Interview with Daniel Tobler and Professional Scrum Developer Training

Note: I integrated some notes from the course and the interview with Daniel Tobler, because Daniel Tobler was the coach of the course and already spoke of his personal experiences within the course. Furtherly I could not do the same questions as usual, because he never worked on a real-life Scrum project, but has a a lot of general experiences and knowledge of Scrum.

From the interview

· 5 years experience with Scrum (in 10 years with interruptions)

· Courses and theoretical experience; practical experience from discussions within the courses the teaches

Drawing the theoretical Scrum process on flipchart.

Other additional regular meetings: Bilateral meetings between developers and stakeholders, discussion between PO and developers → the PO looks at the feature before it goes to done, verifies the acceptance criterias, architecture meetings to define architecture in a subteam, every 1-2 weeks statusmeetings with all developers from different scrum teams.

Not the same as Scrum of Scrum: Because all developers partecipate and in the Scrum of Scrum only the Scrum Masters partecipate.

Timeboxed meetings: very important part of Scrum. Can be adapted to the teams: Maybe a team can be big and they realize that instead of 15 mintes they want to schedule 20 min for the daily Scrum, but it needs to be time-boxed. Important is the timebox of the sprint: a sprint cannot become longer once started.

In reality: How to interrupt not finished meetings after timeboxed finished? Maybe do the meeting some minutes longer and then the next day try to make it better. Thing of how to organize the meeting to be shorter. In theory the meeting should be interrupted, that is not always possible in reality.

Non-functional requirements are usually in documents, but there can be a reminder in the product backlog. This is not handled as a user story but just reminds to consider the non functional requirements for all the user stories. There are too many non functional requirements to put them all in the product backlog.

Sometimes it might be useful to initialize the project and then start to begin using Scrum (→ slide course).

→ Scrum does not give specific information about requirements engineering. Scrum starts when there is already a product backlog with user stories ready (→ diagram of Scrum and agile practices)

There is the risk to take too many requirements and then few are implemented, because many werent important for the project.

Artefacts/Tools: Scrum Boards as visibility for the developers, someone must update the TFS/tool → redundancy for data. He knows that sometimes this is an issue in practice. But there is no perfect tool available, that gets the features of the Scrum wall and of a tool.

See Scrum-Table from Fachhochschule Rapperswil: Not ready yet, bigger screen needed. Also there is the possibility needed to put it on the wall and take it down as a table during the meetings. It is too small so that 7 people can work on it. No need to be in different menues on the same screen, if someone is not involved can use the laptop and work on TFS.

Updated should be synchronized immediately (after every action) between Scrum Table and TFS. Missing update in the Scrum Table → Offshore! In almost every project there were people that were located in a distance of more than 15 minutes so they could not come to a Daily Scrum of 15 minutes → there is a need to have more Scrum Tables in different place that synchronize on the same TFS and if someone moves something on one Table, it should be reflected on other tables too.

→ Scrum Board is a problem for offshore people in a project. A „computer“ tool is needed.

The TFS is ugly graphically, there is a good GUI missing so that it might replace the Scrum Wall.

TFS Templates for Scrum:

· Conchange templates, has also a GUI for TFS, must be bought.

· Ufficial Scrum template from MS: NO Excel-Export!! → killer-criteria; the feature allowed to modify data from TFS in an excel sheet and re-load it into TFS.

· CMMI template currently used (different names in TFS)

TFS just makes sense for MS Projects, for Java projects there are different tools.

Agilo add-on for Trac (from web: „Project management and bug/issue tracking system. Provides an interface to Subversion and an integrated wiki.“) → webbased, good plugins, good views

No interface to TFS, will probably never be there.

→ less experience with Java projects, but says that Java developers are jealous because TFS is out of a box and there is no need to build the whole environment within the project.

His personal opinion: would prefer the integrated plattform. He says in TFS no need to replace something, so that can be used out of the box.

TFS (2008)

positive:

· excel-export

· easily can be done queries ín order to generate different views on the data

· all in one → big positive point

· it can be configured a lot to fit on the project and on the process → fields and selections can be defined

· find linked items as bugs, tests etc.

negative

· a webinterface is needed, always Visual Studio needs to be installed to view the data

· „the GUI has as much Sexappeal as Excel“ → other GUI would be needed, to work interactive

· sometimes strange not easily reproducable issues caused by strange developers → small issues, no influence on the project

If there is a project → first step: what technology? → then see what tool is useful. It is useless to use Visual Studio for a Java Project.

Long-time management of knowledge: Nothing provided by Scrum. The issue is still the same as with the Waterfall-Model → Scrum does not help to resolve this kind of issues. Maybe in a waterfall-process the knowledge lived in the head of one person, with Scrum it lives in the heads of the team, but still in the heads. In general: Often they thing to document everything, but still an important part is only in the heads of the people.

Retrospective: should be done to refine the process. It is important in order to have process to do a good retrospective. Often the team itself has difficulties to do the retrospective (=selfcritical analysis). In one example he says that the team do not want to do the retrospective at all, and so it is not doing it anymore. He says that this is a pity, many lessons to be learnt can be lost. How to do retrospectives good → see book „Agile Retrospectives“. The first retrospectives are easier to do, but then it gets more difficult to do an useful retrospective.

Different estimations: relative/absolute, in hours or in storypoints → is the velocity better when estimated in storypoints? A stable velocity can only be reached using storypoints, because in hours it might not be clear whether that are effective hours or planned hours etc.

→ Velocity does not get better when estimating in storypoints, but it can be better compared.

Important for the potentially shippable product is the Definition of Done! What is considered a potentially shippable product → In the conchange template there are many additional things, but the definition of Done and the definition of Undone is missing! (http://consultingblogs.emc.com/colinbird/archive/2006/03/10/3058.aspx)

From Professional Scrum Developers Course

Note: Here I put some notes taken during the course that might be relevant. The complete material I do not have in digital.

IKIWISI-approach: „IKIWISI is an acronym for "I'll know it when I see it". Within technical fields, it is often seen as the mantra of the indecisive individual who wants to let other people figure out the details for them.„

A Product Owner should be available at least 70% for the project, because he needs to be available when detail-questions about the User Stories appear.

A Scrum Master might be also part-time (for more projects), but the best it is, when he is also developer of the team. So he is always around and working with the team.

There should be some time planned in each sprint for the preparation of the product backlog in the very next sprint.

Bugs are usually put into the product backlog, but marked in a different way. They are in a somewhat parallel list, and are not prioritized by the Product Owner, as they should be fixed as soon as possible.

A sprint 0 is needed to initialize the project. Scrum itself defines quite few things, but it remains clear and sticks to the core of it. It can often be integrated with XP. RUP defines much more than XP and Scrum together (it comes on a DVD!), but that often leads to excessive demand for the developers. Scrum is useful from the middle of Elaboration phase, because in the very beginning of the project it does not define how to proceed.

[image: image1.jpg]—

Scrum and RUP
Different scopes

———— —————————— ————————— | ——————

Disciplines
Business Modeling

Requirements
Analysis & Design

Many things that are commonly considered being part of Scrum are often just best practices. Scrum just says „stick to the core“, but the best practices are just recommand. Maybe there might be some projects where one of these practices does not work or does not even make sense. One can then still stick to Scrum, to the core.

[image: image2.jpg]Pair Programing Refactoring

Sprint Daily Scrum

0 0O O CF R

Definition of Done/Undone

o
&
@
o
=
o
=
=
=
=
o

19504
Buluueq

(Ten) Minute
legend Build

[[] scrum core
agile practices

Agility is not adapted to every kind of project. Division of projects in 4 groups:

· Complicated (e.g. embedded software)

· Complex (many interactions by humans)

· Simple

· Chaotic

For simple projects there can be usually used also an iterative process. Agile is very useful for the complex projects and partially useful for complicated and chaotic projects.

Knowledge Transfer: Sometimes a Product Backlog Item might be to study something and then teach it to the team.

Retrospective:

· should be done after each sprint

· after the project (port-mortem) does not help the product, the process, the team

· one way to do it: everyone writes cards with good or bad things and then presents them and the team tries to find a solution → e.g. meetings are difficult, because there is no moderator → possible solution: Introduction of a token that is passed to who should talk next

TFS:
Can be adapted to the project: Workflow, Layout, Fields, Define New Actions → very rudimentar and not really user-friendly editor

The new Layout can be previewed, but many people said that it would be easier for them when there would be the possibility to drag-and-drop on the preview.

(To do all this, admin-rights and PowerTools-Add-On are required)

In TFS 2010 the Embedded Environment (Visual Studio CE) „was forgotten“ (in 2008 it was possible to integrate that too, also in 2012 it should hopefully be back...)

GUI for the TFS: There are some tries to provide a better GUI for the data saved in the TFS, for example there is the TFS Project Dashboard from Telerik. http://www.telerik.com/team-productivity-tools/products/tfsmanager-and-tfsdashboard.aspx
The GUI is considered quite ugly by many developers, because of the black background. This might be beamed to a wall and could replace the Scrum wall, in theory.

In TFS the storypoints must be written for each task and then summed manually for the user stories to which belong the tasks. This might lead to errors.

→ In TFS there is the possibility to adapt to many different processes, but in conquence there is poor automation

Usually during a sprint that has already begun no user stories can be accepted. Exception: Killerbugs can always be accepted, but there must then be done a scope-decrease discussed between team and product owner.

Next to the definition of Done, there is also needed the definition of Undone. In the definition of Undone are explicitly written all the tasks that are not done within the sprint. With this definition of Undone we can avoid „hidden tasks“. An example could be the update of the user documentation that might not be done for each feature, but before a release.

It is allowed to change team members (see books of Ken Schwaber), but it has an influence on the team velocity.

The Product Backlog is a tool that should help the developers. There can be added user stories only, but also visions. It depends on the team. Also the form of the user stories is not defined by Scrum. That can be stories, personas or even use-case diagrams. It depends on the team, what the team prefers.

There is more motivation in the teams when they are self-organized → they commit to reach a determined goal and they are motivated to succeed.

Scrum cannot be applied to all teams. Developers can be divided in categories

· Level-0 Developer: cannot work with a given process

· Level-1 Developer: can work to a given process

· Level-2 Developer: can help to adapt a process

· Level-3 Developer: can introduce and enhance a process

In a team with all Level-1 Developers, Scrum probably not be introduced successfully. There is adaption from team-side needed to make Scrum successfull.

Test-Driven-Development:

· there is some initial effort needed to create a good test-environment

· singletons in the architecture are bad for testing

· test-automation helps to save time

Test-First-Approach:

1) Write Tests and empty methods

2) Run tests → they fail

3) Implement

4) Run tests → green

5) Refactor

→ Book from Kent Back – Test Driven Development (→ „ getting test affected“)

Often questions about the job description of the Scrum developer: „ Must s/he be able to do anything?“ → requirements engineer, tester and developer in one?

