
in Proceedings of the International Conference on Software Maintenance 1998 (ICSM ’98) 1/10

Detection of Logical Coupling Based on Product Release History

Harald Gall, Karin Hajek, and Mehdi Jazayeri
Technical University of Vienna, Distributed Systems Group
Argentinierstrasse 8/184-1, A-1040 Wien, Austria, Europe

{gall,hajek,jazayeri}@infosys.tuwien.ac.at

Abstract
Code-based metrics such as coupling and cohesion are
used to measure a system’s structural complexity. But
dealing with large systems—those consisting of several
millions of lines— at the code level faces many prob-
lems. An alternative approach is to concentrate on the
system’s building blocks such as programs or modules
as the unit of examination. We present an approach that
uses information in a release history of a system to un-
cover logical dependencies and change patterns among
modules. We have developed the approach by working
with 20 releases of a large Telecommunications Switch-
ing System. We use release information such as version
numbers of programs, modules, and subsystems together
with change reports to discover common change behav-
ior (i.e. change patterns) of modules. Our approach
identifies logical coupling among modules in such a way
that potential structural shortcomings can be identified
and further examined, pointing to restructuring or
reengineering opportunities.

1 Introduction
Large software systems are continuously modified and

increase in size and complexity. After many enhance-
ments and other maintenance activities, modifications
become hard to do. Therefore, methods and techniques
are needed to restructure or even reengineer a system
into a more maintainable form.

To evaluate the impact of changes, we need to under-
stand the relationships, that is, dependencies among
modules that compose the system. Current methods of
identifying dependencies are based on metrics such as
coupling and cohesion measures [6,17]. These measures
identify dependencies among modules by the existence of
such relationships as procedure calls or “include” direc-
tives. There are two basic issues with these measures:

1. These measures are based on source code which is
usually very large. In our case study the source code

consists of 10 million lines of code (MLOC) per
system release.

2. Such measures do not reveal all dependencies (e.g.
dynamic relations). In fact, some dependencies are
not written down either in documentation or in the
code. The software engineer just “knows” that to
make a change of a certain type, he or she has to
change a certain set of modules.

We may say that such code-based measures reveal
syntactic dependencies and what we are really interested
in is logical dependencies among modules. The purpose
of this paper is to present an approach to uncover such
logical dependencies by analyzing the release history of a
system. Release histories contain a wealth of information
about the software structure. The task is just to analyze
them and uncover the information.

In particular, we can analyze release histories to look
for patterns of change: are there some modules that are
always changed together in a release? Are there sequen-
tial dependencies such as if module A is changed in one
release, module B is changed in the next release? And so
on.

We have developed a technique called CAESAR for
detecting such patterns. We have applied the technique
to a large system with a 20-release history and identified
potential dependencies among modules. To validate the
accuracy of these dependencies identified by our tech-
nique, we examined change reports that contain specific
change information for a release. The results have shown
that this approach is promising in identifying “logical”
couplings among modules across several releases.

Our technique reveals hidden dependencies not evi-
dent in the source code and identifies modules that are
candidates for restructuring. The technique requires very
little data to be kept for each release of a system. Rather
than dealing with millions of lines of code, it works with
structural information about programs, modules, and
subsystems, together with their version numbers and

mircea

mircea

in Proceedings of the International Conference on Software Maintenance 1998 (ICSM ’98) 2/10

change reports for a release. Such release data is both
easy to compute and usually available in a company.

The CAESAR approach is distinguished from met-
rics-based approaches by being based on empirical obser-
vation of structural modifications of a system through its
evolution. The technique leads naturally to an evaluation
of a system’s architecture and points out potential struc-
tural and architectural enhancements.

2 Related work
We describe the evolution of a large Telecommuni-

cation Switching System (TSS) based on information
about its structure stored in a database. The investigation
involves 20 system releases that were delivered over a
period of about two years. These releases were triggered
by product improvement and new customer demands.
The data on which our analysis is based consists of in-
formation about the names and version numbers of pro-
grams, modules, and subsystems of the 20 releases.
Based on the findings in [14,15,23] and our quantitative
analysis of the TSS described in [7] we again use the
modules as our unit of investigations, rather than the
source code.

Our goal is to identify logical coupling of modules
that is otherwise hidden in the source code in terms of
change patterns. If programs change together across
module or subsystem boundaries, the decomposition
structure of the application should be reconsidered and
possibly restructured. Restructuring or reengineering
methods are well-developed, for example in [1] or [4] or
[9].

Related approaches differ from our work in that they
mainly focus on a micro-level to analyze the evolution of
a software system: the source code is analyzed and
source code metrics are used as indicators of the system’s
quality and complexity [19]. Other approaches identify
fault-prone modules using statistical techniques based on
design metrics [18] and discriminant analysis [12,13].
Fault and defect metrics are used for in-process project
control and for process improvement over time in [4].

Coupling and cohesion measures were defined by
Yourdon and Constantine [24] as a way to measure
structural cohesiveness of a design. The main purpose of
such measures is to evaluate how maintainable a design
and resulting implementation are, and to guide improve-
ment efforts. The basic idea is that the more dependen-
cies that exist among modules, the less maintainable the
system is because a change in one module will necessita-
te changes in dependent modules. Approaches to meas-
uring module dependencies fall into two categories ac-
cording to the information on which it is based:

• code-level approaches measure coupling based on
analysis of source code; naturally, such measures
can only be made after the code has been written.

• predictive measures try to measure coupling based
on design information; such approaches attempt to
evaluate the complexity of the system before the
code has been written.

Our approach attempts to measure coupling based on
empirical analysis of multiple releases of a system. This
approach is based on observed change behavior of mod-
ules in a system and may be categorized as retrospective.
Our measures may be used not only as coupling meas-
ures to guide restructuring efforts but also to validate the
effectiveness of predictive and code-level coupling meas-
ures.

Other related work analyzes the structure and the ar-
chitecture of software systems. Methods for architectural
reasoning and assessment as described in [20] or [22]
could be used for restructuring the architecture.

Visualization approaches such as SAAM [11], SeeSys
[2], or SeeSoft [5] deal with the visualization of software
in different ways by comparing architectures or archi-
tectural styles, visualizing statistics associated with the
code, or visualizing source code information. We focus
on a macro-level of software evolution by tracking the
release history of a system. We thereby investigate only
structural information about each release (such as ver-
sion numbers of system modules) but no source code
metrics.

The paper is organized as follows: In Section 3 we de-
scribe the case study to the extent needed to understand
the evolution observations. Section 4 describes our ap-
proach for identifying logical coupling among modules
based on release histories. We report on our results in
Section 5 and draw some conclusions in Section 6.

3 The case study
The software examined in this case study is a Tele-

communication Switching System (TSS). Telecommuni-
cation Switches are used to connect telephone lines and
consist of both hardware and software. Our evaluation
only concerns the software. The TSS covers a wide range
of utilization: for example, it can be used as a switch in a
fixed network, as a large international switch and as a
switch for mobile telephones. The source code of TSS
consists of over 10 million lines of code and several
thousand files.

The TSS was first shipped in the early 1980s. The
implementation of the software of the initial release was
done in a machine-specific low-level language. After a
few years this language was gradually replaced. So far,

in Proceedings of the International Conference on Software Maintenance 1998 (ICSM ’98) 3/10

many different languages, such as Assembler, C and
Basic, have been used to code new parts of the system.
Presently, the system is being developed using SDL a
high level language popular in telecommunication sys-
tems. SDL programs are translated into C and then com-
piled with a standard C-compiler.

System

Subsystem A

Module bb

Program 100

Subsystem B Subsystem C

Module ba Module bc

Program 300Program 200

Figure 1. The software structure of the TSS

3.1 The structure of the case study
The software structure of the TSS is a tree hierarchy

with four levels: the system, subsystem, module, and
program level. Each level consists of one or more ele-
ments and each element of a certain level is connected to
one element of the higher level. The system level con-
tains only one element representing the root of the tree.
The elements in each level are named corresponding to
the names of the levels.

Figure 1SEQARABICSEQARABIC shows the ge-
neric software structure of the TSS. The tree hierarchy
limits the visibility of the code contained in the program
level. For instance, an algorithm of a specific program
can only be seen by another program of the same mod-
ule. The tree hierarchy, however, does not restrict the use
of the algorithms at the implementation level. Note that
this logical structure has been defined after the imple-
mentation of many releases of the system and that it
represents the organizational structure rather than the
structure of the actual implementation.

Telecommunication switches are products that require
extensive customization for different markets and appli-
cations. Currently, this customization affects large parts
of the system, mainly because the customization is per-
formed by making changes directly to the code. Each
customer receives a specially adapted program. This
kind of customization makes the system expensive to
develop, test, and maintain.

3.2 The Product Release Database (PRDB)
A system of 10 MLOC is difficult to manage. To help

simplify the management and to enable the study of the
structure, a database stores structural information of the

whole system. The information required to populate the
product release database (PRDB) is derived directly from
the source code: during compile time preprocessors ex-
tract the required information and store it.

The PRDB contains 20 different releases (represen-
ting releases over 21 months). The requirements for new
releases vary from functionality enhancements (both
customer and environment driven) to bug fixes.

For each release stored, the database contains entries
for elements at the system, subsystem, module, and pro-
gram level. Systems and programs are characterized by a
version number. Each system has the version number of
the specific release. Program version numbers are inde-
pendent from the version number of the system to which
they are connected. Programs which have been changed
from one release to the following are identified by an
incremented version number in the newer release. Fur-
thermore, relations between various elements of the
system are stored in the PRDB (e.g. Module bc consists
of Programs 100, 200, and 300). Properties are used to
attach additional information to elements or relations,
such as textual descriptions of an element or the name of
the developer. Each system release stored in the database
consists of eight subsystems, 47 to 49 modules, and
about 1500 to 2300 programs.

4 The CAESAR approach
In this section, we describe our approach to identify-

ing change patterns among modules and revealing hid-
den dependencies among them. To do that, we define
two processes that use the Product Release Database
(PRDB). We give an overview of the two processes here
and define them in detail later in the paper.

1. The Change Sequence Analysis (CSA) identifies
patterns of change. Each change of a module (re-
flected in a change of its version number) is related to
the system level—with system releases—as shown in
Table 1. All changes of a module can then be viewed
on the system level and put together to form a change
sequence. A change sequence for a module shows the
releases in which the module has been changed. Such
change sequences allow to compare different modules
in terms of their change history and identify common
“change patterns.” The output of the CSA process is
a set of change patterns that define a so-called “logi-
cal” coupling among specific modules.

2. Change Report Analysis (CRA): To verify the logical
coupling identified in the CSA process, it is neces-
sary to examine change reports as a further source of
release information. A change report describes the

mircea

mircea

mircea

mircea

mircea

mircea

in Proceedings of the International Conference on Software Maintenance 1998 (ICSM ’98) 4/10

reasons, error class, amount and type of a change of a
single program with regard to a particular version
number. The Change Report Analysis looks at the
change reports for programs with the same change
sequence. If the change reports identify the same rea-
son for the change, such as the same bug report in
programs with the same change sequence, then the
logical coupling identified in the CSA process is
verified.

4.1 Definitions
We start by giving some definitions that allow us to

represent programs and their change patterns abstractly
as numbers and sequences of numbers.

Table 1 shows the program Pi which occurs from sys-
tem release 3 through 8. The first row shows the version
number of Pi as it appears in the PRDB. For our analysis,
the important point about the program is the release
number(s) in which it is changed. In this case, from the
version numbers in the first row, we can see that the
program is changed in releases 3 and 5. This informa-
tion is shown in the second row.

System Release 1 2 3 4 5 6 7 8 9
Pi version no. 1.1 1.1 1.3 1.3 1.3 1.3
Pi change se-
quence

3 5

Table 1. Program Pi’s version numbers and represen-
tation as change sequence

• A change sequence is defined on the program
level and is an n-tuple <1 2..n> of those release
numbers in which the program changes its version
number. A program change sequence contains all
system release numbers in which the program
changes (e.g. in Table 1 <3 5> denotes one change
of Pi in release 5).

• A subsequence (SUB) is a contiguous part of a se-
quence.

• Changes are represented by a sequence or subse-
quence.

• A Change Report (CR) is a report of a version
number change of a program. It contains all de-
scriptions of changes of the programs involved.
There exists different types of changes and differ-
ent types of error classes.

4.2 The Change Sequence Analysis (CSA)
The Change Sequence Analysis allows to reason

about “logical coupling” among different elements (i.e.
programs or modules). Logical coupling refers to ob-
served identical change behavior of different elements
during system evolution. The main principle of CSA is
to represent each change of a version number of an ele-
ment on the system level as a system release change.
This abstract way of representation is chosen to be inde-
pendent of the level on which the CSA is performed.
Therefore it is possible to compare the behavior of differ-
ent decomposition levels during system evolution.

This paper focuses on the level of programs because
of the following TSS-specific reason: If a program
changes its version number, the containing module must
also change its version number. A version of a module
defines the version of a program belonging to it. The
module level is not representative since the modules
contain all the changes performed on the level of the
programs. This results in a high number of changes for
each of the modules. Therefore, we focus on the level of
the programs viewed on the level of subsystems. Since
this level consists of only 8 different subsystems it is a
good way to represent the changes of the different pro-
grams.

Two kinds of coupling are considered in the CSA
process:

• System coupling represents relationships among dif-
ferent subsystems via sequences

• Sequence coupling represents relationships among
different sequences via subsystems

Both of them use subsequences to represent a specific
behavior in a certain part of the system evolution. In the
following, we discuss the two different couplings in
terms of the TSS.

4.2.1 Coupling among subsystems

This coupling represents subsystems related via dif-
ferent sequences. Since the evaluations are done on the
version numbers of the programs, each subsystem repre-
sents a specific program to which it is related. The sub-
system level has a compact representation since there are
a fixed number of subsystems (for TSS: 8). Subsystems
are coupled if they are related to the same sequence and
contain the same defined subsequence. Intuitively, if two
subsystems are related to the same subsequence, it means
that the subsystems were changed in the same releases.

After listing the change sequences for all programs,
different subsequences are compared against all se-

mircea

in Proceedings of the International Conference on Software Maintenance 1998 (ICSM ’98) 5/10

quences. If two or more sequences contain the same
subsequence, we postulate a logical coupling among
those sequences and the associated programs and sub-
systems. Figure 3 is a simplified model of the TSS with
respect to a particular change sequence. We have
changed the subsystem names to hide the identity of the
real system. Each subsystem is represented by a circle.
The different styles of lines represent the different
amount of changes belonging to the sequences. The
sequence name Sk=<c1 c2 .. cn> represents the changes ci
in which this sequence occurs. Figure 3 shows that, ex-
cept for subsystem F, each of the subsystems includes the
subsequence SUB1=<1 2 4>. It further depicts that sub-
system G has no coupling to any other subsystem; its
only coupling is internal to its own programs with re-
spect to the change sequence SUB1.

SUB1=<1 2 4>

C

G

B

D

A

F

2 changes
3 changes
4 changes

E

H

Figure 3. Coupling among subsystems

Subsystem A shows existing coupling inside the same
block which is depicted as a self reference. Therefore this
coupling refers to at least two different programs be-
longing to the same subsystem as shown in Table 2
(E.g., ‘A.ac.144’ denotes program 144 in module ac of
subsystem A).

SUB1=<1 2 4>
A.ac.144 1 2 4 6 19 20
A.ad.200 1 2 4 6 19 20
A.ad.201 1 2 4 6 19 20

Table 2. Coupling among modules (ac, ad) within
subsystem A for SUB1

In Figure 3, subsystems A, C, and E are seen to be
coupled via a sequence of 3 changes with every sequence
including SUB1 as subsequence. All three subsystems

include programs related to the sequence S40=<1 2 4 7>
with 3 changes (S40 includes the subsequence SUB1=<1
2 4>).

In general, there could exist many sequences that in-
clude SUB1 and represent 3 changes. Each line in Figure
3 represents the fact that there is one or more sequences
shared by the related subsystems. To see how many
shared sequences are represented by each line, we have
to check the sequence coupling (see Section 4.2.2).

Figure 3 further shows that subsystems D and H are
also coupled via a sequence of 3 changes: sequence
S49=<1 2 4 6> is related to several programs of the two
subsystems D and H; this fact is represented in a line
that “logically” couples D and H.

Subsystems are coupled via sequences that can repre-
sent different amounts of changes. Let us consider the
example shown in Table 3.

SUB2=<1 2 3 4 6 7 9 10 14>
A.aa.111 1 2 3 4 6 7 9 10 14 17 19
B.ba.222 1 2 3 4 6 7 9 10 14 16 18

Table 3. Coupling among subsystems A and B via
SUB2

Subsequence SUB2 represents 8 changes. There are
some programs with change sequences larger than 8
which include SUB2 as a subsequence. An example is
given in Table 3, in which program 111 of subsystem A
and program 222 of subsystem B include SUB2. As a
result of this, subsystem A and B are “logically” coupled
via subsequence SUB2. Intuitively, this means that in
eight different releases, these programs were both
changed.

Subsequences are used to compare different blocks.
Short subsequence may be shared by programs coinci-
dentally. But the longer the subsequence that is shared
among programs, the higher is the probability of cou-
pling among the programs. If there exists a long subse-
quence included in many different change sequences, it
can be assumed that the programs are dependent on each
other. We, therefore, look for long sequences in the CSA
process.

If commonalities via subsequences are detected, then
logical coupling among different programs and, as a
consequence, among different subsystems exists. This is
a first step in identifying the same change behavior dur-
ing system evolution based on different levels and
blocks. To determine whether or not this logical cou-
pling represents real dependencies, it is necessary to
inspect the change reports via the change report analysis
(CRA).

mircea

in Proceedings of the International Conference on Software Maintenance 1998 (ICSM ’98) 6/10

4.2.2 Coupling among sequences
This coupling represents sequences which connect

different subsystems. The sequences are subdivided into
groups of different amount of changes which belong to 2,
3, .., 9, and >9 changes. The commonality among se-
quences is always a subsequence that is included in each
of the sequences such as SUB1=<1 2 4> in Figure 4.

S0-S30
S31-S59
S60-S74a
S75-S79
S80-S87
S89,S90,S92a
S91,S92
S94,S95
> S96

2 changes
3 changes
4 changes

6 changes
5 changes

7 changes
8 changes
9 changes

>9 changes

SUB1=<1 2 4>

S5

S31
S60

S64

S73 S67

S58

S40

S42
S49

S59

S84

Subsystem A
Subsystem B
Subsystem C
Subsystem D
Subsystem E

Subsystem G
Subsystem F

Subsystem H

Figure 4. Coupling among sequences

Figure 4 depicts coupling among sequences. The
boxes represent sequences and the different styles of
lines represent the subsystems of TSS. In Figure 4, se-
quence S5 belongs to the group of 2 changes. The dotted
line in S84, for example, indicates that this sequence is
only referred to by change sequences of programs in
subsystem G.

Let us examine the sequences S5=<1 2 4> and
S40=<1 2 4 7>. S5 is connected by 5 different lines
which indicate 5 different subsystems (A, B, D, E, and
H, see also Table 4). Both S5 and S40 are connected to
subsystem E represented as a dotted line. Sequence S84,
which belongs to the sequence group of 6 changes and
represents coupling within its sequence, is not related to
any other sequence but points to subsystem G.

Table 4 shows sequence S5=SUB1=<1 2 4> and the
coupled programs and subsystems in more detail.

S5=<1 2 4> = SUB1

A.aa.005 1 2 4
B.ba.098 1 2 4
D.da.307 1 2 4
D.da.309 1 2 4
E.ec.330 1 2 4
H.ha.377 1 2 4

H.hb.390 1 2 4

Table 4. Coupling among sequence S5

Analyzing the behavior of sequences reveals which
subsystems are related to which sequence while observ-
ing a specific subsequence. This supports the search for a
specific behavior—such as SUB1=<1 2 4>—where
changes in different subsystems were done in system
releases 2 and 4.

The coupling among sequences adds more detail to
the logical coupling among subsystems and identifies the
specific programs and the specific releases in which the
subsystems exhibited exactly the same change pattern.

4.3 Change Report Analysis (CRA)
During the maintenance phases, once a failure is re-

ported and its cause determined, the problem is fixed by
one or more changes. These changes may include modi-
fications to one or more of the development products,
including the specification, design, code, test plans, test
data or documentation. Change reports are used to rec-
ord the changes and track the products affected by them.
A typical change report may look as follows [6]:

Change report
Location: identifier of document or module change
Timing: when change was made
Symptom: type of change
End result: success for change, as evidenced by regres-

sion or other testing
Mechanism: how and by whom change was performed
Cause: corrective, adaptive, preventive, or perfective
Severity: impact on rest of system, sometimes as

indicated by an ordinal scale
Cost: time and effort for change implementation

and test

We use the change reports for programs to verify
whether the logical coupling among different programs
represents real dependencies among those programs. A
change report contains a report of the type, error class,
kind and number of a change done in a program. Logical
coupling represents a real dependency if the change
reports for the different programs include significant
similarities, for example, they reference the same bug
report.

4.3.1 Description of a change report
In general, a program has several change reports

since each belongs to a change from one version number
to another. We consider the following change report of
program 111 (with comments included):

mircea

in Proceedings of the International Conference on Software Maintenance 1998 (ICSM ’98) 7/10

The change reports of the TSS case study refer to 3
main types: “Further Development (FD)” which is di-
vided into several parts such as FD based on system
specification, development of technology (software and
hardware) and so on. The second is a general “Change”
such as optimizing or improvement. The third is a cor-
rection of an error which refers to a specific “Bug Report
(BR).” For our case study it was only important to differ-
entiate between these three types although some more
types exist for the TSS.

For the TSS case study we use the terms with num-
bers, such as FD1 or C5 referring to a specific subtype of
change. To completely identify whether two changes in
two different change reports refer to the same change, we
also have to inspect the change-reports' comments which
usually are not categorized in great detail.

4.3.2 Analysis steps
To analyze the change reports we have to inspect the

version numbers of the programs together with the
change sequence as shown in Table 5.

system releases
1 2 3 4 5 6 7

S28 A.aa.111 2.3 2.3 2.4 2.6
4 6 7

Table 5. Analyzed program for a change report

For every change of a program (reflected in its change
sequence), the corresponding change report(s) are identi-
fied and analyzed. The change reports that describe a
new version of a program are then listed as shown in
Figure 5.

4 6 7

Program 111 2.3 BR 4711 2.4 FD 1 2.6

Figure 5. Change history of Program 111

In Figure 5, Program 111 occurred in system release 4
with version number 2.3. The first change was done in
system release 6 resulting in version number 2.4. The
change was a bug fix according to the specific bug report
BR 4711.

The second change occurred from system release 6 to
7 as a change from version number 2.4 to 2.6. This
change is of type “FD 1” and refers to a specific “further
development” change.

Sometimes a program has several changes until its
version is included in a specific system release as shown
in Figure 6.

10 11

Program 222 6.1 BR 1234 6.4
BR 1235
BR 1239

Figure 6. Change history of Program 222

Figure 6 depicts that 3 changes occurred between
system releases 10 and 11. Three bugs were fixed which
refer to the bug reports BR 1234 (from version 6.1 to
6.2), BR 1235 (from version 6.2 to 6.3), and BR 1239
(from version 6.3 to 6.4). After fixing these bugs, the
final version number of Program 222 (i.e. 6.4) was in-
cluded in system release 11.

Change reports are necessary to determine whether
the logical coupling identified in the CSA process indi-
cates real dependencies or just coincidental changes. The
next section examines some programs which have im-
portant commonalities in those change reports.

4.3.3 An example
Let us assume that after analyzing the system there

was logical coupling found with the subsequence
SUB1=<2 4 6 7>. Four different programs including this
subsequence caused the logical coupling. These four
programs are related to two different subsystems A and
B as shown in Figure 7. By examining the change re-
ports of those 4 programs we see that the logical cou-
pling via the subsequence SUB1 results in the following
behavior:

Ver 2.4 — 96/03/12 10:10:07
TSS---PROGRAM CHANGE DESCRIPTION
ELEMENT NAME: Program 111 2.3 --> 2.4
CHANGED BY: John DOE
CHANGES as follows:

CHANGE NR: 1
CHANGE TYPE: B // bug fix
REFERENCE: BR 4711 // reference to a bug report number
ERROR CLASS: A // i.e. operation in working state
DESCRIPTION: hanging of the circuits in environment xy.

mircea

mircea

mircea

in Proceedings of the International Conference on Software Maintenance 1998 (ICSM ’98) 8/10

SUB1 =<2 4 6 7>

BR 1443

FD 1

FD 2

FD 3

system releases

A.ab.4
A.ac.10
B.be.20
B.bh.27

2 4 5 61 7 8

Figure 7. Programs, change reports, and commonali-
ties

If two different programs have the same FD-number
they are dependent on each other in some way. But if two
or several programs refer to the same bug report then
they have a strong dependency because the same bug had
to be fixed.

 In Figure 7, FD1 was done in program 4 from system
releases 1 to 2 and in program 27 from system release 6
to 7. This shows that in program 27 the same change
was done 5 releases later than the first development of
program 4 happened.

Inspecting the programs 4, 10, and 20 revealed a
strong dependency: All three programs have the same
changes from system release 2 to 4 and from 6 to 7. All
of them refer to the same bug report number BR1443. In
all of the three programs the same error occurred which
had to be fixed. From system release 6 to 7, the same bug
report number occurred again for the examined pro-
grams. Since one bug report refers to a specific error,
one possible answer for this is that the bug was not fixed
properly in all affected parts of the system from system
release 2 to 4. Therefore, in system release 6 the same
bug occurred again and had to be fixed.

4.4 Résumé
The CSA process locates potential couplings and then

analyzes in more detail the changes done in a program.
With CRA we can verify logical coupling through de-
scriptions in change reports. If the change was a bug fix
and several programs refer to a specific bug report num-
ber, this change verifies a real logical coupling. Other
types of changes (e.g. further development etc.) can be
analyzed for commonalities accordingly. For more de-
tails about the specific examples see [10].

5 Results
In our case study, we examined different subse-

quences to identify change patterns in different programs
and subsystems. The length of a subsequence is impor-
tant when analyzing the coupling. As a consequence, our
technique detects a stronger logical coupling of sub-

systems (or programs), if they are coupled via a long
subsequence.

In general, we discovered that in accordance to our
findings in [7], many changes were performed in system
releases 1, 2, 4, 5, 7, and 11. This corresponds to the
logical coupling among the different subsystems. For
example, 31 programs refer to the same change se-
quence.

Considering the size of each subsystem, subsystem C
was continuously growing over the 20 releases (for de-
tails refer to [7]), but this fact is not reflected in a high
logical coupling with other subsystems. The potential for
restructuring is, therefore, within subsystem C and its
modules. The structural shortcoming is local in terms of
subsystems but with a high interrelationship among
modules of subsystem C. From the CSA and the CRA we
have identified those modules and programs that should
undergo restructuring or even reengineering.

6 Conclusions and future work
We have presented a new way to analyze large soft-

ware systems with millions of lines of source code:
building on the quantitative analysis of a Telecommuni-
cation Switching System performed in [7], this paper
considers logical attributes of the TSS. Such large sys-
tems often reach a high level of complexity and any
extension or adaptation causes a large maintenance ef-
fort. Therefore, it is necessary to examine the structure of
the system concerning its architecture and the dependen-
cies of the different modules and subsystems. Based on
these results, further maintenance activities can be esti-
mated more accurately in terms of time needed and soft-
ware parts affected.

We developed a technique called CAESAR for de-
tecting change patterns and applied it to a large Tele-
communication Switching System with a 20-release
history. We identified potential dependencies among
modules, and validated these potential dependencies by
examining change reports that contain specific change
information for a release. The results have shown that
this approach is promising in identifying such “logical”
couplings among modules across several releases.

Our technique reveals hidden dependencies not evi-
dent in the source code, identifies modules that should
undergo restructuring, and is based on minimal amount
of data that must be kept about each release. Rather than
dealing with millions of lines of code we use structural
information about programs, modules, and subsystems,
together with their version numbers and change reports
for a release. Such release data is both easy to compute
and usually available in a company.

mircea

mircea

in Proceedings of the International Conference on Software Maintenance 1998 (ICSM ’98) 9/10

Although our results are preliminary, the use of
CAESAR was able to uncover phenomena such as bugs
being fixed in one system release and “re-emerging” a
couple of releases later to be fixed in other parts of the
system, and we were able to verify couplings identified
by CSA using CRA. Our results indicate that such retro-
spective analysis is a valuable complement to code-based
and predictive analyses that are commonly practiced
today.

The insights gained from the case study allow us to
define those data that are required to detect logical cou-
pling in very large systems: change sequences, subsystem
and sequence couplings together with those change re-
ports that are referred to in the version changes of mod-
ules and programs.

So far, we have used only simple tools in our study. In
the future, we plan to add a visualization capability to
the release database to enable a maintenance engineer to
view the identified relationships with 3-dimensional
graphs (as presented in [21]) and to navigate across the
releases and the discovered module and subsystem de-
pendencies.

7 Acknowledgments
We thank our industrial partner that provided all the

information and helped us with the interpretation of the
results. We are also grateful to Georg Trausmuth for his
critical remarks.

This work was supported by the European Commis-
sion within the ESPRIT Framework IV project no. 20477
ARES (Architectural Reasoning for Embedded Systems).

8 References
[1] Arnold R. S., “Software Reengineering,” Proceedings,

IEEE Computer Society Press, Los Alamitos, CA,
1993.

[2] Baker M.J. and Eick S.G., “Visualizing Software Sys-
tems,” AT&T Bell Laboratories, 1994.

[3] Choi S.C. and Scacchi W., “Extracting and Restruc-
turing the Design of Large Systems,” IEEE Software,
pp. 66-71, January 1990.

[4] Daskalantonakis M.K., “A Practical View of Software
Measurement and Implementation Experiences Within
Motorola,” IEEE Transactions on Software Engineer-
ing, Vol. 18, No. 11, pp. 998-1010, November 1992.

[5] Eick S. G., Steffen J. L., and Summer E. E. Jr., “See-
soft-A Tool For Visualizing Line Oriented Software
Statistics,” IEEE Transaction on Software Engineer-
ing, Vol. 18, No. 11, November 1992.

[6] Fenton N.E., Pfleeger S.L., Software Metrics—A Rig-
orous & Practical Approach, International Thomson
Computer Press, Second Edition, 1996.

[7] Gall H., Jazayeri M., Klösch R., and Trausmuth G.,
“Software evolution observations based on product re-
lease history,” International Conference on Software
Maintenance (ICSM ’97), Bari, Italy, pp.160-166, Oc-
tober 1997.

[8] Gefen D. and Schneberger S.L. “The Non-
Homogeneous Maintenance Periods: A Case Study of
Software Modifications,” International Conference on
Software Maintenance, pp. 134-141, November 1996.

[9] Griswold W.G. and Notkin D., “Automated Assistance
for Program Restructuring,” ACM Transactions on
Software Engineering and Methodology, Vol. 2, No. 3,
pp. 228-269, July 1993.

[10] Hajek K., “Detection of Logical Coupling Based on
Product Release History,” Master’s Thesis, Technical
University of Vienna, Austria, March 1998.

[11] Kazman R., Bass L., Abowd G., and Webb M.,
“SAAM: A Method for Analyzing the Properties of
Software Architectures,” Proceedings of ICSE 16, Sor-
ento, Italy, pp. 81-90, May 1994.

[12] Khoshgoftaar T., Allen E.B., Kalaichelvan K.S., and
Goel N., “Early Quality Prediction: A Case Study in
Telecommunications,” IEEE Software, Vol. 13, No. 1,
pp. 65-71, January 1996.

[13] Khoshgoftaar T.M. and Halstead R., “Detection of
Fault-Prone Software Modules During a Spiral Life-
Cycle,” International Conference on Software Mainte-
nance, pp. 69-76, November 1996.

[14] Lehman M.M., “Programs, life cycles and laws of
software evolution,” Proceedings of the IEEE, pp.
1060-1076, September 1980.

[15] Lehman M.M. and Belady L. A., Program evolution,
Academic Press, London and New York, 1985.

[16] Lientz B.P. and Swanson E.B., Software Maintenance
Management, Addison-Wesley, 1980.

[17] Offen R.J., “Establishing Software Measurement Pro-
grams,” IEEE Software, pp. 45-53, March/April 1997.

[18] Ohlsson N. and Alberg H., “Predicting Fault-Prone
Software Modules in Telephone Switches,” IEEE
Transactions on Software Engineering, Vol. 22, No. 12,
pp. 886-894, December 1996.

[19] Pearse T. and Oman P., “Maintainability Measure-
ments on Industrial Source Code Maintenance Activi-
ties,” International Conference on Software Mainte-
nance, pp. 295-313, October 1995.

[20] Perry A. E., and Wolf A. L., “Foundations for the Study
of Software Architecture,” Software Engineering
Notes, ACM SIGSOFT, Vol. 17, No. 4, pp. 40-52, Oc-
tober 1992.

[21] Riva C., “Visualizing Software Release Histories: The
Use of Color and Third Dimension,” Master’s Thesis,
Politecnico di Milano, June 1998.

[22] Shaw M., and Garlan D., Software Architecture: Per-
spectives on an Emerging Discipline, Prentice-Hall,
1996.

[23] Turski W.M., “Reference Model for Smooth Growth of
Software Systems,” IEEE Transactions on Software

in Proceedings of the International Conference on Software Maintenance 1998 (ICSM ’98) 10/10

Engineering, Vol. 22, No. 8, pp. 599-600, August
1996.

[24] Yourdon E., and Constantine L., Structured design:
Fundamentals of a discipline of computer program and
systems design, Prentice-Hall, 1979.

