NS

27.10.2010 — ESE Exercise

WHAT ARE DESIGN PATTERNS

* Adescription or template for how to solve a problem that can be used in
many different situations.

 Typically describe relationships and interactions of classes or objects
« More than just a class diagram, depends on context, force, etc.
* «Asolution to a problem in a context»

 Context refers to a set of situations in which the pattern applies.

* Problem refers to a set of forces - goals and constraints - that occur in this
context.

« Solution refers to a design form or design rule that someone can apply to
resolve these forces.

WHAT DESIGN PATTERNS ARE NOT

 An actual implementation in a specific programming language
* Anidiom, an algorithm, a UML Diagram, a use case, etc.

 Adesign pattern may describe how and why in a certain context one of
the above is an appropriate solution

SOME DESIGN PATTERNS

 Factory / Builder
 Singleton / Multiton
* Obiject Pool

* Adapter / Wrapper
« Composite

* Proxy

* lterator

* Observer

* Null Object

* Visitor

e Command

BUILDER / FACTORY PATTERN

* When to use it:
 Complex construction of objects

- Different implementation can create different objects

BUILDER / FACTORY PATTERN

For all objects in structure {
builder-=buildPart()
] +BuildPart()
+HoetResuli()

COMPOSITE PATTERN

 When to use it:

* When client should ignore the difference between one object
and a composition of objects

* |f the same operations are performed on multiple instances
the same way with nearly identical code

A composite pattern makes it less complex to treat single
objects and composites the same way.

COMPOSITE PATTERN

+ operation() operation()
add()

remove()
getChild()

I
<>

INTERACTIVE DISCUSSION

* Did you use design patterns in your project so far?
* |If yes, why? If no, why not?
» What are the (dis)advantages of using these patterns

 Should you design and implement code by reusing existing
patterns? Or should you write the code and then identify pattern
you've used "spontaneously” as a mean to communicate about
the code? Or is it a mix of both?

