Object Ownership for Dynamic Alias Protection

James Noble
Object Technology Group
Microsoft Research Institute
Macquarie University
Sydney, Australia
kjx@mri.mq.edu.au

David Clarke, John Potter,
Practical Object Technology, Theory, and Engineering Research Group,
School of Computer Science and Engineering,
UNSW, Sydney, Australia.
clad@csee.unsw.edu.au,potter@cse.unsw.edu.au

Abstract

Interobject references in object-oriented programs allow arbitrary aliases between objects. By
breaching objects’ encapsulation boundaries, these aliases can make programs hard to understand
and especially hard to debug. We propose using an explicit, run-time notion of object ownership
to control aliases between objects in dynamically typed languages. Dynamically checking object
ownership as a program runs ensures the program maintains the encapsulation topology intended
by the programmer.

1: Introduction

Aliasing is endemic in object oriented programs — whether class-based or prototype-based
[15]. Because objects have identity, and can be uniformly referred to by essentially any other
object, the dependencies between objects in a program can be arbitrary.

Interobject references are particularly important because they can undermine programmer’s
attempts to build encapsulated aggregate objects — objects outside an aggregate object can
hold references — aliases — to objects inside the aggregate, breaking the encapsulation of the
aggregate object. Although many object-oriented languages include some kind of protection
for the names of object’s slots, so an internal sub-object can be stored in a private slot, name
protection is insufficient to protect objects — by error or by oversight, a programmer can write
a public method which returns a value from a private slot.

There have been a number of proposals to address this problem in classical object-oriented
languages [10, 14, 2]. Most of these, including Islands [14] and Balloons [2], provide Full Alias
Encapsulation — they statically restrict programs so that no aliases may cross an aggregate
object’s encapsulation boundary. Unfortunately, full alias encapsulation also forbids objects
inside the aggregate from referring to other objects outside, preventing one object from being
contained in two different collections.

We are developing a model for Flexible Alias Protection [21, 8] which separates the objects
inside an aggregate into two categories — the aggregate’s representation, which should not be
accessible outside the aggregate, and the aggregate’s arguments, which may be accessible outside,
provided they are treated as immutable — similar to the distinction between aggregation and
association in object-oriented design methodologies.

Flexible alias protection defines three invariants on a system’s behaviour [21]:

e No Representation Exposure — An aggregate object’s mutable representation objects
should only be accessible via the aggregate object’s interface.

e No Argument Dependence — An aggregate should not depend upon its arguments’
mutable state.

e No Role Confusion — An aggregate should not return an object in one role when it
was passed into the aggregate in another role.

Flexible alias protection is based on a model of object ownership. Every object which is
part of the representation of an aggregate object is owned by that object, and should not be
visible outside it — formally, an object’s owner should be an articulation point (or dominator)
on every path from the root of the system to the object. As a result, if an object is deleted or
garbage collected, its representation — the objects it owns — can also be deleted. This notion
of object ownership is quite general — for example, a UML object is related by association
to its arguments and by aggregation to its representation [11] and a similar ownership relation
between objects can be identified in all object-oriented programs [22].

For example, Figure 1 illustrates the structure of an object representing a university course.
The Course object is represented by a List of Students, the List is represented by its Links, and
the Students are the List object’s arguments. The Course object is an articulation point for all
the other objects, and the List object is an articulation point for the Links.

Crink o ik o] ok)

[Student] [Student] [Student]

Figure 1. An aggregate course object

Flexible Alias Protection requires that any program manipulating the course structure main-
tains the three invariants (no representation exposure, no argument dependence, and no role
confusion). For example, no representation exposure means that the Link objects may not be
accessed outside their containing list (otherwise the List would not be an articulation point for
the link objects), similarly, the Students should not be accessible to the wider system outside
the Course object. No argument dependence means that the List object must not depend upon
any mutable state contained with the Student objects. For example, if the List was required
to be sorted in order of student’s names, a student changing their name would render the list
unsorted, and quite possibly break any methods inside the list object that depend upon the list

being sorted (such as a binary search or sorted list merge). No role confusion means that the
List must not treat Link objects as if they were Student objects (or vice versa), even if they
have the same type — as if, for example, the Student class inherited from the Link class.

2: Dynamic Alias Protection

Our existing models of flexible alias protection are classical — they are based on classes and
static typing [21, 8, 9]. In this paper, we propose an explicit, run-time model for flexible alias
protection based directly on object ownership and suitable for a dynamically-typed, prototype-
based language such as Self [1] or Kevo [24].

One of the aims of prototype-based programming (compared with class-based programming)
is to make objects self-sufficient — that is, an object should be able to be understood as an
isolated component of a system, without reference to the enclosing system of which it is a part
[20]. For example, most prototype-based languages allow each individual object to define its own
structure and behaviour without reference to some external class. If necessary, groups of similar
objects can then be created by cloning (shallow copying) a prototype object. Unlike inheritance,
instantiation, and classes, which require special programming language support, there is nothing
special about the clone operation or the objects used as prototypes: any object (whether cloned
or created ab initio) is structurally independent from every other object in the system.

Given their aim of self-sufficiency, it is a little surprising that most prototype-based languages
have not addressed the problems caused by interobject aliasing. If an object’s representation
is exposed, or if it depends on its argument objects, then the object cannot be understood in
isolation from its enclosing context, and is not really self-sufficient.

Our dynamic alias protection scheme aims to extend the idea of self-sufficiency to address
interobject aliasing, and is structured as follows. The ownership of every object is established
and stored in a special owner field in each object, in much the same an object’s class is stored
in a special type or class field. Then, this ownership information is used to check the validity
of each message send. Dynamic alias protection is based on runtime checks of objects’ owner
fields in exactly the same way dynamic type checking is based on runtime checks of objects’ type
fields.

2.1: Object Ownership

We propose adding an owner pseudovariable to every object in the program. The owner field
simply stores object’s owner — that is, it holds a reference to some other object in the program.
An object’s owner may be set explicitly when it is created, may be left uninitialised (or free) to
represent an object which has no owner, or may be initialised to the special value proto if the
object is to be used as a prototype.

One object is distinguished as the root of the system (in Self, this would be the lobby). The
owner fields in the system should be constrained to form a forest, with trees rooted at the lobby
and at free or proto objects, with each owner field pointing in the direction of the root of its tree.
Intuitively, the objects making up an aggregate’s representation will be owned by the aggregate.

Figure 2 shows the ownership structure for the Course example. The Course object is the
owner of the List object, and the List is the owner of all the Links (although some links are
reachable only via other Links). Similarly the Course object is the owner of all the Student
objects, even though the Students are only reachable from the Course via the List and Links.

Student Student Student

Figure 2. The ownership structure of the course object
2.1.1: Object Pathnames

Object ownership can be also modeled as giving pathnames to objects, similar to the path-
names in a file system, except that pathnames do not necessarily uniquely name objects. Each
object is (conventionally) given a local name — perhaps based on the name of its type or class
— and an object’s pathname is the concatenation of all its owners’ local names, and then its
own local name. The lobby is implicitly at the start of every path, so simple paths like a and
b mean that a and b are in the lobby. A path such as a.b.c refers to an object c owned by an
object b in turn owned by another object a which is within the lobby.

To simplify the presentation we will assume that each object is uniquely named by a path-
name. Objects’ pathnames will be unique only if object’s local names are unique within their
owners — in a practical system this could be arranged simply by using objects’ underlying iden-
tifiers (such as memory pointers) as their local names. To continue the course example from
Figure 2, if the main course object has the pathname course, then the list has the pathname
course.list, students sl and s2 would have pathnames course.sl and course.s2, and the links inside
the list would be course.list.linkl, course.list.link2, and so on.

2.1.2: Ownership and Containment

Pathnames can make the concept of object ownership clearer: an object’s owner has the same
pathname as that object with the last element (the object’s local name) removed. Some object
o owns another object r (that is, r is part of o’s representation) if r’s pathname is o’s pathname
extended with 7’s local name [, i.e:

oownsr = ol=r = owner(r)=o

Assuming we didn’t know the ownership structure shown in Figure 2, we could deduce it from
the object’s pathnames: course.list is the owner of course.list.linkl and course.list.link2 because it
is the direct prefix of their pathnames.

Pathnames also illuminate object containment. Containment is the transitive closure of
object ownership: one object is contained within another object if the containing object is the
contained objects owner, the owner’s owner, and so on. In terms of pathnames, one object is

contained within another object if the container object’s pathname is any prefix of the contained
object’s pathnames. That is:

o contains r = r is a prefix of o

In the example in Figure 2, the list contains the links (because it owns them); the course con-
tains the list and the students (because it owns them); the course also contains the links (because
they are contained in the list, which the course owns); and the lobby contains everything.

2.2: Alias Protection Rules

Dynamic alias protection uses object ownership to enforce the invariants for flexible alias
protection. Aliasing problems occur when the internal state of an aggregate object is changed
via an alias, without going through the interface of that object. That is, when an aggregate’s
state is changed from the outside (representation exposure) or when an aggregate depends upon
the mutable state of an external object (argument dependence).

We can use object ownership to forbid such accesses, by imposing two rules onto the system,
the representation rule and the arguments rule.

2.2.1: Representation Rule

To avoid representation exposure, we must prevent an object receiving a message which
crosses into an object from the outside — in the example, Link objects may be accessed from
the List, but not from the Course. To this end, we enforce a representation rule on all message
sends in the system, which disallows messages which break encapsulation.

The representation rule states a sender object s can send a message to a receiver object r
only if the receiver’s owner contains the sender. That is:

S —>rep, T = owner(r) contains s

The effect of the reference rule is that the only message sends which will proceed are those
which originate in the parts of the system contained within the receiver’s owner. We call this
set of objects the receiver object’s extent.

s € extent(r) = s —pep, T

One way to think about this is that messages may first go up any number of levels in the
containment hierarchy (even up to the lobby) but then only ever go down one level to get to its
implementation. Going down more than one level would mean that a message would penetrate
through an object’s encapsulation boundary.

Any message sends which do not meet the rule should raise a dynamic “Representation Rule
Check” exception, terminating the message send in the same way that a message which fails a
dynamic type test raises a “Does Not Understand” error in Smalltalk, or a dynamic cast raises
a “Class Cast” exception in Java.

2.2.2: Argument Rule

The representation rule prevents representation exposure, but does not address argument
dependence. Argument dependencies occur when some object depends on some information
lying outside it — that is, which it does not contain.

The basic representation rule rep; as presented in the preceding section does not distinguish
between messages sent to an object’s arguments, and messages sent to an object’s representation.
Under the representation rule, a message may pass from the sender to some argument object
outside it, and that argument object can be modified independently of the sender.

Argument dependence can only occur when a message is passed out of an object, that it is,
when it is sent to some object it doesn’t contain. A message sent to an object contained in the
receiver cannot therefore cause argument dependence:

5 —*noarg T = s contains r

Combining this rule with the basic representation rule (rep;) produces a revised representa-
tion rule (rep) which prevents argument dependence as well as representation exposure:

S —bpep T => S OWNS T

(since owner(r) contains s A s contains r = s owns 7).

Unfortunately, the revised rep rule is very restrictive; it only allows an object to send a
message to its own direct representation. This prevents all message sends to objects’ arguments,
even though many messages sent to arguments do not cause argument dependence. Argument
dependence can only arise when information which can change flows into an object from outside
— that is, when an object depends upon the mutable state of its arguments.

For this reason, we introduce the argument rule to permit sending messages to arguments,
whenever those messages cannot cause argument dependence. The argument rule requires mes-
sages sent to an object’s arguments to fit in to one of two categories.

Messages sent to arguments must either:

e never access mutable state
or

e never return any information to the sender.

We call messages that access mutable state immutable messages, and messages that never
return any information to the sender one way messages. Where necessary, we use the term
mutable messages to describe “normal” messages that may access mutable state and return
information to the sender.

The argument rule applies whenever the primary representation rule (rep;) applies, but the
revised rule (rep) does not:

$ —qrg T = owner(r) contains s A not s owns r

Finally, in the dynamic alias protection system, all messages must be covered by one or other
of the rep or arg rules, or an alias protection exception is raised. In Figure 2, for example, the

List can send mutable messages to its Links, and the Course can send mutable messages to its
Students. The List or Links cannot send mutable messages to the Students (this would make
the List depend on its arguments), but can send immutable or one way messages.

The asymmetry between the representation and argument rules is important. The represen-
tation rule is defined in terms of direct ownership, while the argument rule is defined in terms
of transitive containment. This is to protect the integrity of internal implementation objects
— if the representation rule used containment, an object’s representation would be able to be
exposed because a message send could go arbitrarily deep into an object’s representation (in
Figure 2, a Course sending a message to a Link would expose the List’s representation).

2.2.3: Immutable Messages

Operationally, immutable messages can be naively implemented by a flag which keeps track
of mutable sends versus immutable sends. Mutable messages may access mutable state — read
and write objects’ variables — but if an immutable send attempts to access mutable state, a
runtime “Mutable State Exception” should be raised. A message send is mutable by default,
but once a thread begins executing an immutable message, all messages in that thread will be
immutable until the original immutable message returns.

In order for this rule to be practical, a programming language needs to be able to express
idempotent computations easily. For example, the language could incorporate purely functional
constant expressions and single-assignment (once) slots in objects (as in Cecil [7]).

2.2.4: One Way Messages

In a one way message send, no information may flow back from the receiver to the sender of
the message. This means that one way messages may not return results — or, rather, that if the
methods called by the messages return results, that these results should not be delivered to the
message sender. Any other channels through which information could flow back to the receiver
must also be disabled; in particular, if the receiver raises an exception processing the message,
the exception cannot be communicated back to the sender.

The advantage of one way messages is that they can read and write mutable state in the
receiver, so they allow information to flow out of objects into their arguments. For example,
assuming all windows in a GUI library are owned by the lobby, then any object can send a
one-way message to update the display of any window. The Observer pattern typically uses this
kind of design.

2.2.5: Role Confusion

Role confusion is represented as type parameterisation in static alias protection systems
[21, 8]. The problem in these static systems is that containers must somehow record the own-
ership types of the objects they contain, since ownership cannot be checked dynamically when
objects are removed from containers. For the dynamic alias protection, every object records its
ownership in the owner field, and any ownership violations will be detected through the dynamic
rules, including those that would result in role confusion in a static system.

3: Discussion

Dynamic alias protection and object ownership interact with other language features, in
particular creating new aggregate objects by cloning, and the prototype corruption problem.

We also discuss a variety of possible extensions to dynamic alias protection.
3.1: Clone

Existing clone primitives are either shallow — copying only one object, or deep — recursively
copying an object and all objects to which it refers, ideally duplicating each copied object only
once. Neither of these clones produces a useful copy of an aggregate object — a shallow clone
copies only the top level object, while a deep clone will copy an aggregate plus any argument
objects which do not belong inside the aggregate but to which the aggregate refers (assuming
the deep clone does not attempt to clone every object in the system).

Object ownership can be used to guide the actions of the clone primitive, cloning an aggregate
object and its representation while not cloning references to the aggregate’s arguments. That
is, cloning all objects owned (transitively) by the object being cloned, while keeping references
to other (necessarily external) objects intact. This is somewhere between a shallow clone and a
deep clone'.

Operationally, an ownership-based clone operation must take account of two issues. First,
when the clone reaches a candidate object to be cloned, it must traverse up from the candidate
object’s owner field to see if it is owned (possibly transitively) by the object actually being cloned.
If so, the candidate object is part of the cloned object’s representation (or the representation of
some object which is transitively part of the cloned object) and so should be cloned; otherwise,
it is an argument object and so should not be cloned. Second, the clone operation must be aware
that the structure of the objects it is cloning will be a graph, rather than a tree, so it must take
care to clone any object only once, typically by maintaining a map from every object to their
clone [23, p.314]. Finally, the owner fields in the new aggregate object must be initialised to
mirror that of the original aggregate, and the owner field in the new aggregate must be set to
free.

Figure 3 shows the result of cloning the List inside the Course from Figure 2. The List and
its representation Links are cloned, but the new List shares its argument Students with the
original List. In contrast, Figure 4 shows the result of cloning the whole Course — the entire
Course is replicated, including its constituent List, Links, Students, and ownership structure.

3.2: Prototype Corruption

Object ownership addresses the prototype corruption problem [4]. This problem arises when
a prototype is accidently modified by a program, typically because the prototype was not cloned
before being used, and so the prototype (rather than a clone of the prototype) is directly incor-
porated into the running program.

We set a prototype’s owner field to the special value proto, which marks the object as a
prototype. The value proto can be though of as representing an object which owns the root of
the system (the lobby). Since prototypes are not owned by any other objects in the system, the
arguments rule prevents them from being corrupted by any other objects. Unfortunately, since
cloning an object requires access to the object’s mutable state, a strict interpretation of the
mutability rule would prevent prototypes being cloned. The mutability rule is therefore relaxed
for object’s whose owner is proto; these objects may be cloned but not otherwise accessed.
Because prototypes are owned above the root of the system, their extent is the whole system.

!We are considering calling this a sheep clone after Dolly [6].

[Link]—>E Link]—>[Link]

Student Student Student

Figure 3. Cloning the list

T N T ey

Student] E Student] Student

Student Student Student

Figure 4. Cloning the course

3.3: Sibling Rule

We are considering a number of extensions to the ownership scheme. The representation rule
limits collaboration between subsidiary objects implementing an aggregate object — indeed,
since they will both be owned by the aggregate, they cannot access each other’s mutable state;
in fact, they cannot even access their own mutable state through a double dispatch via the other
object. For example, the mutable state of the link objects in Figure 2 can only be accessed by the
list object which owns them; one link object cannot change another link object. The core of this
problem is that these kind of auziliary objects do not represent abstractions in their own right;
they are only used to implement other abstractions. For auxiliary objects, the representation
rule can be weakened, so that auxiliary objects can access the mutable state of other auxiliary
objects, provided they are owned by the same object. We call this the sibling rule, since the
auxiliary objects are all owned by the same parent object.

S —sibling " = owner(r) = owner(s)

3.4: Reference Containment

The representation rule prevents the mutable state of an object’s representation from begin
accessed outside that object, and avoids all the problems of representation exposure. It is
interesting that, technically, the representation rule does not prevent representation exposure,
because any object may keep references to an object belonging to another object’s representation.
What the representation rule does ensure is that no messages can ever be sent through such
an exposing reference, so the “exposure” has no practical effect. In this sense, neither the
representation or argument rules actually control aliasing, because they apply to message sends
rather than pointers. Rather, they prevent it causing problems for programmers.

As with many forms of dynamic typing, what this means in practice is that errors will often
only be detected long after the situation that caused them has passed. Part of some obejct’s
representation can be handed out of that object, but the error will only be detected when another
object sends the exposed representation object a message.

The key point here is that the only objects which may legitimately refer an object are objects
which can send that object a message — the object’s owner or other objects transitively owned
by its owner, that is, the object’s extent, as defined by the basic representation rule. This ensures
that an object’s owner is an articulation point on every path to the object [22].

The reference rule enforces this condition:

S = points to T = S € extent(r)

The reference rule checks, for each non-self send, that when a message is sent the receiver is
within the extent of every argument passed into the message, and that when a message returns
that the sender is within the extent of the message’s return value.

Operationally, this rule could be checked by inspecting the owner field of the arguments and
return value of every non-self message send, and comparing it with the chain of owner fields
starting from the message’s receiver (for arguments) or sender (for results) and following it up
to the lobby. The owner of the argument (or result) should be somewhere within the receiver’s
(or sender’s) owner chain.

3.5: Exporting References

The sibling rule does not cover all cases. An external iterator [12], for example, may need
to access the internal representation of the object over which it is iterating. An iterator cannot
be an auxiliary object, because auxiliary objects cannot access each other’s representations
directly, but can only send each other messages. This problem can be addressed by allowing
objects to export other objects, granting the exported objects access to their representation and
allowing them to send messages to any objects they own. For example, after an export operation,
an iterator would be placed on its aggregate object’s access control list. The mutability and
reference rules could be extended so that objects are considered to be owned by the object in
their owner field, and any exported objects in that object’s access control list.

4: Related Work

A number of prototype-based languages have included some support for object ownership
along with basic references and inheritance. Amulet and Garnet allow objects to have parts

as well as slots; when an object is cloned, all its parts are also cloned [18, 19]. ThingLab [5]
also built objects from composition hierarchies, although it used paths (rather than references)
to access internal components of aggregate objects and similar schemes have been suggested
for Smalltalk [3]. Object ownership has also been proposed for Eiffel [16], by annotating fields
as either private, to hold representation objects, or protected, to hold objects belonging to the
representation of the owner of the object. Similarly, the Dee language informally marks variables
to show whether they refer to the inside or outside of an aggregate [13]. Other aliasing control
mechanisms for object-oriented languages implicitly introduce some notion of object ownership.
For example, an Island’s Bridge class [14] or a Balloon Type [2] effectively owns the objects
contained within the scope of their Island or Balloon respectively.

It is also interesting to compare the dynamic alias protection scheme (presented in this pa-
per) with our static flexible alias protection scheme [21]. Flexible alias protection and dynamic
alias protection aim to provide the same guarantees about programs’ aliasing behaviour, but
use totally different mechanisms to provide those guarantees. These two schemes illustrate the
classic trade-offs between compile-time and run-time checking — flexible alias protection uses
annotations onto static types (called modes) that are checked at compile-time, while dynamic
alias protection uses annotations onto objects (the owner fields) that are checked at run-time.
The static scheme is more restrictive — for example, it forbids containers of objects with het-
erogeneous ownership — but it does not impose any execution overhead, unlike the dynamic
scheme. An explicit rule against role confusion rule is not required in the dynamic scheme, as
every object knows its owner, and passing an object into or out of an aggregate cannot change
that object’s ownership.

Unlike much related work [14, 2, 17], to date, neither our dynamic nor static alias protection
schemes rely on uniqueness — although we forbid mutable message sends and references between
certain objects, if references are permitted, the number of references is not constrained.

5: Conclusion

A great advantage of prototype-based languages is that they support independent, self-
defining objects. Like objects in classical object-oriented languages, these objects can have
dependencies on other objects, accessing those objects via inter-object references. We have
described proposed a dynamic model for alias protection for prototype-based languages, based
on an explicit notion of object ownership. Each object is given an extra owner field, and this
field is used to maintain restrictions the messages objects can receive. By controlling the effects
of aliasing, dynamic alias protection should make objects in prototype-based languages more
self-sufficient, and thus make programs easier to understand and debug.

Acknowledgements

Thanks to the anonymous reviewers for their comments on this paper. This work was sup-
ported by Microsoft Australia Pty. Ltd. An earlier version of this paper was discussed at the
OOPSLA’98 Workshop Thinking with Prototypes.

References

[1]

2]
(3]

[4]
[5]

[6]
[7]
[8]

Ole Agesen, Lars Bak, Craig Chambers, Bay-Wei Chang, Urs Hélzle, John Maloney, Randall B. Smith, David
Ungar, and Mario Wolczko. The Self Programmer’s Reference Manual. Sun Microsystems and Stanford
University, 4.0 edition, 1995.

Paulo Sérgio Almeida. Baloon Types: Controlling sharing of state in data types. In ECOOP Proceedings,
June 1997.

D. Blake and S. Cook. On including part hierarchies in object-oriented languages, with an implementation
in Smalltalk. In ECOOP Proceedings, pages 41-50. Springer-Verlag, 1987.

Giinther Blaschek. Object-Oriented Programming with Prototypes. Springer-Verlag, New York, N.Y., 1994.

Alan Borning. The programming language aspects of ThinglLab, a constraint-oriented simulation laboratory.
ACM Transactions on Programming Languages and Systems, 3(4), October 1981.

K.H.S. Campbell, J. McWhir, W.A. Ritchie, and I. Wilmut. Sheep cloned by nuclear transfer from a cultured
cell line. Nature, 380:64-66, March 1996.

Craig Chambers. The Cecil language: Specificaion and rationale. Technical report, Department of Computer
Science and Engineering, The University of Washington, 1997.

David Clarke, John Potter, and James Noble. Ownership types for flexible alias protection. In OOPSLA
Proceedings, 1998.

David Clarke, Ryan Shelswell, John Potter, and James Noble. Object ownership to order. MRI Technical
Report Submitted for Publication, 1998.

David L. Detlefs, K. Rustan M. Leino, and Greg Nelson. Wrestling with rep exposure. Technical Report
SRC Research Report 156, DEC Systems Research Center, july 1998.

Martin Fowler and Kendall Scott. UML Distilled: Applying the Standard Object Modeling Language. Addison-
Wesley, 1997.

Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. Design Patterns. Addison-Wesley,
1994.

Peter Grogono and Patrice Chalin. Copying, sharing, and aliasing. In Proceedings of the Colloquium on
Object Orientation in Data bases and Software Engineering (COODBSE’9}), Montreal, Quebec, May 1994.

John Hogg. Islands: Aliasing protection in object-oriented languages. In OOPSLA Proceedings, November
1991.

John Hogg, Doug Lea, Alan Wills, Dennis deChampeaux, and Richard Holt. The Geneva convention on the
treatment of object aliasing. OOPS Messenger, 3(2), April 1992.

Stuart Kent and Ian Maung. Encapsulation and aggregation. In TOOLS Pacific 18, 1995.
Naftaly Minsky. Towards alias-free pointers. In ECOOP Proceedings, July 1996.

B. A. Myers, D. A. Guise, R. B. Dannenberg, B. Vander Zanden, D. S. Kosbie, E. Pervin, A. Mickish,
and P. Marchal. Garnet: Comprehensive support for graphical, highly interactive user interfaces. IEEE
Computer, 23(11), 1990.

Brad A. Myers, Rich McDaniel, Rob Miller, Alan Ferrency, Patrick Doane, Andrew Faulring, Ellen Borison,
Andy Mickish, and Alex Klimovitski. The Amulet environment: New models for effective user interface soft-
ware development. Technical Report CMU-HCII-96-104, Human Computer Interaction Institute, Carnegie
Mellon University, 1996.

James Noble, Antero Taivalsaari, and Ivan Moore, editors. Prototype-Based Programming: Concepts, Lan-
guages and Applications. Springer-Verlag, 1999.

James Noble, Jan Vitek, and John Potter. Flexible alias protection. In ECOOP Proceedings, 1998.

John Potter, James Noble, and David Clarke. The ins and outs of objects. In Australian Software Engineering
Conference (ASWEC), 1998.

Trygve Reenskaug. Working with Objects: The OOram Software Engineering Method. Manning Publications,
1996.

Antero Taivalsaari. A Critical View of Inheritance and Reusability in Object-oriented Programming. PhD
thesis, University of Jyvéskyla, 1993.

