Automated Dependency Resolution for Open Source Software

Joel Ossher

Sushil Bajracharya

Cristina Lopes

Bren School of Information and Computer Sciences University of California, Irvine
Irvine, USA
{josshersbajrach,lopes} @ics.uci.edu

Abstract—Opportunities for software reuse are plentiful,
thanks in large part to the widespread adoption of open source
processes and the availability of search engines for locating
relevant artifacts. One challenge presented by open source
software reuse is simply getting a newly downloaded artifact to
build/run in the first place. The artifact itself likely reuses other
artifacts, and so depends on their being located to function
properly. While merely tedious in the individual case, this
can cause serious difficulties for those seeking to study open
source software. It is simply not feasible to manually resolve
dependencies for thousands of projects, and many forms of
analysis require declarative completeness. In this paper we
present a method for automatically resolving dependencies
for open source software. It works by cross-referencing a
project’s missing type information with a repository of can-
didate artifacts. We have implemented this method on top of
the Sourcerer, an infrastructure for the large-scale indexing
and analysis of open source code. The performance of our
resolution algorithm was evaluated in two parts. First, for a
small number of popular open source projects, we manually
examined the artifacts suggested by our system to determine
if they were appropriate. Second, we applied the algorithm
to the 13,241 projects in the Sourcerer managed repository to
evaluate the rate of resolution success. The results demonstrate
the feasibility of this approach, as the algorithm located all
of the required artifacts needed by 3,904 additional projects,
increasing the percentage of declaratively complete projects in
Sourcerer from 39% to 69%.

I. INTRODUCTION

The open source movement has fundamentally changed
the software development process for many practitioners.
The quantity of source code freely available online has made
both component-based and pragmatic reuse viable alterna-
tives to building programs entirely from scratch [1]-[3].
There are a variety of challenges that this approach presents
to developers, ranging from locating relevant artifacts to
understanding them and integrating them into a new system.

One of the most tedious of these challenges is simply
getting a newly downloaded artifact to build or run in
the first place. This is in a large part due to the artifacts
themselves using other artifacts, potentially creating a long,
and sometimes poorly documented, chain of dependencies.
The work of Holmes and Walker aids users in exploring
these dependencies [4], yet requires them to be resolved
before this exploration can begin.

While there are a variety of things artifact developers
can do to simplify this dependency resolution, the usabil-

978-1-4244-6803-4/10/$26.00 © 2010 IEEE

130

ity issues that affect open source software [5] in general
are still present; just because developers can make things
easier for users doesn’t mean they do. Building or run-
ning an artifact can therefore vary widely in difficulty. It
can involve anything from executing a single command to
reading through documentation and online forum posts to
importing source files into an IDE and manually resolving
any missing dependencies. While the initial setup cost is
negligible in comparison to the benefit that reuse can bring,
it can discourage developers from adequately exploring their
options. Furthermore, it greatly complicates those wishing
to study open source software, as many analyses require
declaratively complete programs. For example, in order to
study the usage patterns of Java libraries in the open source
community, one must be able to determine which projects
make use of these libraries, and in what manner.

While manually resolving dependencies for a few projects
is merely tedious, it is completely unfeasible for thousands.
This leaves researchers with limited options. One approach
is to pick a few projects to study and to manually ensure
that they are declaratively complete. While effective, this
approach is totally non-scalable, and fails to take advantage
of the sheer breadth of the open source community. Another
possibility is to modify the analyses being performed so
as not to require declaratively complete programs. This can
be quite successful, but is only possible on a case-by-case
basis and necessarily introduces some degree of fuzziness.
A related approach is to perform fuzzy type inference on
the projects in order to fake declarative completeness [6],
[7]. While this eliminates any need to modify the analyses
themselves, it still introduces uncertainty.

In this paper we present a fourth approach, a technique for
the automated resolution of missing dependencies in open
source software. This is accomplished by cross-referencing
missing type information statically extracted from a project
with a database of commonly used artifacts. Our approach
is scalable, as it is fully automated and designed to work
with real-world data. It is also more accurate, as it locates
the artifacts that were intended to be used with a project
rather than attempting to reconstruct them.

This approach can simplify the process of producing
reusable artifacts, in addition to consuming them. Properly
specifying a project’s build configuration for a tool such
as Maven, while extremely helpful to the project’s users,

MSR 2010

is non-trivial, especially if the project keeps evolving. In re-
ducing the need for specification, our approach to automated
resolution ultimately requires less work from everyone.

The contributions of this paper are threefold. First, it
introduces a technique for automatically resolving missing
dependencies in open source software. Second, it describes
how this technique can be implemented on top of Sourcerer,
an existing infrastructure for the large-scale analysis of
open source software. Third, it presents a two-part empirical
evaluation of the resolution system: a small-scale manual
evaluation on 4 popular open source projects, and a large-
scale automated evaluation on the 13,241 projects in the
Sourcerer managed repository.

The remainder of the paper is organized as follows.
Section II gives a brief overview of the Sourcerer infrastruc-
ture, while Section III describes our approach to automated
dependency resolution. In Section IV we present our two-
part evaluation of the system. Finally, we discuss the related
work in Section V and conclude in Section VI.

II. SOURCERER INFRASTRUCTURE

We implemented our dependency resolution algorithm
as part of Sourcerer, an infrastructure for the large-scale
indexing and analysis of open source code [8]. Sourcerer
provides a foundation for empirical analysis and upon which
state of the art code search engines and tools can easily be
built.

As shown in Figure 1, the Sourcerer infrastructure is
divided into three tiers. At the bottom is the core infras-
tructure, a collection of tools to handle the aggregation and
indexing of open source code. The code crawler retrieves
Java source code from a variety of locations, such as open
source repositories, public web sites, and version control
systems. This code is then parsed and analyzed by the
feature extractor, and stored in Sourcerer in three forms:
(i) the managed repository keeps a versioned copy of the
original contents of the project and related artifacts such
as libraries; (ii) the code database stores models of the
parsed projects, based on the metamodel; and, (iii) the code
index stores keywords extracted from the code for efficient
retrieval.

The second tier consists of web-services for accessing the
information in the lower tier. Direct access to the managed
repository and code database is provided, as well as a code
search service, and a service for automatically slicing an
entity out from a project.

The top tier is composed of the applications built using
Sourcerer. So far they include a web-based search engine
and an Eclipse plug-in for test-driven code search.

Sourcerer uses Chen’s entity-relationship modeling [9]
to model the latest version of the Java language. The
metamodel is an adaptation of Chen et al’s C++ entity-
relationship metamodel [10], and is similar to the FAMIX
family of metamodels [11]. It is sufficiently expressive as

131

| Applications |

Sourcerer Code Search Engine

CodeGenie; Test-Driven Code Search

| Services |

Repository Access

Dependency Slicing

Database Access Search Service

(Core Infrastructure \

Managed Code
Code Ind
Reposi&ry Database Qi Code Index

S Feature Extractor

Code Crawler

Internet

Figure 1. Sourcerer Infrastructure

to allow fine-grained search and structure-based analyses,
yet also efficient and scalable enough to handle the large
quantity of code present in Sourcerer. Following the meta-
model, a project model element exists for every project
contained in the managed repository, and a jar model el-
ement for every jar. Projects and jars are linked to the sets
of entities contained within them, and to the relations that
have these entities as their source. Entities are the defined
types like CLASS or METHOD, while relations capture
the interactions between the entities such as CALLS or
INSTANTIATES. References external to a project, such as
method calls to third-party components, are captured in the
relations.

The feature extractor is the core infrastructure tool that
handles the generation of the entity-relationship models from
the source code. It is built as a headless Eclipse plug-in in
order to take advantage of Eclipse’s Java development tools
[12]. For every file in every project and jar in the managed
repository, the feature extractor builds an abstract syntax tree
(AST) attributed with full binding information. The models
are then constructed by doing a traversal of these ASTs.
The feature extractor is designed to handle the messy data
that results from Sourcerer’s large-scale automation. It has
mechanisms to filter out duplicate files from within a single
project, and to handle unresolved types during extraction.
However, these missing types introduce unknown reference

targets in the resulting model, and so are undesirable.
Further details on the Sourcerer infrastructure are avail-
able in our prior publications [8], [13].

III. AUTOMATED DEPENDENCY RESOLUTION

Our approach to automated dependency resolution works
by cross-referencing a project’s missing type information
with a repository of candidate artifacts. There are three
main components to this approach. First, a collection of
candidate artifacts must be created. Second, there needs to
be a method for determining the missing types for a project.
Third, there must be an algorithm for selecting artifacts
from the candidate repository based on the missing type
information. A detailed discussion of each of these three
components follows.

A. Artifact Repository

The main requirement for the artifact repository is that it
must be sufficiently comprehensive as to contain the missing
dependencies for most open source projects. It also must
be indexed in such a way that components can be easily
retrieved by the types they contain.

We decided to use the Maven 2 Central Repository [14] as
the basis for our artifact collection. Apache Maven is a set
of Java tools for project management and build automation.
One of its more interesting features is that users can spec-
ify component dependencies in a project’s Project Object
Model (POM) file which are then automatically downloaded
when necessary whenever the project is built. In order to
accomplish this, the Maven tool connects to a repository
that contains a collection of artifacts organized by group,
name and version. While users of Maven can create and
host their own repositories, the open source community by
and large uses the centralized Maven repository. As a result,
this repository contains a very large set of commonly used
artifacts, making it ideal for our purposes.

The online version of the Maven Central Repository is not
indexed in such a way as to be directly usable for our form
of dependency resolution. It supports artifact lookup, but
not by the types that each provide. We therefore extracted
and indexed all of the provided types for each artifact
in the repository. This was accomplished using a stripped
down version of the Sourcerer feature extractor. Instead of
extracting the full set of entities and relations for a jar,
we just extracted any entity that could be used externally:
interfaces, classes, annotations, enums, fields and packages.
These entities were then placed into an instance of the
Sourcerer code database where they were indexed by fully
qualified name.

B. Missing Type Identification

A necessary step in resolving missing dependencies is
the identification of the missing types themselves. However,
reliably determining the exact fully qualified name (FQN) of

132

package example;

import
import
import

foo.Single;
bar.x*;
baz.Baz.x;

public class Example {
public Single a;
public OnDemand b;
public foo.OnDemand c;

}

— O N0 00O WA W=

—_—

Figure 2. Example of Import Ambiguity

a missing type is not possible given the ambiguity in Java’s
import mechanism. Figure 2 contains a simple example to
illustrate this ambiguity. Single type imports are the best
case, as seen in line 3, as they contain a fully qualified
name. Therefore even if foo.Single cannot be resolved,
it is clear that the field on line 8 has the type foo.Single.

On-demand imports, those with a * operator, do not fully
specify which types they import, instead including all types
within a given package or type. Lines 4 and 5 are both on-
demand imports. This causes it to be unclear which package
the type on line 9 belongs to. If a type named OnDemand
cannot be found, there are three potential places it could be.
It could be a top-level type in the package bar. It could
be a public inner type in the type baz.Baz (assuming that
baz.Baz is a type and not a package that fails to follow
naming conventions). Or it could be a type in the package
example. Import statements are not always necessary, as
any type can be fully qualified. The type in line 10 is an
example of this. Although it has the same simple name as
the type in line 9, the reference in unambiguous.

We decided to take a relatively simple approach to han-
dling this ambiguity. We restricted lookup to unresolved
import statements and missing fully qualified type names;
for on-demand imports, we restricted ourselves to the spec-
ified FQN, ignoring the *. This is effective in the vast
majority of cases, as single type imports are the norm. Many
development environments will even automatically convert
on-demand imports into sets of single type imports when
given the chance.

Not surprisingly, sidestepping the import ambiguity issue
can cause some problems. For example, this approach will
fail to locate any missing types within the same package.
However, given our focus on identifying external depen-
dencies rather over reconstructing type names for partial
programs, we do not expect there to be significant overlap
of package names. Another issue is that if only on-demand
imports are used, and the package in question is found in
multiple components, there is no way to pick the correct
component.

One minor modification to solve these two issues is
to generate all possible fully qualified names in cases of

ambiguity. Any missing simple name is therefore combined
with every on-demand import as well as the current package
to form candidate fully qualified names. This mirrors Java’s
type resolution system, and will be successful unless two of
the candidate FQNs happen to match. While always possible,
this does not seem to be especially likely.

When done manually, the missing type identification
process is relatively simple. Either the compiler reports that
some types cannot be resolved or the program terminates
with an exception stating that a class definition could not
be found. In both cases, the missing types must be located
and the process iterated until no errors occur. This iteration
is required because it is not always possible to statically
determine all of the missing types in a single pass. Transitive
dependencies are the main cause of this, though some type
errors can also be masked by other errors, only appearing
once the other errors have been fixed.

Rather than build a system to comb through compiler error
messages, we modified the Sourcerer feature extractor to
report missing types. As was described earlier, our feature
extractor builds an attributed AST complete with resolved
reference information in order to generate the entities and
relations. Previously, if a reference could not be resolved
the extractor created an UNKNOWN entity type with a
limited FQN to represent that entity. With our new setting,
if the extractor encounters any unresolved types it restricts
itself to printing all candidate FQNs as discussed above. The
missing type extraction is iterated along with the resolution
algorithm until there are no longer any missing types or no
more candidate components can be found.

C. Resolution Algorithm

Once the missing types have been identified, the final
step is to match them against the artifacts in the candidate
repository. We developed a simple greedy algorithm to
perform this matching, which is described in pseudocode
in Figure 3. It begins with a list of all the FQNs reported
missing by the feature extractor. The nested loop on lines 1-
8 collects the artifacts that can provide at least one of these
missing FQNs, and marks each of those artifacts with the
FQNs that it can provide.

The remainder of the algorithm repeatedly iterates until
there are no more artifacts remaining in the collection. The
for loop on lines 11 through 17 picks the artifact that
matches the most missing FQNs, treating it as the next
candidate for inclusion. The for loop on lines 19 through 28
then unmarks every FQN that this artifact provides from the
remaining artifacts in the collection. If this causes an artifact
to have no FQNs marked, it is removed from the collection.
Every iteration of this loop will cause at least one artifact to
be removed from the collection, ensuring termination. Once
finished, line 31 returns the set of all artifacts that were
chosen for inclusion.

133

Require: List L of missing FQNs, empty set REL of
relevant artifacts, empty set PICKED of artifacts.
Ensure: PICKFED contains a set of artifacts that cover as

many missing FQNs as possible.

for all fgn € L do
for all art such that art contains fqn do
if art ¢ REL then
Add art to REL
end if
Mark art as using fgn
end for
: end for

1:
2
3
4:
S:
6
7
8
9: while REL not empty do

10: bestMatch < null
11: for all art € REL do
12: if best Match is null then
13: bestMatch < art
14: else if art has more marked FQNs than
bestMatch then
15: bestMatch < art
16: end if
17: end for
18: Remove bestMatch from REL
19: for all jar € REL do
20: for all fgn marked in bestMatch do
21: if fgn marked in art then
22: Unmark art
23: end if
24: end for
25: if art has no marked FQNs then
26: Remove art from REL
27: end if
28: end for
29: Add bestMatch to PICKED
30: end while
31: return PICKED
Figure 3. Component Matching Algorithm

In summary, the algorithm repeatedly picks the artifact
that provides the largest number of missing types, discount-
ing missing types already provided by previously included
artifacts. It iterates until either no missing types or artifacts
remain.

IV. EVALUATION

We performed a two-stage evaluation of our automated
dependency resolution system. First, as a small-scale proof
of concept, we selected a few popular open source projects.
We ran them through our system and manually compared
the chosen jars to those expected to be used with those
projects. Second, as a larger-scale evaluation, we applied
the dependency resolution to the entire Sourcerer managed

Table I
SOURCERER MANAGED REPOSITORY GENERAL STATISTICS

General Stats Count Non-Empty Disk Space
Projects 18,922 13,241 257.8GB
Project Jar Files 47,864 40,388 18.5GB
Maven Jar Files 55,135 51,293 21.5GB
Latest Maven Jars 10,725 9,707 4.1GB

repository. We automatically checked each project to de-
termine if the dependency resolution was successful, and
manually examined a subset of the failed cases to determine
the cause.

A. Candidate Artifact Index

For both evaluations we used a candidate artifact repos-
itory derived from the Maven Central Repository. Due to
resource constraints, rather than index the entire Maven
repository, we limited the scope to the latest version of each
artifact.

Table I contains some general statistics on the size of
Sourcerer’s managed repository and the Maven candidate
artifact index. The first row describes the projects which we
automatically captured from Apache, Java.net, Google Code
Hosting and SourceForge. The existence of empty projects is
primarily due to the crawler failing to download the code or
incorrectly downloading a non-Java project. The second row
is the jars that were included along with the projects. 40,000
jars for 13,000 projects indicates that, on average, each
project came with nearly 4 jars. However, the distribution
is significantly skewed, with many projects containing no
jars at all while others contain hundreds. Row 3 describes
our mirror of the Maven 2 Central Repository. Row 4 is the
Maven mirror that has been restricted to the latest version
of each artifact. In both case, the empty jars occur when our
feature extractor is unable to read the jar file, either due to
its being corrupted in some way, or simply not containing
any class files.

Table II contains a more detailed breakdown of our
candidate artifact index. With regards to the third row, a
binary jar file is considered to have source code if the code
is included inside the jar itself or if a corresponding source
jar is co-located with it. For the forth row, the class file count
excludes the class files generated by the Java compiler for
inner or anonymous classes, and so closely corresponds to
the number of source files.

The second half of the table contains details on the entities
extracted from the jars. As can be seen by comparing the
two columns, there is a large amount of duplication present
in the candidate artifact index. We considered two entities
to be duplicates if they have identical FQNs. While we
had expected some duplication, the extent of it surprised
us. Upon investigation, there appear to be two main causes.
First, while we had limited the index to contain only the
latest version of each artifact, we did not account for projects

134

Table II
CANDIDATE ARTIFACT INDEX STATISTICS

General Stats Count

Jar Files 10,725

Non-Empty Jar Files 9,707

Jar Files With Source 5,368

Class Files 771,458

Entity Breakdown Count Unique Count
Packages 78,950 43,199
Classes 774,937 433,237
Enums 6,877 4662
Interfaces 143,754 78,945
Annotations 6,848 2,627
Fields 3,323,417 1,777,234

that had changed their names. Any such artifact had its
latest version included for each name, leading to duplication.
Second, it appears that many artifacts attempt to limit the
number of dependencies they require by packaging some of
their dependencies into their jar. This is especially common
for groups of artifacts from the same developers. Rather
than requiring users to download a set of common utility
classes as a separate jar, they are instead included into each
distribution.

B. Small-Scale Evaluation

For the small-scale evaluation, we chose the four projects
which were used to evaluate Dagenais et al.’s partial program
analysis [6]: JFreeChart, Lucene, Jython, and Spring. We
retrieved the source code for the latest version of each
project from their respective repositories. Each project was
individually loaded into Eclipse and run through the mod-
ified Sourcerer feature extractor under four conditions: no
external artifacts (NA), resolve from no artifacts (RNA),
project included external artifacts (PA), and resolve from
project included external artifacts (RPA). In the first con-
dition, the classpath was set to contain only the standard
Java libraries. In the third, the classpath included the jars
that came packaged along with the projects. For the second
and fourth conditions, the feature extractor was told to
dynamically modify the classpath based on detected missing
types, starting from the no external artifact and project in-
cluded external artifact conditions respectively. The extractor
terminated when either no missing types remained, or it
was unable to locate any further candidates for inclusion.
The time to perform this dependency resolution varied de-
pending on the size of the target project, with Spring taking
the longest. Even then, it was only a matter of minutes;
significantly less time than it would take to manually locate
the necessary jars.

The results can be found in Table III, broken down by
project and condition. The first row shows the number of
unique missing types that were reported under the default
classpath (no external artifacts) condition. As all the values

Table III
SMALL-SCALE EVALUATION RESULTS

Table V
LARGE-SCALE EVALUATION RESULTS

Project Condition Unique (%) Cumulative (%)
JFreeChart _ Lucene Jython _ Spring No External Artifacts 2,608 (20%) 2,608 (20%)
NA Missing Types 68 55 115 1,048 Project Included Artifacts 2,578 (19%) 5,186 (39%)
RNA Added Jars 4 3 13 53 Resolution Algorithm 3,904 (29%) 9,090 (69%)
RNA Missing Types 0 13 22 65 Remainder 4,151 31%) 13,241 (100%)
Project Included Artifacts 3 13 155 240
PA Missing Types 58 32 38 47
RPA added artifacts 3 2 6 8 . .
RPA missing types 0 13 19 17 be resolved in the no artifacts case.
As the results in Table IV show, the resolution algorithm
Table TV did not always pick the artifacts that one might expect. This
able

ARTIFACTS CHOSEN FOR JFREECHART

Resolved Artifact by Condition

Missing Artifact No Artifacts Project Artifacts

JUnit JUnit -
Eclipse SWT Eclipse SWT / GWT-dev Ecipse SWT
Java Servlets GWT-dev -

Pie Datasets GWT-BV JFreeChart
JCommon GWT-BV CLIF

are greater than zero, all of the projects were missing at least
one type. The following two rows contain the number of jars
that our missing type resolution algorithm added to each
project’s classpath, and the subsequent number of unique
missing types reported. While artifacts were located for all
four projects, only for JFreeChart were all the missing types
eliminated. We will not discuss the reason for that here, as
the large-scale evaluation thoroughly addresses why failures
can occur. However, it should be noted that the unresolved
missing types for these projects primary occurred in sandbox
or experimental directories, which are not expected to be
fully correct.

The second half of Table III covers the two conditions
in which the project included artifacts were used. When
added to the classpath, these artifacts reduced the number
of missing types, but in no cases eliminated all of them. In
this condition, the total number of missing types for both
Jython and Spring was reduced relative to the resolution
algorithm on its own, indicating that some of the project
artifacts contain types that are not in our index.

Table IV contains a breakdown of which artifacts were
chosen for JFreeChart under both resolution conditions.
JFreeChart was missing libraries for JUnit, Eclipse SWT,
and Java Servlets. In addition, two JFreeChart classes re-
lating to pie datasets were missing from the subversion
repository (they are present in the cvs repository). JCom-
mon, while a dependency of the current stable release of
JFreeChart, has been removed as a dependency from the
version in the subversion repository. As a result, it is actually
a transitive dependency introduced by the two missing pie
dataset files. The JUnit and Java Servlet libraries were
included in JFreeChart’s repository, and so only needed to

135

is a consequence of the interaction between our resolution
algorithm and the packaging of some of the artifacts in our
candidate repository. Take, for example, GWT-dev, which
is the developer package for the Google Web Toolkit. It
contains some Eclipse SWT classes as well as a Java servlet
implementation. Therefore, when the resolution algorithm
was choosing artifacts, GWT-dev provided the most missing
types, as it merged together two distinct artifacts.

In cases of single artifacts, our algorithm cannot distin-
guish between an original artifact and a secondary artifact
that includes the original entirely. As a result, in neither
condition was the JCommon artifact chosen. Instead, two
artifacts that contained portions of JCommon were used.
Similar results were seen for the other three projects.

Overall, the results of the small-scale evaluation indicate
that our artifact resolution algorithm, while effective at
eliminating most missing types, does so in a manner not
entirely consistent with a manual approach. Further tuning of
the selection heuristic or the index itself are needed to enable
original artifacts to be chosen preferentially over copies.

C. Large-Scale Evaluation

The large-scale evaluation was performed in much the
same manner as the small-scale one. The contents of the
Sourcerer managed repository were run through Sourcerer’s
existing feature extraction system, and the output files were
analyzed to evaluate the success of the extraction.

Each project was checked to determine if any missing
types were reported during extraction, and if they were
ultimately resolved. Projects were not checked for compi-
lation errors in general. While this choice eliminates the
impact of errors unrelated to type resolution, it introduces the
possibility of another form of error. There is no way to know
if the algorithm picked an artifact that resolved the missing
types yet introduced other errors into the program. Such a
problem seems most likely to occur if multiple incompatible
versions of an artifact are present in the index. This remains
an area for future exploration.

The results can be found in Table V. The first row
describes the projects that require no external dependencies,
which account for 20% of the repository. These projects have
no missing types with the default classpath.

The second row shows those projects whose external
dependencies were included along with the projects them-
selves. These projects had missing types when compiled
with the default classpath. However, when the jars that were
included along with the source code were added to the
classpath, the projects no longer had any missing types.
As our repository is primarily populated with snapshots
from version control systems, this indicates that a large
number of open source projects check in jar files. 19% of the
projects fall into this category, which, when combined with
the first category means that 39% of projects don’t require
any special attention with regards to dependency resolution.

The remaining 61% of the projects are the ones that cause
problems for developers and researchers. They depend on
external artifacts, but those artifacts are not included along
with the projects. These dependencies are often expressed in
documentation, in build files, or not at all. The third row of
Table V shows the number of these projects for which our
resolution algorithm was able to locate all of the missing
dependencies. The 29% of projects in this category had
missing types under the two previous conditions, but, when
automatically selected jars from our artifact repository were
added to the classpath, these missing types were resolved.
Of the remaining 61% of projects, our approach was able to
solve nearly half of them. This brings the total number of
declaratively complete projects in the Sourcerer repository
to 69%.

The final row in the table is the remaining projects for
which our system was unable to locate all of the necessary
artifacts. We randomly selected 100 projects from this cate-
gory for manual examination. For each project we attempted
to discern the reason for our system’s inability to locate the
correct artifacts. This was done by searching online for the
types reported missing by the feature extractor; a process
quite similar to what users currently do. In fact, in multiple
cases our Google searches returned forum posts from users
seeking to locate the same types as us.

We classified the 100 failed projects into 3 main
categories based on the types of failures they represented:
index failure, project failure and infrastructure failure. The
results of this categorization can be found in Table VI.
Index failure refers to those cases where the missing types
should reasonably have been found, but were not in our
index. Project failure is where the nature of the projects
themselves prohibit using such an automated matching
approach. Infrastructure failure is where our infrastructure
itself seems to be at fault. Each category was broken into
subcategories, which are described below.

Index Failure

1) Open source artifact not in Maven 2: These missing
types were from open source projects that are not in the
Maven 2 Central Repository. Most of these projects are
hosted on common open source repositories, such as Google

136

Code, SourceForge and GitHub. In some of the cases the
missing types seem to occur between two related projects,
possibly from the same group of developers, in which
case their classification as external dependencies may be
somewhat artificial.

2) Java library not in Maven 2: These missing types were
from Java libraries, such as the Java Media Framework,
Java OpenGL, and Java Advanced Imaging. Sun provides
reference implementations for many of these, which are not
in Maven.

3) Commercial artifact not in Maven 2: These missing
types were from commercial artifacts not in Maven 2. We
considered an artifact to be commercial if it is maintained by
a company, has packages starting with com, and is not found
in any open source repository. We did not consider licensing
when categorizing, and so some of the artifacts may be
released under open source and some may not. Examples we
found include JBuilder (a commercial Java IDE), a Nokia
library, Quicktime, and an Oracle JDBC driver.

4) Artifact in Maven I: These missing types were from
artifacts that appear in the Maven 1 Central Repository,
but not in Maven 2. While one might expect the Maven
2 repository to subsume the Maven 1 one, this turns out not
to be the case.

5) Version issue: These missing types were from projects
that are in our artifact repository, yet from an earlier version
than the one we indexed. This was the result of changes
between versions that had caused incompatibilities. As we
had only indexed the latest version, even with the correct
artifact included there were still missing types.

Project Failure

6) Incomplete project: We considered a missing type to
be caused by an incomplete project if it appeared that the
authors of the project had forgotten to include some parts of
the project in the online distribution. The primary indicator
of this was when the missing types had the same package
names as types from the initial project, and we were unable
to locate the missing types through online searching. Our
searching often only returned instances of the types being
used in import statements, never in declarations.

7) Unable to locate artifact: These missing types could
not be located by any of our searching. However, the
package names did not match the originating project, so we
decided not to consider these incomplete projects. While
they might be cases of forgotten files, it is also possible that
the necessary library is just obscure or has disappeared from
the internet.

8) Generated code: These missing types seemed to refer
to files that are automatically generated as part of the build
process. They initially looked like incomplete projects, as
types with matching packages were missing, yet closer
investigation located html or xml files that appeared to
be designed to be converted into Java source. It is quite

Table VI
CATEGORIZATION OF FAILURES

Project

Category Subcategory Count
Index Open source artifact not in Maven 2 31
Failure Java library not in Maven 2 19
Commercial artifact not in Maven 2 11
Artifact in Maven 1 5
Version issue 2
Total 68
Project Incomplete project 17
Failure Unable to locate artifact 4
Generated code 3
Total 24
Infrastructure ~ Crawler error 4
Failure Extractor error 2

Total

possible that some of the projects categorized as incomplete
projects might more correctly fall into this category.

Infrastructure Failure

9) Crawler error: These missing types occurred in
projects where the missing types’ package names matched
those of the project and we were able to find the missing
types in indexed online distributions of that project. This is
distinct from the incomplete project condition because we
were able to locate the missing types through searching. As
the indexed online copies of the projects contained files that
were not in Sourcerer’s managed repository, it is unclear
if Sourcerer’s crawler missed parts of these projects, if the
projects were updated after our crawl, or if our copy of the
projects came from slightly different sources than the ones
indexed online.

10) Extractor error: These missing types were caused by
errors in the Sourcerer feature extractor. In both cases types
were believed to be missing even though they were actually
present. For example, one was an internationalization issue
where Japanese characters had mistakenly led the extractor
to miss certain definitions.

The distribution of the failures between the three cate-
gories is quite encouraging. The prominence of the index
failure case suggests that simply by increasing the scope of
the index we can greatly increase the proportion of projects
for which our automated dependency resolution system is
successful. Including more Java libraries, for example, could
benefit many projects.

Improving performance in the project failure category is
much more difficult. For incomplete projects there is little
that can be done, but our system fares no worse than the
traditional manual approach. There is room for improvement
in cases involving automatically generated code, which is
one area of planned future work.

137

D. Threats to Validity

The primary weakness of this evaluation approach is
that we only checked for the presence of errors caused by
missing types. There is no guarantee that our algorithm
chose artifacts that would actually work; we only know
that they eliminated the type errors. Even if we were to
consider compilation errors in general, this still does not
capture incompatibilities only seen in runtime behavior. This
is especially an issue considering the repackaging of jars that
we discovered in the small-scale evaluation.

In order to determine the functional correctness of the
chosen artifacts, one possiblity is to evaluate projects that
come with test cases. If the test cases execute correctly,
then this suggests that the correct arifacts were chosen. This
approach is clearly limited by the scope of the test cases, but
goes a step further in validating our approach to automated
dependency resolution.

The composition of the Sourcerer managed repository
impacts the results of the evaluation. While we believe that
our repository captures a representative snapshot of open
source projects, it is possible that projects from repositories
that Sourcerer does not crawl show different behavior with
respect to automated dependency resolution. We would like
to explore in more detail what types of projects are amenable
to this approach.

V. RELATED WORK

There is a large body of work in both the industrial and
academic communities on software reuse and the manage-
ment of dependencies.

Component-based development is founded on the struc-
tured reuse of existing artifacts. Wren, a prototype environ-
ment to support component-based development, highlighted
seven requirements for such environments, one of which was
reuse by reference [15]. In order to address maintenance
problems, the authors felt that component dependencies
should be expressed by references to artifacts in remote,
searchable component repositories.

That functionality is now provided by application-level
package management systems, which are designed in part to
automate artifact dependency resolution. They only function
with the proper specifications, however, and so are useless
when specifications are not provided.

When developers attempt to locate missing types, there are
a variety of search engines available to them. Google Code
Search [16], Koders [17], and Merobase [18] all can be used
to find type definitions. findJAR [19] is especially relevant,
since it indexes Maven with the specific aim of helping
developers locate missing libraries. Our candidate artifact
index effectively mirrors its functionality. They even provide
an Eclipse plugin, yet it is limited to embedding their search
interface into a tab. In contrast, our approach automates the
task of detecting the missing types, searching for them, and
checking if they successfully resolve the relevant errors.

Code Conjurer [3], a tool for test-driven code search,
uses an automated dependency resolution system in order
to compile and test recommended code. As with our ap-
proach, Code Conjurer repeatedly identifies missing types
and searches for them. However, this is done on a file-
level type-by-type basis, rather than considering artifacts as
units. This is appropriate for locating the set of files within a
project needed for an original file to compile, but will have
difficulty at the artifact granularity, as it may incorrectly
combine artifacts, and the number of necessary searches will
increase dramatically.

Sourcerer is, in many ways, similar to Spars-J (and its
successor Spars-R), a software component repository created
by Inoue et al. [20]. As with Sourcerer, Spars-J preprocesses
source code to extract reference information. While still
belonging to projects, Spars-J treats components at the file-
level, merging together components from different sources.
When computing cross-project references, therefore, their
system must perform some form of dependency resolution
similar to what we propose, except at the file level.

In situations where compilation is not the final goal,
fuzzy analysis techniques can be quite effective. Dagenais et
al’s [6] partial program analysis can generate fully-resolved
abstract syntax trees in the face of missing types, albeit with
a non-zero error rate. Thummalapenta et al.’s PARSEWeb [7]
uses similar techniques. These approaches combine nicely
with our automated dependency resolution, as they can be
used in cases where dependencies cannot be located.

VI. CONCLUSION AND FUTURE WORK

In this paper we have introduced an approach for auto-
matically resolving dependencies for open source software.
It works by cross-referencing a project’s missing types with
a repository of open source artifacts. We implemented this
approach on top of Sourcerer, and performed an extensive
evaluation. The evaluation demonstrated that our system is
capable of locating all of the missing types for a significant
number of open source projects. The results suggest that
this type of automated system for dependency resolution is
a viable alternative to the time consuming manual process,
especially in the domain of large-scale source analysis.

The results of the evaluation suggest a number of areas
for improvement. First, the scope of the index should be
increased. The Maven central repository, while quite exten-
sive, is not as comprehensive as we had hoped. We plan on
integrating the projects from our managed repository into
the candidate artifact index, as we discovered that many of
the missing types were hosted on open source repositories
that Sourcerer crawls.

Second, we must improve the identification of original
artifacts. The artifact index contains a large amount of
entity duplication, caused primarily by artifacts containing
one another. This results in our system sometimes picking
secondary artifacts to provide missing types. We intend to

138

explore modifications to our selection heuristics and to the
index structure to reduce this occurance.

Third, we need to handle incompatabilities between arti-
fact versions better. One possibility is to modify the depen-
dency resolution tool to check if compilation errors might
be caused by the incorrect artifact version being used. We
would also like to expand our evaluation to determine how
our type resolution affects compilability.

In the near future we plan on creating an Eclipse plugin
that developers can use to automatically locate artifacts using
our system. Sourcerer, including the system discussed in this
paper, can be found at http://github.com/sourcerer/Sourcerer.

VII. REPLICATION INFORMATION

Sourcerer is entirely written in Java, and is comprised of a
number of related Eclipse projects. As Figure 1 from Section
II indicates, these projects are divided into three tiers. We
will limit the discussion to the lowest tier, the infrastructure
tools, as that is where automated dependency resolution is
performed.

The source code for the Sourcerer infrastructure can be
found at http://github.com/sourcerer/Sourcerer. The raw con-
tents of the Sourcerer managed repository are not currently
available online, though we are happy to share the data with
anyone that is interested.

A. Creating a Managed Repository

For those wishing to create their own managed repository,
the two projects found under infrastructure/tools/core are
needed. The code crawler and core-repository-manager are
used to crawl and build the managed repository. Instructions
for their use, as well as a detailed description of the
repository structure, can be found in the Git repository under
docs.

Once a managed repository is in place, the following
projects are needed to perform automated dependency reso-
lution: repository-manager, extractor, model, database, and
utilities. These projects can all be found under infrastruc-
ture/tools/java, except for utilities, which is found under
infrastructure.

In order to use a generic Sourcerer managed repository
with the Java tools, some preprocessing of the repository is
necessary. The jar files from the projects must be aggregated
and then indexed for quick access. This is done by running
edu.uci.ics.sourcerer.repo.Main twice, with
the aggregate-jar-files and create-jar-index flags respec-
tively. In each case, the input repository (input-repo) must
be specified.

B. Building a Candidate Artifact Index

The candidate artifact index contains the jar files used
to resolve the missing dependencies. This index is con-
structed from any managed repository, which can con-
tain whatever artifacts the user wants, such as a mir-
ror of the Maven Central Repository. We recommend

contacting the people at Apache in order to obtain
such a mirror, though a crawler and downloader for it
can be found in the repository-manager project in the
edu.uci.ics.sourcerer.repo.maven package.

Once the repository for the candidate artifact index is
ready, the feature extractor is used to extract the types
provided by these artifacts. The extractor is run as an
Eclipse application, Extractor.Extractor, which is found in
the extractor project. It can either be used directly in Eclipse,
or as a headless plugin. The following must be specified
in command-line arguments: the type of extraction (extract-
jars to limit to jar files and extract-binary to ignore jar file
source), the input repository (input-repo), and the output
repository (output-repo).

After the extraction is complete, a database is pop-
ulated with the type information. This is done using
edu.uci.ics.sourcerer.db.tools.Main in the
datbase project. The MySQL database connection informa-
tion is specified in the following three command-line argu-
ments: database-url, database-user and database-password.
Before the import, the database must be initialized via the
initialize-db flag. Then the import is performed via the add-
jars flag, where input-repo must be specified. This database
is then ready to be used as a candidate artifact index.

C. Automated Dependency Resolution

Once the candidate artifact index is complete, the feature
extractor can perform automated dependency resolution.
Dependency resolution is available for both jar and project
extraction, simply by adding the resolve-missing-types flag
to the inputs described earlier. If dependency resolution is
used, the database containing the candidate artifact index
must also be specified using the same arguments as described
earlier.

D. Replicating the Evaluation

For the evaluation, we performed the extraction under four
different conditions. The first, no external artifacts (NA), is
achieved by running the extractor with resolve-missing-types
set to false (its default value) and use-project-jars set to false
(true is its default value). The second condition, resolve from
no artifacts (RNA), is accomplished by changing resolve-
missing-types to true. The final two conditions, project
included external artifacts (PA) and resolve from project
included external artifacts (RPA), are run by changing use-
project-jars to true while alternating the value of resolve-
missing-types accordingly.

edu.uci.ics.sourcerer.repo.Main can be run
to evaluate the success of the extraction. The extraction-
stats flag must be true, and input-repo set to the location
where the extractor output its results. This tool will generate
a report summarizing the extraction, which includes the total
number of projects extracted, and the number of projects
with missing types.

139

If one wants to manually examine the output of the
dependency resolution process, the relevant files are located
in the output repository of the extractor. Each extracted
project or jar file had its own subdirectory containing a
number of text files. missing-types.txt contains the FQNs
of the types that could not be resolved. If dependency
resolution is successful, or there are simply no missing types,
this file is empty. used-jars.txt contains the list of jar files
added to the classpath by the dependency resolution process.
Each line starts with the md5 hash of the jar, and is followed
by a space separated list of the FQNs of the missing types
that the jar provided.

REFERENCES

[1] A.Mockus, “Large-scale code reuse in open source software,”
in FLOSS °07: Proceedings of the First International Work-
shop on Emerging Trends in FLOSS Research and Develop-
ment. Washington, DC, USA: IEEE Computer Society, 2007,

p- 7.
[2]

R. Holmes, “Unanticipated reuse of large-scale software fea-
tures,” in Proceedings of the 28th international conference
on Software engineering. Shanghai, China: ACM, 2006, pp.
961-964.

[3] O. Hummel, W. Janjic, and C. Atkinson, “Code conjurer:
Pulling reusable software out of thin air,” IEEE Softw., vol. 25,
no. 5, pp. 45-52, 2008.

[4] R.Holmes and R. J. Walker, “Supporting the investigation and
planning of pragmatic reuse tasks,” in ICSE "07: Proceedings
of the 29th international conference on Software Engineering.
Washington, DC, USA: IEEE Computer Society, 2007, pp.
447-457.

[5] D. M. Nichols and M. B. Twidale, “The usability of open
source software,” 2003.

[6] B. Dagenais and L. Hendren, “Enabling static analysis for
partial java programs,” in Proceedings of the 23rd ACM SIG-
PLAN conference on Object oriented programming systems
languages and applications. Nashville, TN, USA: ACM,
2008, pp. 313-328.

[7] S. Thummalapenta and T. Xie, “Parseweb: a programmer
assistant for reusing open source code on the web,” in
Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering. Atlanta,
Georgia, USA: ACM, 2007, pp. 204-213.

[8] E. Linstead, S. Bajracharya, T. Ngo, P. Rigor, C. Lopes,
and P. Baldi, “Sourcerer: mining and searching internet-scale
software repositories,” Data Min. Knowl. Discov., vol. 18,
no. 2, pp. 300-336, 2009.

[9] P. P-S. Chen, “The entity-relationship model—toward a uni-
fied view of data,” ACM Trans. Database Syst., vol. 1, no. 1,
pp- 9-36, 1976.

[10] Y.-F. Chen, E. R. Gansner, and E. Koutsofios, “A c++ data
model supporting reachability analysis and dead code detec-
tion,” IEEE Trans. Softw. Eng., vol. 24, no. 9, pp. 682—-694,
1998.

(1]

(12]

(13]

(14]

[15]

S. Demeyer, S. Tichelaar, and S. Ducasse, “FAMIX 2.1the
FAMOOS information exchange model,” Research report,
University of Bern, p. 11, 2001.

eclipse java development tools, http://www.eclipse.org/jdt/.

J. Ossher, S. Bajracharya, E. Linstead, P. Baldi, and C. Lopes,
“SourcererDB: an aggregated repository of statically analyzed
and cross-linked open source java projects,” in Mining Soft-
ware Repositories, 2009. MSR ’09. 6th IEEE International
Working Conference on, 2009, pp. 183-186.

maven 2 central repository, http://repol.maven.org/maven2/.

C. Liier and D. S. Rosenblum, “Wren—an environment for
component-based development,” in ESEC/FSE-9: Proceed-
ings of the 8th European software engineering conference
held jointly with 9th ACM SIGSOFT international symposium
on Foundations of software engineering. New York, NY,
USA: ACM, 2001, pp. 207-217.

140

[16]
(7]
(18]
[19]

(20]

google code search, http://www.google.com/codesearch.
Koders, http://www.koders.com.

Merobase, http://www.merobase.com.

findJAR, http://www.findjar.com.

K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, and
S. Kusumoto, “Ranking significance of software components

based on use relations,” Software Engineering, IEEE Trans-
actions on, vol. 31, no. 3, pp. 213-225, March 2005.

