
Analyzing large event traces with the help of a coupling metrics

Andy Zaidman Serge Demeyer

University of Antwerp
Department of Mathematics and Computer Science

Lab On Re-Engineering
Middelheimlaan 1, 2020 Antwerp, Belgium
{Andy.Zaidman, Serge.Demeyer}@ua.ac.be

Abstract

Gaining understanding of a large-scale industrial
program is often a daunting task. In this context dynamic
analysis has proven it’s usefulness for gaining insight
in object-oriented software. However, collecting and
analyzing the event trace of large-scale industrial appli-
cations remains a difficult task. In this paper we present
a heuristic that identifies interesting starting points for
further exploratory program understanding. The technique
we propose is based on a dynamic coupling metric, that
measures interaction between runtime objects.

Keywords:
Reverse engineering, program comprehension, dynamic
analysis, dynamic metrics

1 Introduction

Every software engineer has been in the position that he
has to familiarize himself with the ins and outs of a piece
of software in the shortest possible time. Most often, this is
a daunting task and estimates go as far as stating that 30 -
40% of a programmer’s time is spent in studying old code
and documents in order to get an adequate understanding
of a software system before making changes [12, 13].

The manner in which a programmer gets understand-
ing of a software system varies greatly and depends on
the individual, the magnitude of the program, the level
of understanding needed, the kind of system, ... [8]
Because of this it is difficult to imagine that there exists
one tool for all program understanding purposes. Ideally,
a program understanding tool shouldguide the software
engineer in his exploration process through the software [6].

When building program understanding tools, three

strategies come to mind: pure static analysis, pure dy-
namic analysis or a combination of both. In the context
of object-oriented software however, static analysis has
proven to be inadequate to gain meaningful insight into
the behavior of the application due to the late binding
mechanism that’s present in object-oriented systems [14].
However, dynamic analysis also has a major drawback: the
huge amount of data that has to be analyzed, since even
small applications generate tens of thousands of events (see
Table 1). The scalability of the analysis algorithm is thus
of the utmost importance [9, 11]. Because of the human
cognition process, program understanding can never be a
fully automated process: the user should be free to explore
the software, with the help of specialized tools. Our aim is
to develop a technique which gives the software engineer
– the user– clues as to where to start his or her program
understanding process. These clues consist of medium
to high-level domain concepts from where the user can
dig deeper into the code and/or dynamic behavior of the
application.

To reach this goal we will develop a heuristic based
on a dynamic coupling metric. We will consider the most
tightly coupled classes asstarting pointsfor exploratory
program understanding. As these tightly coupled classes
haveauthority in the system, i.e. they tell other classes
what to do, they can be considered as ideal starting points.

2 Dynamic metrics

Metrics have originally been designed to measure qual-
ity of (object oriented) code. These metrics are calculated
from data that can be found directly in or can be extracted
from the source code [4]. A few well-know metrics are:
cyclomatic complexity measure, coupling between objects
(CBO), lines of code (LOC), ...

Calculating metrics for object-oriented systems, how-

Apache Jakarta
Ant 1.6.1 JMeter 2.0.1

Classes 127 189
(traced)
Classes 1 216 245
(total)
Lines of 98 681 22 234
Code (LOC), total
Events 24 270 064 138 704
objects @ runtime 18500 4180
Scenario building Ant 1 simulation run
Execution time 23 s 82 s
(without tracing)

• The number of events as shown in Table 1 takes into
account both method entries and exits. As thus, the
number of method invocations is actually 50% of this
number.

• What stands out is the big difference in the number of
events between Ant and JMeter even though the exe-
cution time for the latter is much longer. This can be
attributed to the fact that: (1) JMeter uses a lot of Java
base classes for e.g. network-related functionality and
(2) network-related operations can take a relatively
long time due to the uncertain network conditions.

Table 1. Size of an event trace of two medium-
size programs

ever, is a tedious task. The presence of polymorphism and
late binding makes that a static metrics tool, i.e. a tool that
only uses the source-code, cannot precisely determine the
actual targets for a certain method call.

Consider a two-level class hierarchy with a single
base class and a number of derived classes. When statically
there is a reference to the base class, but the actual run-time
type is that of one of the derived classes, the actual target
is the method from the derived class. For this reason,
statically, the possible targets are the base class and all
derived classes.
However, within the compiler optimization community,
researchers have observed that normally only a small
fraction of the possible targets get called [1]. Thus the
actual coupling is far less than what can be inferred from
source-code, hence traditional coupling metrics inaccu-
rately reflect polymorphism as it is used in well-designed
object-oriented programs. For that reason, coupling metrics
that are extracted from the run-time behaviour of applica-
tions have been defined [2].

There are also situations in which the actual coupling
is less that what can be determined from source-code. Sit-
uations in which there is dead-code, i.e. code that isnever
executed, or code that is not executed in the considered
execution scenarios, is also counted in static metric tools.
This is not the case when using a dynamic coupling metric
[15].

In the next section we will introduce a dynamic cou-
pling metric calledClass Request For Service.

3 Class Request For Service (CQFS)

From a technical point of view, we will use theExport
Object Coupling metric (EOC) to calculate the dynamic
coupling [15] (see Equation 1). For understanding this for-
mula, some helpful definitions are:

• oi: is an instance of a class (an object)

• O: is the set of objects involved in a particular run of
the program

• M(oi, oj): is the set of messages sent from objectoi

to objectoj during the program run

• MT : is the total number of messages exchanged be-
tween all objects inO

EOC(oi, oj) =
|{M(oi, oj)|oi, oj ∈ O ∧ oi 6= oj}|

MT
× 100

(1)
Calculating the EOC for each participating object results

object1 ... objectn
object1 coupling1,1 ... coupling1,n

...
objectn couplingn,1 ... couplingn,n

Table 2. Coupling matrix

in a matrix of coupling-values, as can be seen in Table 2.
For program understanding purposes this information is too
detailed: it is far more interesting to know how many unique
messages a certain object has sent. For this, we can revert
to theObject Request For Servicemetric [15]. Equation 2
gives us the total number of (unique) messages that object
oi has sent during the program run.

OQFS(oi) =
K∑

j=1

EOC(oi, oj) (2)

This leaves us with a simplified version of the matrix from
Table 2 in which only one column remains. The result-set

from Equation 2 still remains large. Considering the two
case studies mentioned in Table 1 applying the OQFS
technique we would still end up with 18500 and 4180
results for respectively Apache Ant and Jakarta JMeter.
For understanding purposes this does not scale up at the
cognitive level [17].

Furthermore, in the case of program understanding
considering the class-level coupling instead of the object-
level coupling is more intuitive for the end-user because of
the direct relation between the results from the heuristic
and the actual source-code. As such, we’ve developed the
Class Request For Servicemetric.

CQFS(cx) =
K∑

j=1

|{M(oi, oj)|oi → cx ∧ oj → cy

∧oi, oj ∈ O ∧ cx, cy ∈ C ∧ cx 6= cy}| (3)

Applying this metric will count every method that a certain
class calls during the execution of the program. Notice, that
due to the fact that we are working with sets, calling the
same method more than once, will not increment the cou-
pling count.
Furthermore, the conditioncx 6= cy eliminates cohe-
sion. We explicitly discount cohesion as we are inter-
ested in inter-class relationships and not in intra-class inner-
workings.

4 Discussion

For our exploratory program understanding process
we are mainly interested in classes which have a lot of
responsibilities, i.e. classes which tell other classes to
perform a certain action. Because of polymorphism and
late binding, a certain class can issue different messages
depending on e.g. the dynamic type of a parameter of
a method. With this in mind, we can choose from two
strategies to interpret the metric.

We can simply take the objects with the highest OQFS
value and start our exploratory program understanding
process there.
A benefit of choosing this strategy is that other instances
from the same class that exhibit different behavior will be
listed separately.
On the downside we have to note the fact that there is no
easy way of removing duplicates, i.e. different instances
from the same class that have an identical behavior.

In the case of CQFS, notice that duplicate message-
sends are eliminated because we work with sets. In the
context of program understanding, this can be seen as an
advantage, as the user gets presented with less information.

On a negative note, we can say that some interesting forms
of polymorphism are abstracted away. Take for example
two instantiations of the same class. Due to a different
parameter of one of the methods of these objects, the ob-
jects themselves can react differently due to polymorphism.
Using CQFS, this behavior gets abstracted away.

4.1 Complexity

We already mentioned that a solution should before all
be scalable. In order to get a complete analysis of the run-
ning program, we have to collect the dynamic coupling met-
ric at runtime or calculate it post-mortem from the event
trace.

Time complexity For both the OQFS and the CQFS met-
ric we have to go over the entire trace once in order to cal-
culate the coupling metric. The one step that remains to
be done afterwards is to extract respectively the highest-
scoring objects and classes. This means that the time com-
plexity is linear in the number of eventsn, henceO(n).

Memory complexity To compute the memory complex-
ity, we first have to establish what data we have to keep track
of:

• In the case of OQFS: each object that is created at run-
time.

• In the case of CQFS: each class that is used during the
program run.

• Which messages have already been accounted for in
the metric calculation

This leaves us with a worst-case memory complexity of:
OQFS:O(#objects×#objects)
CQFS:O(#classes×#objects)

Because an object creation is considered as a message, we
can put an upper bound on the number of objects with the
total number of messages sentn. In general terms, the mem-
ory complexity is much more of an issue than the time com-
plexity when analyzing large projects.

5 Related work

Recent research has come up with a number of possible
solutions:

• A novel solution has been formulated by Hamou-Lhadj
and Lethbridge [7]. They represent the event trace as
a tree in which they search neighbouring isomorphic
subtrees. Identical neighbouring subtrees are pruned

and replaced with a single occurrence which gets an-
notated with the total number of occurrences of the
subtree. However, the problem of finding all isomor-
phic subgraphs in the tree is NP-complete [10], a prob-
lem referred to as thesubgraph isomorphism problem.
Their solution here is to set a minimum threshold for
a certain subtree to be considered as being a candidate
for exploratory program understanding.

• In [16] we explained a heuristic based on the fre-
quency of execution of individual methods. The idea is
based on the fact that methods work together to reach
a common goal (e.g. accomplish a certain functional-
ity). Thus, these methods are related through their fre-
quency of execution [3]. We’ve engineered a heuristic
which searches for and displays regions in the trace
which contain similar trajectories in the frequency-
time space. For finding this trajectories human inter-
vention is required, so this is not a fully automated
technique.

• Ducasse et Al present a visualization technique called
polymetric views[5]. These polymetric views can best
be described as a variant of a class diagram in which
the height, width and color of the class are measures
of certain metrics. In this case, these dynamic metrics
can be the (1) total number of calls, (2) number of in-
vocations where the caller and receiver are the same
and (3) number of calls where the receiver is not the
same as the caller.

6 Conclusion and future work

We’ve presented a heuristic that searches for objects or
classes that are candidates for starting exploratory program
understanding. We base ourselves on the fact that classes
which have more than average responsibilities have a
greater coupling compared to other classes.

Our short-term goals are to validate the heuristic we’ve
presented in this paper. The experiments we wish to set-up
should also verify our hypothesis that it is better to abstract
the metric up to the class-level, instead of remaining at the
object-level.

We furthermore want to establish the preciseness of
using static or dynamic coupling metrics as helping tools
for exploratory program understanding. As such, we want
to know from the the original developers of a system which
classes they consider important and then verify it with the
results of the coupling metrics.

References

[1] G. Aigner and U. U. Ḧolzle. Eliminating virtual function
calls in c++ programs. InProceedings of the 10th European
Conference on Object-Oriented Programming, pages 142–
166. Springer-Verlag, 1996.

[2] E. Arisholm, L. Briand, and A. Foyen. Dynamic coupling
measurement for object-oriented software.IEEE Transac-
tions on Software Engineering, 30(7), July 2004.

[3] T. Ball. The concept of dynamic analysis. InESEC / SIG-
SOFT FSE, pages 216–234, 1999.

[4] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented design.IEEE Transactons on Software En-
gineering, 20(6):476–493, 6 1994.

[5] S. Ducasse, M. Lanza, and R. Bertuli. High-level polymetric
views of condensed run-time information. InProceedings
of the European Conference on Software Maintenance and
Reengineering (CSMR), pages 309–318. IEEE, 2004.

[6] M. A. Foltz. Dr. jones: A software archaeologist’s magic
lens. http://citeseer.nj.nec.com/457040.html.

[7] A. Hamoe-Lhadj and T. C. Lethbridge. An efficient al-
gorithm for detecting patterns in traces of procedure calls,
2003. Paper presented at the Workshop on Dynamic Analy-
sis (co-located with ICSE’03).

[8] A. Lakhotia. Understanding someone else’s code: Analysis
of experiences.Journal of Systems and Software, pages 269–
275, Dec. 1993.

[9] J. R. Larus. Efficient program tracing.Computer, 26:52–61,
May 1993.

[10] K. Mehlhorn. Grahp Algorithms and NP completeness.
Springer Verlag, 1984.

[11] R. Smith and B. Korel. Slicing event traces of large software
systems. InAutomated and Algorithmic Debugging, 2000.

[12] D. Spinellis. Code Reading: The Open Source Perspective.
Addison-Wesley, 2003.

[13] N. Wilde. Faster reuse and maintenance using software re-
connaissance, 1994. Technical Report SERC-TR-75F, Soft-
ware Engineering Research Center, CSE-301, University of
Florida, CIS Department, Gainesville, FL.

[14] N. Wilde and R. Huitt. Maintenance support for object-
oriented programs.IEEE Transactions on Software Engi-
neering, 18(12):1038–1044, 1992.

[15] S. M. Yacoub, H. H. Ammar, and T. Robinsion. Dynamic
metrics for object oriented designs. InSixth IEEE Interna-
tional Symposium on Software Metrics, pages 50–61. IEEE,
1999.

[16] A. Zaidman and S. Demeyer. Managing trace data volume
through a heuristical clustering process based on event exe-
cution frequency. InProceedings of the European Confer-
ence on Software Maintenance and Reengineering (CSMR),
pages 329–338. IEEE, 2004.

[17] I. Zayour and T. C. Lethbridge. Adoption of reverse engi-
neering tools: a cognitive perspective and methodology. In
Proceedings of the 9th International Workshop on Program
Comprehension, pages 245–255, 2001.

