
CLIP
CLoning as

Industrial Practice
A research project involving UWaterloo and CA

 const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
 if (err != NULL) {
 return err;
 }
 ap_threads_per_child = atoi(arg);
 if (ap_threads_per_child > thread_limit) {
 ap_log_error(APLOG_MARK, APLOG_STARTUP, 0, NULL,
 "WARNING: ThreadsPerChild of %d exceeds ThreadLimit "
 "value of %d", ap_threads_per_child,
 thread_limit);
 ….
 ap_threads_per_child = thread_limit;
 }
 else if (ap_threads_per_child < 1) {
 ap_log_error(APLOG_MARK, APLOG_STARTUP, 0, NULL,
 "WARNING: Require ThreadsPerChild > 0, setting to 1");
 ap_threads_per_child = 1;
 }
 return NULL;

2

 const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
 if (err != NULL) {
 return err;
 }
 ap_threads_per_child = atoi(arg);
 if (ap_threads_per_child > thread_limit) {
 ap_log_error(APLOG_MARK, APLOG_STARTUP, 0, NULL,
 "WARNING: ThreadsPerChild of %d exceeds ThreadLimit "
 "value of %d threads,", ap_threads_per_child,
 thread_limit);
 ….
 ap_threads_per_child = thread_limit;
 }
 else if (ap_threads_per_child < 1) {

 ap_log_error(APLOG_MARK, APLOG_STARTUP, 0, NULL,
 "WARNING: Require ThreadsPerChild > 0, setting to 1");

 ap_threads_per_child = 1;
 }
 return NULL;

3

gnumeric_oct2bin (FunctionEvalInfo *ei, GnmValue const * const *argv) {
	 return val_to_base (ei, argv[0], argv[1],
	 	 8, 2,
	 	 0, GNM_const(7777777777.0),
	 	 V2B_STRINGS_MAXLEN | V2B_STRINGS_BLANK_ZERO);
}

gnumeric_hex2bin (FunctionEvalInfo *ei, GnmValue const * const *argv)
{
	 return val_to_base (ei, argv[0], argv[1],
	 	 16, 2,
	 	 0, GNM_const(9999999999.0),
	 	 V2B_STRINGS_MAXLEN | V2B_STRINGS_BLANK_ZERO);
}

4

static PyObject *
py_new_RangeRef_object (const GnmRangeRef *range_ref){
	 py_RangeRef_object *self;
 self = PyObject_NEW py_RangeRef_object,
 &py_RangeRef_object_type);
	 if (self == NULL) {
	 	 return NULL;
	 }
	 self->range_ref = *range_ref;
	 return (PyObject *) self;
}

5

static PyObject *
py_new_Range_object (GnmRange const *range) {
	 py_Range_object *self;
 self = PyObject_NEW (py_Range_object,
 &py_Range_object_type);
	 if (self == NULL) {
	 	 return NULL;
	 }
	 self->range = *range;
	 return (PyObject *) self;
}

6

• It leads to code bloat + inconsistent maintenance

• It’s a sign of inexperienced developers

–And cruft accumulates as developers fear changing
working code

• It’s a sign of poor design / extensibility

–Need to keep doing same kinds of things, but there’s
no easy way to automate it

Why cloning is
supposed to be bad

7

... but what about ...

• Apache Portable Runtime (APR) subsystem
–Portable impl of functionality that is typically platform

dependent, such as file and network access

–e.g., fileio -> {netware, os2, unix, win32}

–Cloning is clearly obvious and is well documented!

• Typical change: insertion of extra error checking or API
calls.

–Is this bad???

8

Cloning as an
engineering tool

• Developers often use cloning!

– If you understand the costs and risks, it can be
used an engineering tool

– ... but we need more study to better understand
the phenomenon!

9

1. Forking

• Hardware variation

• Platform variation

• Experimental variation

2. Templating

• Boilerplating

• API / library protocols

• Generalized programming idioms

• Parameterized code

3. Customizing

• Bug workarounds

• Replicate + specialize

‘Cloning considered harmful’
… considered harmful [WCRE 06, EMSE 08]

10

• Motivation:

–Different platforms ⇒ very different low level details

– Interleaving the platform-specific code in one place may be
very complex

• Advantages of cloning:
– Each (cloned) variant is simpler to maintain

–No risk to stability of older variants

– Platforms are likely to evolve independently, so maintenance is
likely to be “mostly independent”

Forking: Platform variation

11

• Disadvantages of cloning:

– Evolution in two dimensions: user requirements + platform support

– Change to the interface level means changes to many files

• Management and long-term issues:

– Factor out platform independent functionality as much as possible

– Document the variation points and platform peculiarities

– As number of platforms grows, the interface to the system hardens

Forking: Platform variation

12

• Structural manifestations:

– Cloning usually happens at the file level.

• Clones are often stored as files (or dirs) in the same source directory

• Well known examples:

– Linux kernel “arch” subsystem

– Apache Portable Runtime (APR)

Forking: Platform variation

13

Group Pattern Good Harmful Good Harmful
Forking Hardware variation 0 0 0 0
Forking Platform variation 10 0 0 0
Forking Experimental variation 4 0 0 0
Templating Boiler-plating 5 0 6 7
Templating API 0 0 0 9
Templating Idioms 0 12 1 1
Templating Parameterized code 5 12 10 34
Customizing Replicate + specialize 12 4 15 16
Customizing Bug workarounds 0 0 0 0
Total 36 28 32 67

Apache httpd 2.2.4 - 60 Tokens
Gnumeric 1.6.3 - 60 Tokens

Two case studies

14

Research on code cloning

• Lots of work on open source systems ...

– Linux, apache, gnumeric, PostgresQL

• ... but not so much on industrial practice

– Does industry do it differently? How? Why?

e.g., forks vs. product lines

15

Goals of CLIP

• CLICS: A tool for clone detection + analysis

– Better performance than CCfinder?

– Remote detection, local analysis possible?

– Contextual (not full source) browsing

– Smart “taxonometric” support?

16

Goals of CLIP

• Patterns of industrial cloning

– Build on taxonomy of ‘Cloning considered
harmful’ considered harmful [WCRE-06, EMSE-09]

– Rationale, short- vs. long-term effects,
evolution, management, ...

– Longitudinal statistical evaluation of cost/
benefit of (different kinds of) cloning

20

Goals of CLIP

• Improving industrial practice: assessment
and management

– Quick analysis of new source (M&A)

– Auto-markup of risky cloning

– Linked editing

21

Open questions

• How important is feedback from original
developers on design rationale of systems?

• How easy will it be to obtain?

• How can we make the results useful to
developers?

• If tools are produced, will they be used?

22

CLIP
CLoning as

Industrial Practice
A research project involving UWaterloo and CA

