
Workshop on Object-Oriented Reengineering

Serge Demeyer1, Kim Mens2, Roel Wuyts3, Yann-Gäel Gúeh́eneuc4, Andy Zaidman1,
Neil Walkinshaw5, Ademar Aguiar6, and St́ephane Ducasse7

1 Department of Mathematics and Computer Science, University of Antwerp — Belgium
2 Département d’Inǵenierie Informatique, Université catholique de Louvain — Belgium

3 Département d’Informatique, Université Libre de Bruxelles — Belgium
4 Group of Open and Distributed Systems, Université de Montŕeal — Canada

5 Computer and Information Sciences, University of Strathclyde, Glasgow — UK
6 INESC Porto, Universidade do Porto — Portugal

7 LISTIC Laboratory, University of Savoie — France

1 Introduction

The ability to reengineer object-oriented legacy systems has become a vital matter in
today’s software industry. Early adopters of the object-oriented programming paradigm
are now facing the problems of transforming their object-oriented “legacy” systems into
full-fledged frameworks.

To address this problem, a series of workshops have been organised to set up a forum
for exchanging experiences, discussing solutions, and exploring new ideas. Typically,
these workshops are organised as satellite events of major software engineering con-
ferences, such as ECOOP’97 [1], ESEC/FSE’97 [3], ECOOP’98 [7], ECOOP’99 [6],
ESEC/FSE’99 [4], ECOOP’03 [2], ECOOP’04 [16]. The last of this series so far has
been organised in conjunction with ECOOP’05 and this report summarises the key dis-
cussions and outcome of that workshop.8 As preparation to the workshop, participants
were asked to submit a position paper which would help in steering the workshop dis-
cussions. Moreover, researchers working on dynamic analysis were invited to compare
the results of their approaches by applying their tools on a common case (ArgoUML).
As a result, we received 10 position papers, of which 9 authors were present during
the workshop. Together with 3 organisers and 5 participants without position paper, the
workshop numbered 17 participants. The position papers, the list of participants, and
other information about the workshop are available on the web-site of the workshop at
http://smallwiki.unibe.ch/WOOR.

For the workshop itself, we chose a format that balanced presentation of position
papers and time for discussions, using the morning for presentations of position pa-
pers and the afternoon for discussions in working groups. Due to time restrictions, we
could not allow every author to present. Instead, we invited two authors to summarise
the position papers. This format resulted in quite vivid discussions during the presenta-
tions, because authors felt more involved and because the two presenting persons (Andy

8 The workshop was sponsored by the European Science Foundation Research Network “Re-
search Links to Explore and Advance Software Evolution (RELEASE)” and a Research Net-
work on “Foundations of Software Evolution” of the Fund for Scientific Research – Flanders
(Belgium).



Zaidman and Yann-Gaël Gúeh́eneuc) did a splendid job in identifying key points in the
papers. Various participants reported that it was illuminating to hear other researchers
present their own work.

Before the workshop, the workshop organisers (Serge Demeyer, Kim Mens, Roel
Wuyts, and St́ephane Ducasse) classified the position papers in two groups, one group
on Dynamic Analysisand one group onDesign Recovery. Consequently, in the after-
noon, the workshop participants separated in two working sessions, during which they
could discuss and advance their ideas. The workshop was concluded with a plenary
session where the results of the two working groups were exposed and discussed in the
larger group. Finally, we discussed practical issues, the most important one being the
idea to organise a similar workshop next year.

2 Summary of Position Papers

In preparation to the workshop, we received 10 position papers (none of them was re-
jected), which naturally fitted into two categories: (a) Dynamic Analysis and (b) Design
Recovery.

– Dynamic Analysis

1. Marc Roper, Murray Wood and Neil Walkinshaw, “Extracting User-Level Func-
tions from Object-Oriented Code”.

2. Michael Pacione, “VANESSA: Visualisation Abstraction NEtwork for Soft-
ware Systems Analysis”.

3. Andy Zaidman and Serge Demeyer, “Mining ArgoUML with Dynamic Analy-
sis to Establish a Set of Key Classes for Program Comprehension”.

4. Orla Greevy and Stéphane Ducasse, “Characterizing the Functional Roles of
Classes and Methods by Analyzing Feature Traces”

5. Tewfik Ziadi and Yann-Gäel Gúeh́eneuc, “Automated Reverse-engineering of
UML v2.0 Dynamic Models”.

– Design Recovery

1. Danny Dig, Can Comertoglu, Darko Marinov and Ralph Johnson, “Automatic
Detection of Refactorings for Libraries and Frameworks”.

2. Carlos Ĺopez, Yania Crespo and Raúl Marticorena, “Parallel Inheritance Hier-
archy: Detection from a Static View of the System”.

3. Naouel Moha and Yann-Gaël Gúeh́eneuc, “On the Automatic Detection and
Correction of Software Architectural Defects in Object-Oriented Designs”.

4. Nuno Flores and Ademar Aguiar, “JFREEDOM: a Reverse Engineering Tool
to Recover Framework Design”.

5. Jalagam Rajesh and D. Janakiram, “Design Patterns Induction from Multiple
Versions of Software”.

For each of these categories, we asked one reporter to summarise the position pa-
pers; their summaries are presented in the next two sections.



2.1 Position Papers on Dynamic Analysis

This section briefly discusses each of the position papers onDynamic Analysis. We
continue with an overview of each of the five techniques and highlight similarities and
differences between the techniques.

Extracting User-Level Functions from Object-Oriented Code. Neil Walkinshaw is
working on call graph analysis, particularly as a way to focus on those edges in the
call graph that are relevant to user-level functions exercised in some scenarios. A very
important concept for this technique is the concept oflandmark method, a method that
must beexecuted in a specific use case. The success of this technique hinges on the
selection of these landmark methods, so these must be carefully selected.

Once landmark methods are identified, the call graph is transformed into a Ham-
mock graph. A Hammock graph contains a single entry and a single exit node, and
all of the paths in the graph lead from the entry node to the exit node. The entry and
exit nodes of this graph correspond to two landmark methods. This transformation into
a Hammock graph, however, is insufficient as nodes (methods) outside the Hammock
graph can still influence the execution of nodes in the Hammock graph.

This problem is solved with slicing techniques. The relevant paths are identified us-
ing call sites in the Hammock graphs as slicing criteria to identify call sites for relevant
indirect calls. A backwards slice on a slicing criterion (a statement and a set of variables
in that statement) returns the set of statements that may influence the execution of the
slicing criterion.

More information on this technique can be found in [15].

VANESSA: Visualisation Abstraction NEtwork for Software Systems Analysis.
Michael Pacione’s work belongs to the field of software visualisation. His research
provides visualisation techniques for large-scale software understanding. These visual-
isation techniques are based on a unified model that allows to view a piece of software
at different levels of abstraction, either statically or dynamically. The different levels of
abstraction and the two facets of the unified model can be seen in Table 1:

Facets
Static Dynamic

Le
ve

ls

5 BusinessStructure BusinessBehaviour
4 SystemStructureDeploymentSystemBehaviourDistribution
3 SystemArchitecture ComponentInteraction
2 InterClassStructure InterObjectInteraction
1 IntraClassStructure IntraObjectInteraction
0 Program code / Event trace

Table 1.Unified model

the combination of views is of particular interest:



– Combining different levels within the same hierarchy allows thetraceability of
low-level artifacts in high-level system properties.

– Combining same level views of different hierarchies results in a unified visualisa-
tion of structural and behavioural characteristics.

More information can be found in [14].

Mining ArgoUML with Dynamic Analysis to Establish a Set of Key Classes for
Program Comprehension. The technique presented by Andy Zaidman aims at pro-
viding a set ofkey classes. He argues that these key classes are candidate classes for
early program comprehension, i.e., these key classes should be studied first when try-
ing to become familiar with an unknown system in a short period of time. The technique
is based on a measure of runtime coupling and on the idea that strongly coupled classes
can heavily influence the control flow of the entire system.

Coupling measures corresponds to binary relationships between classes. However,
a weakly coupled class can still be important for program comprehension purposes. As
such, Andy Zaidman defines a transitive measure for coupling, which allows a weakly
coupled class (that is, a class directly connected in the control flow graph with a tightly
coupled class) to also become marked as important.

Web-mining principles are used to compute the transitive measure of coupling.
When studying web-mining techniques, Andy Zaidman found thathubsare classes with
a high-level of export coupling, whileauthoritiesoften have a significant degree of im-
port coupling. He uses hubs, which have a high level of export coupling, as the basis
for important classes.

More detailed information about this technique can be found in [17].

Characterizing the Functional Roles of Classes and Methods by Analyzing Feature
Traces. Orla Greevy’s work is based on the idea that correlating end-user features to
classes and–or methods can help in making the program comprehension process more
efficient. The technique the authors propose is called ”feature characterisation”, which
can best be described as the mapping between classes and–or methods, on the one hand,
and traces from different scenarios, on the other hand. With this mapping, they are able
to answer three essential questions:

– How do features relate to classes/methods?
– How do classes/methods relate to features?
– How are features related to each other?

As a result, classes (or methods) are classified according to the classification schema
of Table 2. This classification (and its visual representation) can help the software en-
gineer during the program comprehension process.

More information can be found in [9].



Characterisation Presence
Not Covered (NC) Class/method not present in any trace
Single Feature (SF) Class/method present in 1 trace
Group Feature (GF) Class/method present in<50% of traces
Infrastructural Feature (IF)Class/method present in>50% of traces

Table 2.Feature characterisation

Automated Reverse-engineering of UML v2.0 Dynamic Models.Yann-Gäel Gúeh́e-
neuc’s position paper is about using the composition operators that are available in UML
v2.0 to combine sequence diagrams from different traces. This composition of traces
leads to a general overview of the behaviour of the program.

Using the composition mechanism allows conformance checking and pattern iden-
tification. Pattern identification is important because patterns can help in improving
understandability and maintainability of a program. However, to detect patterns, both
structural and behavioural data are needed, e.g., the Command pattern can only be dis-
tinguished from other patterns when both static and dynamic data are available. Fur-
thermore, adding behavioural data to structural data allows to reduce the search space
when mining for patterns.

More information can be found in [10].

Summary. In Figure 1, we applied Orla Greevy’s feature characterisation technique
on the five papers that were presented in theDynamic Analysissession. On the left
hand side are the authors of the five papers; on the right hand side are the most impor-
tant properties of each technique. Between parentheses, behind each technique, is the
number of incoming edges, i.e., the number of times a technique adheres to or uses the
property.

Some interesting facts from Figure 1 are that, although we are in theDynamic Anal-
ysissession, most techniques also rely on static analyses. Furthermore, two techniques
work at themethod-level, while two other work at theclass-level. Two techniques also
explicitly mention the importance of user-level features and use cases.

2.2 Position Papers on Design Recovery

TheDesign Recoverysession was composed of five papers. We summarise the papers
according to their contexts, their themes (global research subjects of the papers), their
subjects (specific subject of each paper), and we attempt to abstract a global picture
from the papers. The following section 2.2 summarises each paper along three main
lines: theme of the paper, subject, and miscellaneous introduced ideas.

Summary. Table 3 is a summary of the presented papers.



Andy

Orla

Neil

Yann-Gaël

Michael

Sequence diagrams (2)

Call graph (1)

Static (4)

Features, use cases (2)

Dynamic (4)

Methods (3)

Classes (3)

Pattern identification (1)

Conformance checking (1)

Metrics (1)

Fig. 1.Feature characterisation of the 5 presented dynamic analysis techniques

Putting It All Together. The papers presented in theDesign Recoverysession de-
scribed studies realised in different contexts. Two papers were clearly related to soft-
ware improvement, while the other papers were related to software development and
customisation, reuse of software components, and the maintenance of object-oriented
software.

However, despite the seemingly different contexts, all papers made similar assump-
tions: software is imperfect (wrt. developers, users, documentation. . . ) and software
changes. Thus, the papers clearly show that software development and maintenance are
not strictly separated activities anymore and they highlight the need for an integrated
software development life-cycle (in the broad sense of the term, including maintenance,
retirement. . . ).

The themes of the papers showed a wide range of interests related to design re-
covery. Papers focused on design patterns and refactorings, requirements and frame-
works, bad smell detection, cost of reuse during maintenance, cost of maintaining OO
architectures. These themes, although different by definitions, are different levels and
views on improving the tasks of software engineers and, thus, can be cast in a more
general framework along three lines: level of abstraction, views, and tasks. The level
of abstraction can be requirements, architecture, design, or code. The views relate to
documentation/comprehension of software or refactoring of software. The tasks can be
improvements, understanding, or reuse.

The subjects of the papers differed widely, ranging from design pattern inference to
recovery of framework design and use, through parallel inheritance hierarchy detection,
renaming (clone) detection, and software architectural defects. These wide differences
highlight clearly the need for a classification of design recovery tools. Indeed, despite



Theme Subject Misc.

D. Janakiram and Jalagam Rajesh: “Design Patterns Induction from Multiple Versions of Soft-
ware” [11]
Design patterns and
refactorings

Design pattern infer-
ence

Use of multiple versions. Prolog unification. Se-
mantics of extensibility. Accuracy of inference.
Correspondence between versions.

Nuno Flores and Ademar Aguiar: “JFREEDOM: a Reverse Engineering Tool to Recover Frame-
work Design” [8]
Requirements and
frameworks

Framework design and
use recovery

Learning and understanding. Documentation (or
lack thereof). Level of abstractions. Design de-
cisions (flexibility, clarity, visualisation). Hooks,
templates, meta- and design patterns.

Rául Marticorena, Carlos Ĺopez, and Yania Crespo: “Parallel Inheritance Hierarchy: Detection
from a Static View of the System” [12]
Bad smell detection Detection of parallel in-

heritance hierarchies
Human detection. Metrics and name conven-
tions. Language independence. Static and dy-
namic data. Data mining.

Danny Dig, Can Comertoglu, Darko Marinov, and Ralph Johnson: “Automatic Detection of
Refactorings for Libraries and Frameworks” [5]
Cost of reuse during
maintenance

Renaming (clone) de-
tection

Detection of refactorings. Closed- vs. open-
world assumptions. Deprecation and coexis-
tence. Feedback and threshold. Syntactic vs. se-
mantic data.

Naouel Moha and Yann-Gaël Gúeh́eneuc: “On the Automatic Detection and Correction of Soft-
ware Architectural Defects in Object-Oriented Designs” [13]
Cost of maintaining OO
architecture

Software architectural
defects

Anti-patterns. Design defects. Code smells. Tax-
onomy. Structural, numerical tools.

Table 3.Summary of the Design Recovery Papers

the related contexts and themes, there still remains much latitude for design recovery
tools and, thus, it is difficult to compare tools with one another, which impedes their
evaluation and the focus of research on important issues.

Finally, the papers suggested many interesting criteria that could serve as discrimi-
nating factors between design recovery tools when making a classification :

– Assumptions made by the tools, e.g., closed vs. open-world assumption.
– Versions, e.g., use of one or multiple versions of a program for the recovery.
– Goals, e.g., design recovery (hooks, templates, meta-patterns, and design patterns),

refactoring opportunities, clones, bad smells, anti-patterns, defects.
– Kind of analysed data, e.g., static or dynamic, and semantic level of the data (lexi-

cal, structural or semantic).
– Qualities, e.g., flexibility, clarity, accuracy, extensibility.
– Recovery techniques, e.g., manual, Prolog unification, constraint programming,

data mining, metrics (including hash values), visualisation.
– Identified problems, e.g., language independence, need for a taxonomy, use of se-

mantic data, correspondence between versions.



Discussion. The papers suggested several issues that the design recovery community
must strive to address. First of all, every design recovery tool should make clear its
objectives: What is it trying to achieve? What are the problems addressed? Also, the
context in which a tool operates should be formalised, if possible, and if not, specified
informally to allow distinguishing among tools targeting different contexts of uses. Fi-
nally, we need to define more formally, if possible, the software engineers’ goals and
tasks, to put in perspective tools with respect to their users’ goals and tasks.

The papers also emphasised the lack of agreed-upon definitions for seemingly well-
known concepts and the need for a unified classification of design recovery tools.

At last, in contrary to theDynamic Analysissession, in which participants had a
common piece of software on which to exercise their tools to compare results, there is
no consensus on typical programs on which design recovery tools should operate, no
consensual results for certain classes of design recovery tools, and not even a consensual
definition of what is a typical piece of software to analyse. This lack of “standard”
examples impedes advancement in research because many tools do the same things on
different types of software while other things are not studied for lack of interest or of
concrete examples and of known expected results.

3 Wrap Up

Given the above position papers, we decided to split up in two working groups. As
announced before the workshop, the group onDynamic Analysiswould compare the
results of the different approaches and tools on a common case. For the group onDesign
Recovery, it was observed that the bibliographic references were rather disjunct, while
the papers overlap in topic; hence the idea to work on a common taxonomy, which could
be used to compare the different approaches.

3.1 Dynamic Analysis

The idea of theDynamic Analysissession was to compare the output of the presented
tools, given the same subject system and use-case. The ArgoUML CASE tool was cho-
sen because it is well documented and relatively mature. The use-case consisted of
specifying a class diagram (involving multiple classes to ensure the existence of loops
in a dynamic trace).

Andy Zaidman’s tool uses a data-mining algorithm to discover key classes in a trace.
Orla Greevy’s tool maps functional roles to classes and methods by comparing multi-
ple traces. For this approach, the use-case was divided in multiple scenarios. Michael
Pacione’s tool uses traces with static analysis to provide mappings between different
levels of abstraction (e.g., to map code to activity diagrams), sometimes requiring hu-
man intervention. Neil Walkinshaw’s tool uses landmark methods that must be executed
for a particular function (as opposed to a full trace) to extract a sub-graph of the call
graph corresponding to the use-case.

Neil Walkinshaw’s tool had previously only been executed on relatively small sys-
tems and could not scale to produce usable results for a practical comparison with the
other tools. Michael Pacione’s tool required an amount of memory proportional to the



trace size, and so insufficient resources were available to analyse ArgoUML. Andy
Zaidman’s tool produced a ranked list of 50 classes that scored highest using the data-
mining algorithm. Orla Greevy’s tool successfully categorised classes depending on
their contribution to the traces.

Generation and storage of the traces were handled differently by Andy Zaidman,
Orla Greevy, and Michael Pacione’s tools. Andy Zaidman and Orla Greevy both exper-
imented with reducing the size of the traces, by removing loops and repetitions. This
was relatively successful and led to trace sizes of 100 megabytes in Andy Zaidman’s
case. Michael Pacione had not carried out any compression on the trace, which resulted
in a trace size of almost three gigabytes. This is too large considering that his tool loads
the entire trace into memory. To remedy this, a caching approach was suggested, so that
only relevant segments of the trace need to be stored in memory at any given time.

Neil Walkinshaw’s tool also faced scaling problems, although it did not require a
trace. The entire call graph is stored in memory, along with dependency graphs for each
method in the call graph (this includes library methods). Again, a caching approach was
suggested, where graphs can be loaded in memory when they are required.

Orla Greevy’s tool produced a list of 30 “infrastructure” classes (classes that were
accessed in 50% of the traces). This list was compared to Andy Zaidman’s ranked list
of 50 “key” classes. Out of the top 7 in Andy Zaidman’s list, 5 were categorised by
Orla Greevy’s tool as infrastructure classes, but, beside these, there were very few other
matches. On closer inspection, the classes that did match turned out to be mainly re-
sponsible for the user-interface, which is not surprising because a significant part of
the use-case involves interacting with the GUI. Orla Greevy and Andy Zaidman plan
further comparisons on other use-cases.

All the participants agreed that there is a significant potential for future collabo-
rations, and drew up a series of suggestions for future comparative studies. For trace-
based tools, it was decided that a common trace format should be used, to make traces
interchangeable and to guarantee that tools are compared with one another appropri-
ately. A wider selection of systems (and of use cases) was also suggested to ensure that
all tools could handle the subject system (JHotdraw was a popular candidate because it
is smaller and is used as experimental subject in a number of other projects).

3.2 Design Recovery

The goal of the working group onDesign recoverywas to devise a taxonomy of, or
at least a comparative framework for, design recovery tools. During a very focused,
intensive and productive group discussion, several dimensions of concern were iden-
tified and, for each of those, a number of sub-criteria were proposed. These concerns
and criteria are relevant criteria against which different design recovery tools could be
compared.

The list of concerns and criteria thereof was further refined after the workshop by
three of the participants in this working group (Yann-Gaël Gúeh́eneuc, Kim Mens, and
Roel Wuyts) with the goal of validating and refining it against different design recovery
tools in existence today (and those presented at the workshop in particular). Although
this is clearly ongoing work, in its current status the comparative framework distin-



guishes the following dimensions of concern :

Concern Description
Context In what context does the tool apply?
Intent What is the purpose of the tool?
Users What is expected from the users of the tool?
Input What input is accepted by the tool?
Technique What reasoning mechanism is used?
Output What output is provided by the tool?
ImplementationHow is the tool implemented?
Tool How mature is the tool?

Each of those concerns is subdivided in different criteria, as summarised below :
Concerns Criteria
Context Methodology. Settings. Range of uses. Lifespan. Universe of dis-

course.
Intent Short and Long term objectives.
Users User knowledge. Targeted user. User background. Program acquain-

tance. Type of users. Cooperation.
Input Kind of data. Type of data. Level of granularity. Precision. Underly-

ing model. Representation. Versions. Data gathering automation. As-
sumptions about the software.

Technique Level of automation. Semantic level. Method. Underlying model. Sev-
eral quality criteria. . .

Output Level of detail. Type of data. Representation. Underlying model. Man-
ual interpretation required. Human- readable. Several quality criteria.

Implementation Maintenance. Quality. Platforms. Language. External dependencies.
Tool Language independence. Kind of license. Documentation. User base.

Quality. Platforms. External dependencies.

A paper elaborating on an more detailed and improved version of this comparative
framework is currently being written.

4 Conclusion

In this report, we have listed the main ideas that were generated during the workshop
on object-oriented reengineering. Based on a full day of fruitful work, we can make the
following recommendations.

– Viable Research Area.Object-Oriented Reengineering remains an interesting re-
search field with lots of problems to be solved and with plenty of possibilities to
interact with other research communities. Therefore its vital that we organise such
workshops outside of the traditional reengineering community (with conferences
like ICSM, WCRE, CSMR, ...).

– Research Community.All participants agreed that it would be wise to organise a
similar workshop at next year’s ECOOP. There is an open invitation for everyone
who wants to join in organising it: just contact the current organisers.



– Workshop Format.The workshop format, where some authors were invited to sum-
marise position papers of others worked particularly well.

– Joint Case Study.The idea to compare research results by applying tools on the
same case is a good idea. However, careful preparation is necessary to ensure that
participants are able to obtain the results and compare notesbeforethe actual work-
shop takes place.

– Taxonomy.Defining a taxonomy for design recovery proved worthwhile, although
the time was too short to validate the result. Some of the workshop participants
committed to continue the discussion after the workshop and write a paper about
the result to be submitted to a conference or journal, as well as to next year’s edition
of this workshop.

References

1. E. Casais, A. Jaasksi, and T. Lindner. FAMOOS workshop on object-oriented software evo-
lution and re-engineering. In J. Bosch and S. Mitchell, editors,Object-Oriented Technology
(ECOOP’97 Workshop Reader), volume 1357 ofLecture Notes in Computer Science, pages
256–288. Springer-Verlag, Dec. 1997.

2. S. Demeyer, S. Ducasse, and K. Mens. Workshop on object-oriented re-engineering
(WOOR’03). In F. Buschmann, A. P. Buchmann, and M. Cilia, editors,Object-Oriented
Technology (ECOOP’03 Workshop Reader), volume 3013 ofLecture Notes in Computer
Science, pages 72–85. Springer-Verlag, July 2003.

3. S. Demeyer and H. Gall. Report: Workshop on object-oriented re-engineering (WOOR’97).
ACM SIGSOFT Software Engineering Notes, 23(1):28–29, Jan. 1998.

4. S. Demeyer and H. Gall, editors.Proceedings of the ESEC/FSE’99 Workshop on Object-
Oriented Re-engineering (WOOR’99), TUV-1841-99-13. Technical University of Vienna -
Information Systems Institute - Distributed Systems Group, Sept. 1999.

5. D. Dig, C. Comertoglu, D. Marinov, and R. Johnson. Automatic detection of refactor-
ings for libraries and frameworks. In S. Demeyer, K. Mens, R. Wuyts, and S. Ducasse,
editors, proceedings of the6th ECOOP Workshop on Object-Oriented Reengineering.
http://smallwiki.unibe.ch/WOOR, July 2005.

6. S. Ducasse and O. Ciupke. Experiences in object-oriented re-engineering. In A. Moreira and
S. Demeyer, editors,Object-Oriented Technology (ECOOP’99 Workshop Reader), volume
1743 ofLecture Notes in Computer Science, pages 164–183. Springer-Verlag, Dec. 1999.

7. S. Ducasse and J. Weisbrod. Experiences in object-oriented reengineering. In S. Demeyer
and J. Bosch, editors,Object-Oriented Technology (ECOOP’98 Workshop Reader), volume
1543 ofLecture Notes in Computer Science, pages 72–98. Springer-Verlag, Dec. 1998.

8. N. Flores and A. Aguiar. Jfreedom: a reverse engineering tool to recover framework design.
In S. Demeyer, K. Mens, R. Wuyts, and S. Ducasse, editors,proceedings of the6th ECOOP
Workshop on Object-Oriented Reengineering. http://smallwiki.unibe.ch/WOOR, July 2005.

9. O. Greevy and S. Ducasse. Correlating features and code using a compact two-sided trace
analysis approach. InCSMR, pages 314–323. IEEE Computer Society, 2005.

10. Y.-G. Gúeh́eneuc and T. Ziadi. Automated reverse-engineering of UML v2.0 dynamic mod-
els. In S. Demeyer, K. Mens, R. Wuyts, and S. Ducasse, editors,proceedings of the6th

ECOOP Workshop on Object-Oriented Reengineering. http://smallwiki.unibe.ch/WOOR,
July 2005.

11. D. Janakiram and J. Rajesh. Design patterns induction from multiple versions of software.
In S. Demeyer, K. Mens, R. Wuyts, and S. Ducasse, editors,proceedings of the6th ECOOP
Workshop on Object-Oriented Reengineering. http://smallwiki.unibe.ch/WOOR, July 2005.



12. R. Marticorena, C. Ĺopez, and Y. Crespo. Parallel inheritance hierarchy: Detection from
a static view of the system. In S. Demeyer, K. Mens, R. Wuyts, and S. Ducasse,
editors, proceedings of the6th ECOOP Workshop on Object-Oriented Reengineering.
http://smallwiki.unibe.ch/WOOR, July 2005.

13. N. Moha and Y.-G. Gúeh́eneuc. On the automatic detection and correction of design defects.
In S. Demeyer, K. Mens, R. Wuyts, and S. Ducasse, editors,proceedings of the6th ECOOP
Workshop on Object-Oriented Reengineering. http://smallwiki.unibe.ch/WOOR, July 2005.

14. M. J. Pacione. VANESSA: Visualisation abstraction NEtwork for software systems analysis.
In International Conference on Software Maintenance (ICSM). IEEE, 2005.

15. N. Walkinshaw, M. Roper, and M. Wood. Understanding object-oriented source code from
the behavioural perspective. InIWPC, pages 215–224. IEEE Computer Society, 2005.

16. R. Wuyts, S. Ducasse, S. Demeyer, and K. Mens. Workshop on object-oriented re-
engineering (WOOR’04). In J. Malenfant and B. M. Østvold, editors,Object-Oriented Tech-
nology (ECOOP’04 Workshop Reader), volume 3344 ofLecture Notes in Computer Science,
pages 177–186. Springer-Verlag, June 2004.

17. A. Zaidman, T. Calders, S. Demeyer, and J. Paredaens. Applying webmining techniques to
execution traces to support the program comprehension process. InCSMR, pages 134–142.
IEEE Computer Society, 2005.


