScout presents the analyzed source code
collection in a way that enables browsing by connecting a web client to the tool’s HTTP-server
interface. A set of hyperlinks enables users to perform the following tasks.
– Browse file and identifier names belonging to specific semantic categories (e.g. read-only files,

file-spanning identifiers, or unused identifiers).
– Examine the source code of individual files, with hyperlinks providing navigation from each

7

Fig. 3. A screen dump of the CScout web interface.

identifier to a separate page providing details of its use.
– Specify identifier queries based on the identifier’s namespace, scope, and name, and whether

the identifier is writable, crosses a file boundary, is unused, occurs in files of a given name, is
used as a type definition, or is a (possibly undefined) macro, or macro argument. The file and
identifier names to include or exclude can also be specified in the query as extended regular
expressions.

– Specify simple form-based file and function queries based on the calculated metrics listed in
Table 1.

– View the semantic information associated with a class of identifiers. Users can find out whether
the identifier is read-only (i.e. at least one of its instances resides in a read-only file), and
whether its instances are used as macros, macro arguments, structure, union, or enumeration

8

(a) The identifier query form. (b) An identifier page.

Fig. 4. CScout in operation.

tags, structure or union members, labels, type definitions, or as ordinary identifiers. In addition,
users can see if the identifier’s scope is limited to a single file, if it is unused (i.e. appears
exactly once in the file set), the files it appears in, and the projects (linkage units) that use
it. Unused identifiers allow the programmer to find functions, macros, variables, type names,
structure, union, or enumeration members or tags, labels, or formal function parameters that
can be safely removed from the program.

– View information associated with a function or a function-like macro: the identifiers compris-
ing its name, its declaration and definition, the callers and the called functions, and their transi-
tive closure. Uniquely, CScout can calculate metrics and call graphs that take into account both
functions and function-like macros (see Figure 5—derived while browsing the source code of
awk and drawn using dot [37]). This matches the reality of C programming, where the two are
used interchangeably.

– Substitute all matching instances of a given identifier with a new user-specified name. This
process can be repeated multiple times, allowing the incremental improvement of the code,
without the expensive reprocessing step.

– Write back the changed identifiers into the respective source code files.
The above functionality can be used to semi automatically perform two important refactoring op-
erations: rename, e.g. Griswold and Notkin’s [33] “rename-variable”, and remove, e.g. Fowler’s
[38] “Remove Parameter”. Name clashes occurring in a rename refactoring are not detected,
because this feature would require reprocessing the entire program family source code base—a
time consuming process. This restriction however is rarely a problem in practice, as programmers
can easily spot a name clash in a given scope, and the compiler will typically flag any remaining
clashes as errors. Remove refactorings can be trivially performed by hand, after identifiers that

9

����������

������	�

�		

������	 �
�
���

�	��	�

������	 ������	

���	��	�����	�

	����	�

����������	

��
�	� �����

��������

Fig. 5. A call graph spanning functions and macros (tempfree is a function-like macro).

occur exactly once have been automatically and accurately identified. Again, fully automating
this process is hard (there are many rare special cases that have to be handled), but performing it
by hand is in most cases very easy.

The web server follows the representational state transfer (REST) architecture [39], and there-
fore its URLs can be used for interoperating with other tools. Furthermore, as all web pages that
CScout generates are identified by a unique URL, programmers can easily mark important pages
(such as a particular identifier that must be refactored, or the result of a specialized form-based
query) using their web browser’s bookmarking mechanism, or even email an interesting page’s
URL to a coworker. In fact, most links appearing on CScout’s main web page are simply canned
hyperlinks to the general queries we outlined above.

4.2. SQL Backend

CScout can also save the data structures representing its source code analysis into a relational
database. We chose to use a relational database over a specialized and more expressive logic
query language, such as SOUL [40] or JQuery [41,42], in order to exploit the performance and
maturity of existing RDBMS systems for the offline storage of very large data sets—one particular
study we performed [43] involved storing and processing more than 160 million records.

Figure 6 shows the most important parts of the corresponding schema. (Four tables associated
with reasoning about include file dependencies are not shown.) Through the database one can

10

�����

����
����	�
�
����

�
�����
���

�������	����

�

�

�
���

����
���
�
�
�������������

�

�

�
����

����������

�

�

�

�

�������	

����������

����������

�

�

��	����

����������
��
�������

�

�

����	

����������

�������

�

�

�����

����������
���������

�

�

�
���	���

�����
����
����

�
�����
����

�
�

�

�

�
���	�����	����

���������������
�������������
���
�
�
�������������

����������
���

�

�

����������
�����

�

�

�

 ���������

�
���	�������

���

�
�

�

��
���
�

�

�
�������

�

�

Fig. 6. The logical schema of the exported database.

issue all the queries available through the GUI, and many more.
For instance, the following simple SQL query will find all type definitions that don’t end in

“ t” (a common naming convention).

select distinct name from
ids left join tokens on ids . eid = tokens . eid
where ids . typedef and not name like ’% t’
order by name

The following, more complex, query

select name, count(∗) as nfile from (
select fid , tokens . eid , count(∗) as c from
tokens
group by
eid , fid) as cl inner join ids on

cl . eid = ids . eid
group by ids . eid , ids .name
order by nfile desc;

will show all identifiers, ordered by the number of different files in which they occur (an indica-
tion of coupling):
+---------+-------+
| name | nfile |
+---------+-------+
NULL	3292
u	2560
printk	1922
...	...

The program’s SQL representation contains all elements of the corresponding source code.
Therefore, one can also perform large-scale refactorings through SQL commands. Then, the

11

source code of each file (e.g. file number 42 in the following SQL query) can be fully recon-
stituted from its (refactored) parts.

select s from
(select name as s , foffset
from ids inner join tokens on
ids . eid = tokens . eid
where fid = 42

union select code as s , foffset from rest
where fid = 42

union select comment as s, foffset from comments
where fid = 42

union select string as s , foffset from strings
where fid = 42

)
order by foffset

5. Design and Implementation

Bringing CScout into life required careful analysis of the principles of its operation and sub-
stantial implementation work.

5.1. Operation

The theory behind CScout’s operation is described in detail elsewhere [6]; this paper focuses
on the tool’s design, implementation, and application. The basic principle of operation is to tag
each identifier appearing in the original source code with its precise location (file and offset)
and to follow that identifier (or its part when new identifiers are composed by concatenating
original ones) across preprocessing, parsing, (partial) semantic analysis, and (notional) linking.
Each identifier also belongs to exactly one equivalence class: a set of identifiers that would have
to be renamed in concert for the program family to remain semantically and syntactically correct.
As each identifier token is read, a new equivalence class for that token is created. The notion of
an equivalence class is orthogonal to the language’s existing namespace and scope extents, taking
into account the changes to those extents introduced by the C preprocessor. Every time a symbol
table lookup operation for an identifier matches an existing identifier (e.g the use of a declared
variable or the use of an argument of a function-like macro) the two corresponding equivalence
classes are unified into a single one.

In total, 20 different equivalence class unifications are performed by CScout. These can be
broadly classified into the following categories: macro formal parameters and their use inside
the macro body, macros used within the source code, macros being redefined or becoming unde-
fined, tests for macros being defined, identifiers used in expressions, structure or union member
access (direct, through a pointer indirection, or through an initializer designator), declarations
using typedef types, application of the typeof operator (a gcc extension) to an identifier,
use of structure, union, and enumeration tags, old-style [15] function parameter declarations
with the respective formal parameter name, multiple declarations and definitions of objects with
compilation or linkage unit scope, and goto labels as labels and targets.

12

By classifying all identifiers into equivalence classes, and then creating and merging the
classes following the language’s rules, we end up with a data structure that can identify many
interesting relationships between identifiers.
– A rename operation simply involves changing the name of all identifiers belonging to the same

equivalence class.
– Unused identifiers are those belonging to an equivalence class with exactly one member.
– If at least one identifier in an equivalence class is located in a read-only file—for instance a

system library header file—then all the identifiers of that class are considered immutable.
Although complete semantic analysis and type checking is not performed, a symbol table con-

taining basic type information for identifiers is maintained. Furthermore, support for the C99 ini-
tializer designators also requires the evaluation of compile-time constants. (The array position of
an initializer can be specified by a compile-time constant. When elements of nested aggregates—
structures, unions, and arrays—are specified in comma-separated form without enclosing them
in braces, the array position constant must be evaluated in order to determine the type of the next
element.) The type checking subsystem is mainly used to identify the underlying structure or
union for member access and initialization, and to handle type definitions. In addition, its imple-
mentation provided us with a measure of confidence regarding the equivalence class unification
operations dictated by the language’s semantics.

The symbol table design follows the language’s block scoping rules, with special cases han-
dling prototype declarations, and compilation and linkage unit visibility. Thankfully, between
the processing of two different projects (linkage units) the complete symbol table is cleared
and only equivalence classes remain in memory, thus reducing CScout’s memory footprint. This
optimization can be performed, because if we ignore extra-linguistic facilities (such as shared
libraries, debug symbols, and reflection) linked programs operate as standalone processes and do
not depend on any program identifiers for their operation.

5.2. Implementation Details

CScout has been actively developed for five years, and currently consists of 25 KLOC. Most
of the code is written in C++ with Perl being used to implement the CScout processing script
generators. Two more Perl scripts automatically extract from the source code the documentation
for the SQL database schema and the reported error messages. The lexical analyzer and the C
preprocessor are hand-crafted, while the parsing of preprocessor expressions and the C code
are handled by two separate btyacc grammars. Handling the various language extension dialects
hasn’t proven to be difficult; probably because CScout is quite permissive in what is accepts.
Therefore, currently CScout’s input is the union of all possible language extensions. If in the
future some extensions are found to be mutually exclusive, this can be handled by adding pragma
directives that will change the handling of the corresponding keywords.

Although no fancy algorithms and data structures were used to achieve the CScout’s scala-
bility extreme care was taken to adopt everywhere data structures and corresponding algorithms
that would gracefully scale. This was made possible by the C++ STL library. For each data struc-
ture we simply chose a container that would handle all operations on its elements efficiently
in terms of space and time. Thus, all data lookup operations are either O(1) for accessing data
through a pointer indirection or at a vector’s known index, or O(log N) for operations on sets
and maps. Up to now algorithmic tuning was required only once, to fix a pathological case in the
implementation of the C preprocessor macro expansion [44].

13

The aggressive use of STL complicated CScout’s debugging. Navigating STL data structures
with gdb is almost impossible, because gdb provides a view of the data structures’ implemen-
tation details, but not their high-level operations. This problem was solved by implementing a
custom logging framework [45]: a lightweight and efficient construct that allowed us to instru-
ment the code with (currently 175) log statements. As the following example shows, writing such
a debugpoint statement is trivial:

if (DP()) cout << ”Gather args returns : ” << v << endl;

Each debugpoint can be easily enabled by specifying in a text file at runtime its corresponding
file name and line number. The overhead of debugpoints can be completely disabled at compile
time, but even when they get compiled, if none of them is enabled, their cost is only that of a
compare and a jump instruction.

The testing of CScout consists of stress and regression testing. Stress testing involves applying
CScout to various large open-source systems. Problems in the preprocessor, the parser, or the
semantic analysis quickly exhibit themselves as various errors or crashes. In addition, by having
CScout replace all identifiers of a system with mechanically-derived names and then recompiling
and testing the corresponding code builds confidence in CScout’s equivalence algorithms and
the rename-identifier refactoring. Regression testing is currently used to check corner cases and
accidental errors. The CScout’s preprocessor is tested through 68 test cases whose output is then
compared with the hand-verified output. The parser and analyzer are further tested through 42
small and large test cases whose complete analysis is stored in an RDBMS and compared with
previous (correct) results.

CScout benefits from the use of existing mature open source components and tools: the bty-
acc backtracking variant of the yacc parser generator, the SWILL embedded web server library
[36], the dot graph drawing program [37]), and the mySQL and PostgreSQL relational database
systems. The main advantages of these components were their stability, efficiency, and hassle-
free availability. In addition, the source code availability of btyacc and SWILL allowed us to port
them to various platforms and to add some minor but essential features: a function to retrieve an
HTTP’s request URL in SWILL, and the ability for multiple grammars to co-exist in a program in
btyacc.

6. Applying CScout

CScout has been applied on many commercial and open source program families running on a
variety of hardware and software platforms [43,46,35]. The workspace size ranges from 6 KLOC
(awk) to 4.1 MLOC (the Linux kernel). In all cases CScout was applied on the unmodified source
code of each project. (CScout supports the original K&R C [15], ANSI C [16], and many C99
[17], gcc, and Microsoft C extensions.) Details of some representative projects can be seen in
Table 2. The projects listed are the following.
awk The one true awk scripting language. 1

Apache httpd The Apache project web server, version 1.3.27.
FreeBSD The source code of the FreeBSD kernel HEAD branch, as of 2006-09-18, in three

architecture configurations: i386, AMD64, and SPARC64.
Linux The Linux kernel, version 2.6.18.8-0.5, in its AMD64 configuration.

1 http://cm.bell-labs.com/who/bwk/index.html

14

aw
k

A
pa

ch
e

Fr
ee

B
S

D
L

in
ux

So
la

ri
s

W
R

K

ht
tp

d
ke

rn
el

ke
rn

el
ke

rn
el

O
ve

rv
ie

w

C
on

fig
ur

at
io

ns
1

1
3

1
3

2

M
od

ul
es

(c
om

pi
la

tio
n

un
its

)
1

3
1,

22
4

1,
56

3
56

1
3

Fi
le

s
14

96
4,

47
9

8,
37

2
3,

85
1

65
3

L
in

es
(t

ho
us

an
ds

)
6.

6
59

.9
2,

59
9

4,
15

0
3,

00
0

82
9

Id
en

tifi
er

s
(t

ho
us

an
ds

)
10

.5
52

.6
1,

11
0

1,
41

1
57

1
12

7

D
efi

ne
d

fu
nc

tio
ns

17
0

93
7

38
,3

71
86

,2
45

39
,9

66
4,

82
0

D
efi

ne
d

m
ac

ro
s

18
5

1,
12

9
72

7,
41

0
70

3,
94

0
13

6,
95

3
31

,9
08

Pr
ep

ro
ce

ss
or

di
re

ct
iv

es
37

6
6,

64
1

41
5,

71
0

26
2,

00
4

17
3,

57
0

35
,2

46

C
st

at
em

en
ts

(t
ho

us
an

ds
)

4.
3

17
.7

94
8

1,
77

2
1,

04
2

19
2

R
ef

ac
to

ri
ng

op
po

rt
un

iti
es

U
nu

se
d

fil
e-

sc
op

ed
id

en
tifi

er
s

20
15

8,
85

3
18

,1
75

4,
34

9
3,

89
3

U
nu

se
d

pr
oj

ec
t-

sc
op

ed
id

en
tifi

er
s

8
8

1,
40

3
1,

76
7

4,
45

9
2,

62
8

U
nu

se
d

m
ac

ro
s

4
41

2
64

9,
82

5
60

2,
72

3
75

,4
33

25
,9

48

V
ar

ia
bl

es
th

at
co

ul
d

be
m

ad
e

st
at

ic
47

4
1,

18
5

47
0

3,
46

0
1,

18
8

Fu
nc

tio
ns

th
at

co
ul

d
be

m
ad

e
st

at
ic

10
4

1,
97

1
1,

99
6

5,
15

2
3,

29
4

Pe
rf

or
m

an
ce

C
P

U
tim

e
0.

81
”

35
”

03
:4

3:
40

”
07

:2
6:

35
”

01
:1

8:
54

”
00

:5
8:

53
”

R
eq

ui
re

d
m

em
or

y
(M

B
)

21
71

3,
70

7
4,

80
7

1,
82

7
58

2

Ta
bl

e
2.

D
et

ai
ls

of
re

pr
es

en
ta

tiv
e

pr
oc

es
se

d
ap

pl
ic

at
io

ns
.

15

Solaris Sun’s OpenSolaris kernel, as of 2007-07-28, in three architecture configurations: Sun4v,
Sun4u, and SPARC.

WRK The Microsoft Windows Research Kernel, version 1.2, into two architecture configura-
tions: i386 and AMD64.
In the cases of awk, Apache, and WRK, the program family included one main project and a

number of small peripheral ones (such as add-on modules, or post-processing tools) sharing a
few source or header files. The three Unix-like kernels (FreeBSD, Linux, and OpenSolaris) were
different: all consist of a main kernel and hundreds more modules providing functionality for var-
ious devices, filesystems, networking protocols, and additional features. With CScout these were
processed as a single workspace, allowing browsing and refactoring to span elements residing in
different linkage units.

Another interesting task was the processing under different configurations for FreeBSD, Open-
Solaris, and WRK [43]. A kernel configuration specifies the CPU architecture, the device drivers,
filesystems, and other elements that will be included in a kernel build. Through conditional com-
pilation directives, the processed source code of one configuration can differ markedly from
another. By processing multiple configurations as a single workspace CScout can present the
source code as the union of the corresponding source code elements, and therefore ensure that
the refactorings won’t break any of the configurations processed.

The processing time required appears to be acceptable for integrating CScout in an IDE for
small (e.g. up to 10 KLOC) projects. Memory requirements also appear to be tolerable for up
to medium sized workspaces (e.g. up to 100 KLOC) for a typical developer workstation. Large
workspaces will require a high-end modern workstation or a server equipped with multi-gigabyte
memory and a 64-bit CPU.

Up to now the most useful application of CScout has been the cleanup of source code, per-
formed by removing unused objects, macros, and included header files and by reducing the vis-
ibility scope of defined objects. This is an easy target, since all it entails is letting an editor au-
tomatically jump to each affected file location by going through CScout’s standardized warning
report.

To test CScout’s identifier analysis we instrumented the refactoring engine to rename all the
writable identifiers in the apache source code into new, mechanically derived, random strings.
The resulting obfuscated version of the source code compiled and appeared to work without
any problems. Such an approach could be applied on proprietary code to derive an architecture-
neutral distribution format.

7. Lessons Learned

The operation of program analysis and transformation tools can be characterized as sound
when the analysis will not generate any false positive results, and as complete when there are not
missing elements in the results of the analysis. The analysis performed by CScout over identi-
fier equivalence classes is in the general case sound, because it follows precisely the language’s
semantic rules. The incompleteness of the produced results stems from three different compli-
cations; addressing those with heuristics would result in an analysis that would no longer be
sound.

Predictably, the main complications in our scheme arise from preprocessing features: 1) unify-
ing undefined macros, 2) dealing with macros that do not cover the complete semantic spectrum
of their possible application, and 3) handling conditional compilation. In practice, the last is-

16

sue has caused the greatest number of problems. Conditional compilation results in code parts
that are not always processed. Some of them may be mutually exclusive defining e.g. different
operating system dependent versions of the same function. The problem can be handled with
multiple passes over the code, or by ignoring conditional compilation commands. This process
may need to be guided by hand, because conditionally compiled code sections are often specific
to a particular compilation environment. When processing the FreeBSD kernel we used both ap-
proaches: a special predefined kernel configuration target named LINT to maximize the amount
of conditionally compiled code that the configuration and processing would cover, and a separate
pass for each of five different processor architectures. Yet, even this approach did not adequately
cover the complete source code, as evidenced by an aborted attempt to remove header files that
appeared to be unused.

Another problem we encountered when applying CScout in realistic situations concerned lan-
guage extensions. The first version of CScout supported the 1989 version of ANSI C [16] and
a number of C99 [17] extensions. In practice we found that CScout could not be applied on
real-world source code without supporting many compiler-specific language extensions. Even if
specific programs were written in a portable manner, the platform-specific header files they in-
cluded used many of those extensions, and could not be processed by a tool that did not support
them. This was a significant problem for a number of reasons:
– Compiler-specific language extensions are typically far less carefully documented than the

standardized language. In a number of cases we had to understand an extension’s syntax and
semantics by looking for examples of its use, or reading the corresponding compiler’s source
code.

– Significant effort that could have been spent on improving the usefulness of CScout on all
platforms was often diverted toward the support of a single proprietary compiler-specific ex-
tension.

– Some language extensions were mutually incompatible.
– Unintended extensions arising from a compiler’s sometimes haphazard checking of a pro-

gram’s syntactic correctness restrict the portability of supposedly portable programs that use
the extension out of oversight.
Finally, we have yet to find a practical way to handle meta programming approaches where

a project-internal domain specific language (DSL) is used to produce C code. In such cases,
changes to the C source code may need to be propagated to the DSL code, or even to the DSL
compiler. Integrating the support into CScout, as we have done for yacc, solves the problem
for one specific case, but this approach cannot scale in a realistic manner. Currently identifiers
residing in an automatically generated C file can be easily tagged as “read-only”, but this will
restrict the number of identifiers that can be renamed. In the future, accurate file and offset
tagging of the automatically created source code, in a way similar to the #line directives currently
emitted by generators such as lex and yacc may offer a viable solution.

8. Conclusions

The application of CPU and memory resources toward the analysis of large program families
written in C is an effective approach that yields readily exploitable refactoring opportunities in
legacy code. CScout has already been successfully applied on a wide range of projects for per-
forming modest, though not insignificant, refactoring operations. Our approach can be readily
extended to cover other preprocessed languages like C++. Open issues from a research perspec-

17

tive are the automatic identification and implementation of more complex refactoring operations,
increasing the accuracy of flow graphs by reasoning about function pointers [47], the production
of source code views for given macro values, and the efficient maximization of code coverage.

Acknowledgements and Tool Availability

This work was partially funded by the European Community’s Sixth Framework Programme
under the contract IST-2005-033331 “Software Quality Observatory for Open Source Software
(SQO-OSS)”.

The tool and its documentation are available at http://www.dmst.aueb.gr/dds/cscout/.
CScout currently runs under the FreeBSD, Linux, and Microsoft Windows operating systems
under several 32 and 64-bit architectures.

References

[1] D. Spinellis, Code Reading: The Open Source Perspective, Addison-Wesley, Boston, MA, 2003.
[2] A. Garrido, R. Johnson, Challenges of refactoring C programs, in: IWPSE ’02: Proceedings of the International

Workshop on Principles of Software Evolution, ACM, New York, NY, USA, 2002, pp. 6–14.
[3] R. Ghiya, D. Lavery, D. Sehr, On the importance of points-to analysis and other memory disambiguation methods

for C programs, ACM SIGPLAN Notices 36 (5) (2001) 47–158, proceedings of the ACM SIGPLAN ’01 Conference
on Programming Language Design and Implementation (PLDI).

[4] J.-M. Favre, Preprocessors from an abstract point of view, in: Proceedings of the International Conference on
Software Maintenance ICSM ’96, IEEE Computer Society, 1996.

[5] G. J. Badros, D. Notkin, A framework for preprocessor-aware C source code analyses, Software: Practice &
Experience 30 (8) (2000) 907–924.

[6] D. Spinellis, Global analysis and transformations in preprocessed languages, IEEE Transactions on Software
Engineering 29 (11) (2003) 1019–1030.

[7] D. L. Parnas, On the design and development of program families, IEEE Transactions on Software Engineering
SE-2 (1) (1976) 1–9.

[8] D. M. Weiss, C. T. R. Lai, Software Product-Line Engineering: A Family-Based Software Development Process,
Addison-Wesley, 1999.

[9] Q. Tu, M. Godfrey, The build-time software architecture view, in: ICSM’01: Proceedings of the IEEE International
Conference on Software Maintenance, 2001, pp. 398–407.

[10] D. Cooke, J. Urban, S. Hamilton, Unix and beyond: An interview with Ken Thompson, IEEE Computer 32 (5)
(1999) 58–64.

[11] A. Hunt, D. Thomas, The Pragmatic Programmer: From Journeyman to Master, Addison-Wesley, Boston, MA,
2000.

[12] A. Goldberg, D. Robson, Smalltalk-80: The Language, Addison-Wesley, Reading, MA, 1989.
[13] D. Roberts, J. Brant, R. E. Johnson, A refactoring tool for Smalltalk, Theory and Practice of Object Systems 3 (4)

(1997) 39–42.
[14] L. Tokuda, D. Batory, Evolving object-oriented designs with refactorings, Automated Software Engineering 8

(2001) 89–120.
[15] B. W. Kernighan, D. M. Ritchie, The C Programming Language, 1st Edition, Prentice Hall, Englewood Cliffs, NJ,

1978.
[16] American National Standard for Information Systems — programming language — C: ANSI X3.159–1989, (Also

ISO/IEC 9899:1990) (Dec. 1989).
[17] International Organization for Standardization, Programming Languages — C, ISO, Geneva, Switzerland, 1999,

iSO/IEC 9899:1999.
[18] B. Stroustrup, The C++ Programming Language, 3rd Edition, Addison-Wesley, Reading, MA, 1997.
[19] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, Y. Wang, Cyclone: A safe dialect of C, in: USENIX

Technical Conference Proceedings, USENIX Association, Berkeley, CA, 2002.

18

[20] M. D. Ernst, G. J. Badros, D. Notkin, An empirical analysis of C preprocessor use, IEEE Transactions on Software
Engineering 28 (12) (2002) 1146–1170.

[21] G. Snelting, Reengineering of configurations based on mathematical concept analysis, ACM Transactions on
Software Engineering and Methodology (TOSEM) 5 (2) (1996) 146–189.

[22] P. E. Livadas, D. T. Small, Understanding code containing preprocessor constructs, in: IEEE Third Workshop on
Program Comprehension, 1994, pp. 89–97.

[23] M. Vittek, Refactoring browser with preprocessor, in: CSMR ’03: Proceedings of the Seventh European Conference
on Software Maintenance and Reengineering, IEEE Computer Society, 2003, p. 101.

[24] G. Antoniol, R. Fiutem, G. Lutteri, P. Tonella, S. Zanfei, E. Merlo, Program understanding and maintenance with
the CANTO environment, in: ICSM ’97: Proceedings of the International Conference on Software Maintenance,
IEEE Computer Society, Washington, DC, USA, 1997, p. 72.

[25] A. Garrido, R. Johnson, Analyzing multiple configurations of a C program, in: ICSM ’05: Proceedings of the 21st
IEEE International Conference on Software Maintenance, IEEE Computer Society, Washington, DC, USA, 2005,
pp. 379–388.

[26] A. Garrido, Program refactoring in the presence of preprocessor directives, Ph.D. thesis, University of Illinois at
Urbana-Champaign, Champaign, IL, USA, adviser: Ralph Johnson (2005).

[27] S. Lapierre, B. Laguë, C. Leduc, Datrix source code model and its interchange format: lessons learned and
considerations for future work, SIGSOFT Softw. Eng. Notes 26 (1) (2001) 53–56.

[28] R. C. Holt, A. Schürr, S. E. Sim, A. Winter, GXL: a graph-based standard exchange format for reengineering,
Science of Computer Programming 60 (2) (2006) 149–170.

[29] L. Vidács, A. Beszédes, R. Ferenc, Columbus schema for C/C++ preprocessing, in: CSMR ’04: Proceedings of
the Eighth European Conference on Software Maintenance and Reengineering, IEEE Computer Society, 2004, pp.
75–84.

[30] I. D. Baxter, M. Mehlich, Preprocessor conditional removal by simple partial evaluation, in: WCRE ’01: Proceedings
of the Eighth Working Conference on Reverse Engineering, IEEE Computer Society, Washington, DC, USA, 2001,
pp. 281–292.

[31] L. Aversano, M. D. Penta, I. D. Baxter, Handling preprocessor-conditioned declarations, in: SCAM’02: Second
IEEE International Workshop on Source Code Analysis and Manipulation, IEEE Computer Society, Los Alamitos,
CA, USA, 2002, pp. 83–93.

[32] Y. Hu, E. Merlo, M. Dagenais, B. Lagüe, C/C++ conditional compilation analysis using symbolic execution,
in: ICSM ’00: Proceedings of the International Conference on Software Maintenance, IEEE Computer Society,
Washington, DC, USA, 2000, pp. 196–207.

[33] W. G. Griswold, D. Notkin, Automated assistance for program restructuring, ACM Transactions on Software
Engineering and Methodology 2 (3) (1993) 228–269.

[34] G. C. Murphy, M. Kersten, L. Findlater, How are Java software developers using the Eclipse IDE?, IEEE Software
23 (4) (2006) 76–83.

[35] D. Spinellis, Optimizing header file include directives, Journal of Software Maintenance and Evolution: Research
and Practice.To appear.

[36] S. Lampoudi, D. M. Beazley, SWILL: A simple embedded web server library, in: USENIX Technical Conference
Proceedings, USENIX Association, Berkeley, CA, 2002, fREENIX Track Technical Program.

[37] E. R. Gasner, E. Koutsofios, S. C. North, K.-P. Vo, A technique for drawing directed graphs, IEEE Transactions on
Software Engineering 19 (3) (1993) 124–230.

[38] M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley, Boston, MA, 2000.
[39] R. T. Fielding, R. N. Taylor, Principled design of the modern Web architecture, ACM Transactions on Internet

Technology 2 (2) (2002) 115–150.
[40] R. Wuyts, Declarative reasoning about the structure of object-oriented systems, in: TOOLS ’98: Proceedings of the

Technology of Object-Oriented Languages and Systems, IEEE Computer Society, Washington, DC, USA, 1998, pp.
112–124.

[41] D. Janzen, K. D. Volder, Navigating and querying code without getting lost, in: AOSD ’03: Proceedings of the 2nd
international conference on Aspect-oriented software development, ACM, New York, NY, USA, 2003, pp. 178–187.

[42] K. De Volder, JQuery: A generic code browser with a declarative configuration language, in: Practical Aspects of
Declarative Languages, Springer Verlag, 2006, pp. 88–102, lecture Notes in Computer Science 3819.

[43] D. Spinellis, A tale of four kernels, in: W. Schäfer, M. B. Dwyer, V. Gruhn (Eds.), ICSE ’08: Proceedings of the
30th International Conference on Software Engineering, Association for Computing Machinery, New York, 2008,
pp. 381–390.

[44] D. Spinellis, Code finessing, Dr. Dobb’s 31 (11) (2006) 58–63.

19

[45] D. Spinellis, Debuggers and logging frameworks, IEEE Software 23 (3) (2006) 98–99.
[46] D. Spinellis, The way we program, IEEE Software 25 (4) (2008) 89–91.
[47] A. Milanova, A. Rountev, B. G. Ryder, Precise call graphs for c programs with function pointers, Automated

Software Engineering 11 (1) (2004) 7–26.

Id: cscout.tex 1.26 2008/06/15 22:42:10 dds Exp

20

