
1

Towards an Aspectual Analysis of Legacy Systems

Bedir Tekinerdo_an
Department of Computer Science

University of Twente
P.O. Box 217 7500 AE

Enschede, The Netherlands
bedir@cs.utwente.nl

Yasemin Satıro_lu
Department of Computer Science,

Bilkent University,
Bilkent 06800,
Ankara, Turkey

yasemins@cs.bilkent.edu.tr

Abstract

Aspect-Oriented software development provides explicit
mechanisms for coping with concerns that crosscut many
components and are tangled within individual
components. Current AOSD approaches have primarily
focused on coping with crosscutting concerns in software
systems that are developed from scratch. In this paper we
will investigate the applicability of AOSD to the evolution
of legacy information systems. Various approaches have
been already proposed to enhance LIS, however, these
approaches have not explicitly considered crosscutting
concerns and/or AOP techniques. We provide a
categorization of legacy systems and give some early
results in identifying and specifying aspects in legacy
systems.

Keywords
Legacy information systems, aspect-oriented software
development.

1. Introduction

A legacy software system may be defined informally as
an old system that remains in operation within an
organization [8]. Legacy systems typically have been
developed several years ago sometimes without
anticipating that they would be still running much later.
Inevitably the software requirements for legacy systems
might change and legacy systems must be evolved
accordingly. Maintaining legacy systems, however, is in
general hard because legacy systems very often run on
obsolete, slow hardware that is hard to maintain, the
documentation of the legacy system is lacking or
incomplete, the interfaces of the legacy system
components are limited for integration and/or adaptation,
etc. Organizations dealing with legacy systems can either
decide to replace the system or maintain the system. A
simple replacement, if possible at all, might desirable but
too expensive to consider because of the huge volumes of
necessary changes, or too risky because of the continuous
demand for on-line operation. For maintaining the legacy

system techniques such as reengineering, reverse
engineering, and software-reengineering patterns have
been proposed [2].

These approaches have generally focused on, or are
basically good at, coping with non-crosscutting concerns.
Hereby, the maintenance and evolution requirements
impact single components and can be more easily
localized. In contrast, crosscutting evolution requirements
have to deal with evolution of concerns that tend to
crosscut several components. Required changes to these
concerns are difficult because these changes need to be
performed at multiple places impeding even further the
maintainability. One basic reason why legacy systems are
usually associated with high maintenance costs is because
of the inflexibility of the adopted techniques [2]. In case,
crosscutting concerns are not appropriately addressed, the
continuous maintenance of legacy systems might thus
easily lead to a degradation of its structure and as such it’s
maintainability.

The AOSD community has provided several general
purpose solutions for coping with aspects in software
systems [4]. Unfortunately, existing AOSD approaches
seem to have primarily focused on identifying, specifying
and implementing aspects for systems that are developed
from scratch. Identifying, updating and specifying aspects
in legacy information systems impose different
requirements and constraints on the maintenance.

This paper aims to identify the applicability of AOSD for
legacy systems. We think that this study is beneficial in
two perspectives. First, AOSD researchers can get ideas
for enhancing AOSD approaches to coping with legacy
system code that is usually more difficult to access than
systems developed from scratch. Second, maintainers of
LIS can draw lessons from this study and use the
techniques in this paper as complementary to the existing
legacy code.

In particular we are interested in finding answers to the
following questions:

1. Which legacy systems could benefit from AOSD

2

techniques?

2. How to modularize crosscutting concerns in legacy
systems?

The paper is a first step towards finding an answer to the
above questions. The remainder of this paper is organized
as follows: Section 2 provides a categorization of legacy
systems. Section 3 analyzes the existing legacy systems
with respect to their ability to implement crosscutting.
Section 4 presents an overall analysis approach for
enhancing legacy systems with crosscutting concerns.
Finally section 5 presents the conclusions.

2. Categorization of Legacy Systems

The term legacy system is overloaded and can be
interpreted in different ways. To analyze the applicability
of AOSD in improving the maintainability of legacy
systems it is required that we understand which type of
legacy systems exist. For this we have categorized legacy
systems according to the criteria of criticality to business
needs, health state and accessibility. These criteria have
been derived from the literature on legacy systems.

2.1 Categorization based on Criticality
This categorization is done according to the business
criticality criteria and regards legacy systems from an
economical perspective. The legacy system types in this
category are mission critical and replaceable legacy
system types.

• Mission critical systems are the systems that are
essential to the continued operation of the business,
and, that provide service on which the organization is
highly dependent. A failure in this type of systems
may have a serious impact on the business [4]. If a
mission critical system stops working, the business
may grind to a halt. Also, these systems hold mission
critical business knowledge which cannot be easily
replaced [10].

• Non-critical, replaceable systems are the systems that
no longer meet business needs or that are technically
inefficient. These systems are ineffective in support
of the business, and they are constantly falling over
or becoming expensive to maintain.

2.2 Categorization based on Health State
This categorization is done according to the health state
criteria. In this categorization, legacy systems are
compared to living organisms. Their environment can
affect their state of health; they can be more or less
healthy depending on the changes in their environment
and the treatment they receive from the organization they
reside in. The legacy system types that are in this category
are healthy, ill, and terminally ill legacy system types [9].

• Healthy legacy systems are the systems that satisfy
the current enterprise needs and are kept healthy by
routine maintenance. Routine maintenance is the
incremental and iterative process in which small
changes are made to the system. These small changes
are usually bug corrections or small functional
enhancements. Healthy systems don’t need major
structural changes in order to support business needs
[5]. For these systems, either the legacy system is
satisfactorily handling current enterprise needs or the
needs are changing in relatively minor ways such that
the legacy system can be updated or maintained in a
timely and economical fashion [9].

• Ill legacy systems are the systems whose health has
deteriorated to the point that some kind of non
routine intervention is required [9]. For these
systems, routine maintenance falls behind the
business needs and a modernization effort is required.
An ill legacy system requires more extensive changes
than those possible during maintenance. These
changes include system restructuring, important
functional enhancements, or new software attributes
[5].

• Terminally ill legacy systems are the systems that
cannot keep pace with the business needs. The life of
these systems can be prolonged by extraordinary life
support, but heroic measures are required and are
often not economically justified. That is, for these
systems, modernization is either not possible or not
cost effective, and these systems must be replaced.
Also, if there is nobody left that knows anything
about the system and there is no source code
available for the system, the system is terminally ill
[9].

2.3 Categorization based on Accessibility
This categorization is done according to the accessibility
criteria. The legacy system types in this category are
black box and white box legacy system types.

• Black box legacy systems are the systems that are like
a black box; we have no detail on the internal
structure of these systems. For these systems, only
the externally visible behaviour is considered, not the
implementation. Source code of the system is either
not available or inscrutable. Also, a software
component may be defined as a black box, if all the
interactions occur through a published interface [4].

3

• White box decomposable legacy systems are the
systems, for which the system internals, such as
module interfaces, system components and their
relationships, domain models are visible. The source
code is available for these systems, and it is possible
to extract information from the code in order to create
abstractions that help in the understanding of the
underlying system structure. In addition, the
applications, interfaces, and database services can be
considered as distinct components; and there are well
defined interfaces for all these three components. In
decomposable systems, there are no dependencies
between the modules, such as procedure calls.

• White box non-decomposable legacy systems, are
systems in which the system internals are visible but
not separable. In essence, it is hard to derive the
structure of the system.

3. Improving Legacy System Modularity
using AOSD Approaches

3.1 Design Space of Legacy Systems
If we take the above categorization into account then we
could classify each legacy system based on the given
properties as illustrated in Table 1.

Table 1. Set of alternatives of mission critical legacy systems

Health
State

Accessibility Maintenance
Approach

Crosscutting
implement.

1. Healthy Blackbox Wrapping DC: -
SC: --

2. Healthy Whitebox-D Wrapping DC: ++
SC: ++

3. Healthy Whitebox-ND Wrapping DC: +
SC: 0

4. Ill Blackbox Migration,
Wrapping

DC: --
SC: --

5. Ill Whitebox-D Migration,
Wrapping

DC: -
SC: -

6. Ill Whitebox-ND Migration,
Wrapping

DC: -
SC: -

7. Terminal Blackbox Redevelopment DC: --
SC: --

8. Terminal Whitebox-D Redevelopment DC: --
SC: --

9. Terminal Whitebox-ND Redevelopment DC: --
SC: --

This would result in a set of possible types of legacy
systems, that is, the design space of legacy systems. A
legacy system could be for example, mission critical
because it is important from a business perspective,
healthy since it can keep satisfying the business needs
through conventional maintenance activities and white
box decomposable because of a clear accessible structure.
Given the three categorization dimensions we could have

2x3x3 = 18 possible kind of legacy systems.

In general legacy systems which are not business critical
are usually not considered for maintenance activities. For
this, we will consider only mission critical legacy systems
which will lead to 9 possible legacy systems. These
legacy system alternatives are listed in Table 1.

3.2 Conventional approaches
In principle, legacy systems are enhanced using one of the
following techniques [3]:

• Wrapping , provides a new interface to a legacy
component so that it can be more easily accessed by
other components.

• Migrat ion , moves the LIS to a more flexible
environment, while retaining the system’s original
functionality.

• Redevelopment rewrites existing code. It requires the
system to be shut down either during development or
during replacement. Redevelopment can imply a total
replacement but also reengineering is usually
categorized as a redevelopment activity as most
reengineering efforts propose complete system
reimplementation [3].

Given a concrete LIS problem, it is not always possible to
categorize the solution according to one problem [3] and
often combinations of these techniques are used. Table 1
shows the possible maintenance approaches for each type
of legacy system.

3.3 Applicability of AOSD
In principle AOSD approaches could be seen as part of
each of the above three legacy maintenance techniques.
Of course this categorization is too broad and does not
help us in deciding how AOSD could help to improve the
maintainability of legacy systems.

Our primary focus is on improving the maintenance of
legacy systems for crosscutting concerns. Crosscutting in
AOSD can be categorized as Dynamic Crosscutting and
Static Crosscutting, which we will abbreviate as DC and
SC respectively.

Static Crosscutting enables the developer to add fields
and methods to existing classes, to extend an existing
class with another. Dynamic Crosscutting enables the
developer to define additional implementation to run at
well defined points in the program.

Crosscutting in AOSD is implemented in aspects, which
represents a modular unit of crosscutting concerns.
Aspects define pointcuts and advices. A pointcut is a
construct to capture join points. A join point is a well-
defined point of execution in a program. An advice is

4

executable code for a pointcut.

We have performed an initial analysis of the legacy
systems as presented in Table 1 and evaluated it with
respect to:

(1) ability to implement dynamic crosscutting

(2) ability to implement static crosscutting.

In essence both types of crosscutting require some
visibility of the legacy system. For dynamic crosscutting
it is important to have some visibility to represent for
example the pointcut specification. Without a proper view
on the structure it is hard to identify the joinpoints and as
such to specify the pointcuts. Dynamic crosscutting will
be of course the easiest if the legacy system is
redeveloped in which case the whole structure will be
known again.

For static crosscutting the visibility of the structure of the
system is even more important, especially when it is for
example needed to extend the classes with new classes or
to introduce new methods and fields. In that case it is
important that the separate components of the systems can
be viewed and accessed separately. This implies that we
need preferable to deal with a legacy system that is
whitebox and also decomposable.

Based on these informal guidelines we have assessed each
legacy system type using the (increasing) scale --, -, 0, +,
++, with the meanings very low, low, fair, high, and very
high, respectively. For example, in case the
implementation of the crosscutting is not possible at all it
was assigned a --. A ++ on the other hand means that the
legacy system is very suitable for enhancing crosscutting
concerns using AOSD techniques.

Although a quantitative analysis is very difficult in
assessing the applicability of AOSD to legacy systems,
we can still derive some useful heuristics that can be
applied during maintenance activities. Looking at table 1
we could for example derive the following heuristics as
presented in Table 2.

We could derive other rules from the given
categorization. Of course these rules remain heuristics and
can not always be very strictly applied. These are also
mentioned as practical guidelines or rules of thumb to
help the legacy maintainer in deciding whether AOSD can
be applied to enhance the concerns.

Table 2. Heuristic rules for assessing the ability for
implementing crosscutting in legacy systems

1. IF health state is <healthy> AND
accessibility is <blackbox>

THEN
ability for dynamic crosscutting is LOW AND
ability for static crosscutting is VERY LOW.

2. IF health state is <healthy> AND
accessibility is <whitebox-d>

THEN
ability for dynamic crosscutting is VERY HIGH AND
ability for static crosscutting is VERY HIGH.

3. IF health state is <healthy> AND
accessibility is <whitebox-nd>

THEN
ability for dynamic crosscutting is HIGH AND
ability for static crosscutting is FAIR.

4. IF health state is <ill> AND
accessibility is <blackbox>

THEN
ability for dynamic crosscutting is VERY LOW AND
ability for static crosscutting is LOW.

5. IF health state is <ill> AND
accessibility is <whitebox-d>

THEN
ability for dynamic crosscutting is MEDIUM AND
ability for static crosscutting is LOW.

6. IF health state is <ill> AND
accessibility is <whitebox-nd>

THEN
ability for dynamic crosscutting is VERY LOW AND
ability for static crosscutting is VERY LOW.

7. IF health state is <terminal ill> AND
accessibility is <blackbox>

THEN
ability for dynamic crosscutting is VERY LOW AND
ability for static crosscutting is VERY LOW.

….

4. Approach for Analysis of Legacy Systems

The process for analyzing a legacy system is depicted in
figure 1. First of all the legacy system will be analyzed
based on its business criticality, health state and
accessibility and based on this a characterization of the
legacy system will be defined. In case we have to deal
with a legacy system that is not maintainable, terminal ill,
then the legacy system will either be redeveloped or
dismissed. If the legacy system is still maintainable then
the concerns that need to be enhanced need to be
analyzed. Enhancement of a concern here means adding,
updating or even eliminating concerns.

5

Enhance New
Concern

Categorize
Legacy System

Non-
Crosscutting

Aspectual Refactoring

Conventional Maintenance
Techniques

[Maintainable]

Redevelop/
Dismiss

[Terminal ill]

Crosscutting

Figure 1. Approach for analyzing legacy systems for
crosscutting concerns

If the corresponding concern is a non-crosscutting
concern then conventional legacy maintenance techniques
can be used. If we are dealing with a crosscutting concern
then, if possible, aspectual refactoring must be applied.
Aspect-oriented refactoring has been studied by several
other researchers [6]. Aspect-oriented refactoring can be
applied to improve the understandability and the structure
of either non-aspect code or existing aspect-oriented code.
In our study we are interested in the first one, and in
particular the refactoring of object-oriented legacy code.
We could for example apply migration techniques for an
object-oriented legacy system and refactor this to an
aspect-oriented version of the system. Several aspectual
refactoring patterns have been identified such as extract
advice, extract implementation, extract interface
implementation, extract exception handling etc.

5. Conclusion

This paper provides a first initial attempt for analyzing the
applicability of AOSD to legacy systems. For this, we
have provided a categorization of existing legacy systems
and analyzed these with respect to the ability for
implementing static and dynamic crosscutting. Although
the results are still immature they provide us the vision for
our future research activities. Our future work will
enhance the heuristic rules for analyzing legacy systems
and include the development of a tool for guiding the
legacy maintainer in applying AOSD.

References
[1] M. Lehman and L. Belady. Program Evolution: Processes

of Software Change. London: Academic Press., 1985.

[2] K. Bennet. "Legacy System: Coping with Success". IEEE

Software, pp. 19-23, January 1995.

[3] J. Bisbal, D. Lawless, B. Wu and J. Gromson. Legacy
Information Systems: Issues and Directions, IEEE
Software, Vol. 16 No. 5 pp.103-111, September/October
1993.

[4] T. Elrad, R. Fillman, & A. Bader. Aspect-Oriented
Programming. Communication of the ACM, Vol. 44, No.
10, October 2001.

[5] J. Hannemann and G. Kiczales. Overcoming the Prevalent
Decomposition of Legacy Code. In Workshop on Advanced
Separation of Concerns, 2001.

[6] S. Hanenberg, C. Oberschulte, R. Unland. Refactoring of
Aspect-Oriented Software. NetObject Days. 2003.

[7] R. Laddad. Aspect-oriented Refactoring Series. TSS. 2003.

[8] I. Warren. The Renaissance of Legacy Systems. Practitioner
Series. Springer Verlag, 2000.

