
3-34 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

Part 5 - Static Structure Diagrams
Class diagrams show the static structure of the model, in particular, the things that exist
(such as classes and types), their internal structure, and their relationships to other
things. Class diagrams do not show temporal information, although they may contain
reified occurrences of things that have or things that describe temporal behavior. An
object diagram shows instances compatible with a particular class diagram.

This section discusses classes and their variations, including templates and instantiated
classes, and the relationships between classes (association and generalization) and the
contents of classes (attributes and operations).

3.19 Class Diagram

A class diagram is a graph of Classifier elements connected by their various static
relationships. Note that a “class” diagram may also contain interfaces, packages,
relationships, and even instances, such as objects and links. Perhaps a better name
would be “static structural diagram” but “class diagram” is shorter and well
established.

3.19.1 Semantics

A class diagram is a graphic view of the static structural model. The individual class
diagrams do not represent divisions in the underlying model.

3.19.2 Notation

A class diagram is a collection of static declarative model elements, such as classes,
interfaces, and their relationships, connected as a graph to each other and to their
contents. Class diagrams may be organized into packages either with their underlying
models or as separate packages that build upon the underlying model packages.

3.19.3 Mapping

A class diagram does not necessarily match a single semantic entity. A package within
the static structural model may be represented by one or more class diagrams. The
division of the presentation into separate diagrams is for graphical convenience and
does not imply a partitioning of the model itself. The contents of a diagram map into
elements in the static semantic model. If a diagram is part of a package, then its
contents map into elements in the same package (including possible references to
elements accessed or imported from other packages).

March 2003 OMG-Unified Modeling Language, v1.5 3-35

3 UML Notation Guide

3.20 Object Diagram

An object diagram is a graph of instances, including objects and data values. A static
object diagram is an instance of a class diagram; it shows a snapshot of the detailed
state of a system at a point in time. The use of object diagrams is fairly limited, mainly
to show examples of data structures.

Tools need not support a separate format for object diagrams. Class diagrams can
contain objects, so a class diagram with objects and no classes is an “ object diagram.”
The phrase is useful, however, to characterize a particular usage achievable in various
ways.

3.21 Classifier

Classifier is the metamodel superclass of Class, DataType, and Interface. All of these
have similar syntax and are therefore all notated using the rectangle symbol with
keywords used as necessary. Because classes are most common in diagrams, a
rectangle without a keyword represents a class, and the other subclasses of Classifier
are indicated with keywords. In the sections that follow, the discussion will focus on
Class, but most of the notation applies to the other element kinds as semantically
appropriate and as described later under their own sections.

3.22 Class

A class is the descriptor for a set of objects with similar structure, behavior, and
relationships. The model is concerned with describing the intension of the class, that is,
the rules that define it. The run-time execution provides its extension, that is, its
instances. UML provides notation for declaring classes and specifying their properties,
as well as using classes in various ways. Some modeling elements that are similar in
form to classes (such as interfaces, signals, or utilities) are notated using keywords on
class symbols; some of these are separate metamodel classes and some are stereotypes
of Class. Classes are declared in class diagrams and used in most other diagrams. UML
provides a graphical notation for declaring and using classes, as well as a textual
notation for referencing classes within the descriptions of other model elements.

3.22.1 Semantics

A class represents a concept within the system being modeled. Classes have data
structure and behavior and relationships to other elements.

The name of a class has scope within the package in which it is declared and the name
must be unique (among class names) within its package.

3-36 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

3.22.2 Basic Notation

A class is drawn as a solid-outline rectangle with three compartments separated by
horizontal lines. The top name compartment holds the class name and other general
properties of the class (including stereotype); the middle list compartment holds a list
of attributes; the bottom list compartment holds a list of operations.

See Section 3.23, “ Name Compartment,” on page 3-38 and Section 3.24, “ List
Compartment,” on page 3-38 for more details.

3.22.2.1 References

By default a class shown within a package is assumed to be defined within that
package. To show a reference to a class defined in another package, use the syntax

Package-name::Class-name

as the name string in the name compartment. A full pathname can be specified by
chaining together package names separated by double colons (::).

3.22.3 Presentation Options

Either or both of the attribute and operation compartments may be suppressed. A
separator line is not drawn for a missing compartment. If a compartment is suppressed,
no inference can be drawn about the presence or absence of elements in it.
Compartment names can be used to remove ambiguity, if necessary (Section3.24, “ List
Compartment,” on page 3-38).

Additional compartments may be supplied as a tool extension to show other predefined
or user-defined model properties (for example, to show business rules, responsibilities,
variations, events handled, exceptions raised, and so on). Most compartments are
simply lists of strings. More complicated formats are possible, but UML does not
specify such formats; they are a tool responsibility. Appearance of each compartment
should preferably be implicit based on its contents. Compartment names may be used,
if needed.

Tools may provide other ways to show class references and to distinguish them from
class declarations.

A class symbol with a stereotype icon may be “ collapsed” to show just the stereotype
icon, with the name of the class either inside the class or below the icon. Other
contents of the class are suppressed.

3.22.4 Style Guidelines

• Center class name in boldface.

• Center keyword (including stereotype names) in plain face within guillemets above
class name.

March 2003 OMG-Unified Modeling Language, v1.5 3-37

3 UML Notation Guide

• For those languages that distinguish between uppercase and lowercase characters,
capitalize class names; that is, begin them with an uppercase character.

• Left justify attributes and operations in plain face.

• Begin attribute and operation names with a lowercase letter.

• Show the names of abstract classes or the signatures of abstract operations in italics.

As a tool extension, boldface may be used for marking special list elements; for
example, to designate candidate keys in a database design. This might encode some
design property modeled as a tagged value, for example.

Show full attributes and operations when needed and suppress them in other contexts
or references.

3.22.5 Example

Figure 3-20 Class Notation: Details Suppressed, Analysis-level Details,
Implementation-level Details

3.22.6 Mapping

A class symbol maps into a Class element within the package that owns the diagram.
The name compartment contents map into the class name and into properties of the
class (built-in attributes or tagged values). The attribute compartment maps into a list
of Attributes of the Class. The operation compartment maps into a list of Operations of
the Class.

The property string {location=name} maps into an implementationLocation association
to a Component. The name is the name of the containing Component.

Window

display ()

size: Area
visibility: Boolean

hide ()

Window

Window

+default-size: Rectangle
#maximum-size: Rectangle

+create ()

+display ()

+size: Area = (100,100)
#visibility: Boolean = true

+hide ()

-xptr: XWindow*

-attachXWindow(xwin:Xwindow*)

{abstract,
author=Joe,
status=tested}

3-38 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

3.23 Name Compartment

3.23.1 Notation

The name compartment displays the name of the class and other properties in up to
three sections:

An optional stereotype keyword may be placed above the class name within guillemets,
and/or a stereotype icon may be placed in the upper right corner of the compartment.
The stereotype name must not match a predefined keyword.

The name of the class appears next. If the class is abstract, this can be indicated by
italicizing its name (for those languages that support italicization) or by placing the
keyword abstract in a property list below or after the name; for example, Invoice
{abstract}. Note that any explicit specification of generalization status takes
precedence over the name font.

A list of strings denoting properties (metamodel attributes or tagged values) may be
placed in braces below the class name. The list may show class-level attributes for
which there is no UML notation and it may also show tagged values. The presence of
a keyword for a Boolean type without a value implies the value true. For example, a
leaf class shows the property “ {leaf}” .

The stereotype and property list are optional.

Figure 3-21 Name Compartment

3.23.2 Mapping

The contents of the name compartment map into the name, stereotype, and various
properties of the Class represented by the class symbol.

3.24 List Compartment

3.24.1 Notation

A list compartment holds a list of strings, each of which is the encoded representation
of a feature, such as an attribute or operation. The strings are presented one to a line
with overflow to be handled in a tool-dependent manner. In addition to lists of

PenTracker

«controller»

{ leaf, author=”Mary Jones”}

March 2003 OMG-Unified Modeling Language, v1.5 3-39

3 UML Notation Guide

attributes or operations, optional lists can show other kinds of predefined or user-
defined values, such as responsibilities, rules, or modification histories. UML does not
define these optional lists. The manipulation of user-defined lists is tool-dependent.

The items in the list are ordered and the order may be modified by the user. The order
of the elements is meaningful information and must be accessible within tools (for
example, it may be used by a code generator in generating a list of declarations). The
list elements may be presented in a different order to achieve some other purpose (for
example, they may be sorted in some way). Even if the list is sorted, the items maintain
their original order in the underlying model. The ordering information is merely
suppressed in the view.

An ellipsis (. . .) as the final element of a list or the final element of a delimited
section of a list indicates that additional elements in the model exist that meet the
selection condition, but that are not shown in that list. Such elements may appear in a
different view of the list.

3.24.1.1 Group properties

A property string may be shown as an element of the list, in which case it applies to all
of the succeeding list elements until another property string appears as a list element.
This is equivalent to attaching the property string to each of the list elements
individually. The property string does not designate a model element. Examples of this
usage include indicating a stereotype and specifying visibility. Keyword strings may
also be used in a similar way to qualify subsequent list elements.

3.24.1.2 Compartment name

A compartment may display a name to indicate which kind of compartment it is. The
name is displayed in a distinctive font centered at the top of the compartment. This
capability is useful if some compartments are omitted or if additional user-defined
compartments are added. For a Class, the predefined compartments are named
attributes and operations. An example of a user-defined compartment might be
requirements. The name compartment in a class must always be present; therefore, it
does not require or permit a compartment name.

3.24.2 Presentation Options

A tool may present the list elements in a sorted order, in which case the inherent
ordering of the elements is not visible. A sort is based on some internal property and
does not indicate additional model information. Example sort rules include:

• alphabetical order,

• ordering by stereotype (such as constructors, destructors, then ordinary methods),

• ordering by visibility (public, then package, then protected, then private).

The elements in the list may be filtered according to some selection rule. The
specification of selection rules is a tool responsibility. The absence of items from a
filtered list indicates that no elements meet the filter criterion, but no inference can be

3-40 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

drawn about the presence or absence of elements that do not meet the criterion.
However, the ellipsis notation is available to show that invisible elements exist. It is a
tool responsibility whether and how to indicate the presence of either local or global
filtering, although a stand-alone diagram should have some indication of such filtering
if it is to be understandable.

If a compartment is suppressed, no inference can be drawn about the presence or
absence of its elements. An empty compartment indicates that no elements meet the
selection filter (if any).

Note that attributes may also be shown by composition (see Figure 3-45 on page 3-83).

3.24.3 Example

Figure 3-22 Stereotype Keyword Applied to Groups of List Elements

«constructor»
Rectangle(p1:Point, p2:Point)
«query»
area (): Real
aspect (): Real

«update»
move (delta: Point)
scale (ratio: Real)
. . .

. . .

Rectangle

p1:Point
p2:Point

March 2003 OMG-Unified Modeling Language, v1.5 3-41

3 UML Notation Guide

Figure 3-23 Compartments with Names

3.24.4 Mapping

The entries in a list compartment map into a list of ModelElements, one for each list
entry. The ordering of the ModelElements matches the list compartment entries (unless
the list compartment is sorted in some way). In this case, no implication about the
ordering of the Elements can be made (the ordering can be seen by turning off sorting).
However, a list entry string that is a stereotype indication (within guillemets) or a
property indication (within braces) does not map into a separate ModelElement.
Instead, the corresponding property applies to each subsequent ModelElement until the
appearance of a different stand-alone stereotype or property indicator. The property
specifications are conceptually duplicated for each list Element, although a tool might
maintain an internal mechanism to store or modify them together. The presence of an
ellipsis (“ ...”) as a list entry implies that the semantic model contains at least one
Element with corresponding properties that is not visible in the list compartment.

3.25 Attribute

Strings in the attribute compartment are used to show attributes in classes. A similar
syntax is used to specify qualifiers, template parameters, operation parameters, and so
on (some of these omit certain terms).

3.25.1 Semantics

Note that an attribute is semantically equivalent to a composition association; however,
the intent and usage is normally different.

bill no-shows

Reservation

operations

guarantee()
cancel ()
change (newDate: Date)

responsibilities

match to available rooms

exceptions

invalid credit card

3-42 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

The type of an attribute is a Classifier.

3.25.2 Notation

An attribute is shown as a text string that can be parsed into the various properties of
an attribute model element. The default syntax is:

visibility name : type-expression [multiplicity ordering] = initial-value { property-string }

• Where visibility is one of:

+ public visibility

protected visibility

- private visibility

~ .package visibility

The visibility marker may be suppressed. The absence of a visibility marker
indicates that the visibility is not shown (not that it is undefined or public). A tool
should assign visibilities to new attributes even if the visibility is not shown. The
visibility marker is a shorthand for a full visibility property specification string.

Visibility may also be specified by keywords (public, protected, private, package).
This form is used particularly when it is used as an inline list element that applies
to an entire block of attributes.

Additional kinds of visibility might be defined for certain programming languages,
such as C++ implementation visibility (actually all forms of nonpublic visibility are
language-dependent). Such visibility must be specified by property string or by a
tool-specific convention.

• Where name is an identifier string that represents the name of the attribute.

• Where [multiplicity ordering] shows the multiplicity and the ordering of the
attribute (Section 3.44, “ Multiplicity,” on page 3-75). The term may be omitted, in
which case the multiplicity is 1..1 (exactly one).

• The ordering property is meaningful if the multiplicity upper bound is greater than
one. It may be one of:

• (absent) — the values are unordered

• unordered — the values are unordered

• ordered — the values are ordered

• Where type-expression is either

• if it is a simple word, the name of a classifier, or

• a language-dependent string that maps into a ProgrammingLanguageDataType.

• Where initial-value is a language-dependent expression for the initial value of a
newly created object. The initial value is optional (the equal sign is also omitted).
An explicit constructor for a new object may augment or modify the default initial
value.

March 2003 OMG-Unified Modeling Language, v1.5 3-43

3 UML Notation Guide

• Where property-string indicates property values that apply to the element. The
property string is optional (the braces are omitted if no properties are specified).

A class-scope attribute is shown by underlining the name and type expression string;
otherwise, the attribute is instance-scope.

class-scope-attribute

The notation justification is that a class-scope attribute is an instance value in the
executing system, just as an object is an instance value, so both may be designated by
underlining. An instance-scope attribute is not underlined; that is the default.

There is no symbol for whether an attribute is changeable (the default is changeable).
A nonchangeable attribute is specified with the property “ {frozen}” .

In the absence of a multiplicity indicator, an attribute holds exactly 1 value.
Multiplicity may be indicated by placing a multiplicity indicator in brackets after the
classifier name, for example:

colors : Color [3]
points : Point [2..* ordered]

Note that a multiplicity of 0..1 provides for the possibility of null values: the absence
of a value, as opposed to a particular value from the range. For example, the following
declaration permits a distinction between the null value and the empty string:

name : String [0..1]

A stereotype keyword in guillemets precedes the entire attribute string, including any
visibility indicators. A property list in braces follows the rest of the attribute string.

3.25.3 Presentation Options

The type expression may be suppressed (but it has a value in the model).

The initial value may be suppressed, and it may be absent from the model. It is a tool
responsibility whether and how to show this distinction.

A tool may show the visibility indication in a different way, such as by using a special
icon or by sorting the elements by group.

A tool may show the individual fields of an attribute as columns rather than a
continuous string.

If the type-expression string is not a word, then it is assumed to be expressed in the
syntax of a particular programming language, such as C++ or Smalltalk. This form is
assumed if the string is not a word. Specific tagged properties may be included in the
string. The programming language must be known from the general context of the
diagram or a tool supporting it. In this case, the type-expression maps into a
ProgrammingLanguageDataType whose expression attribute specifies the language
name and the string representation of the data type in that language.

Particular attributes within a list may be suppressed (see Section 3.24, “ List
Compartment,” on page 3-38).

3-44 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

3.25.4 Style Guidelines

Attribute names typically begin with a lowercase letter. Attribute names are in plain
face.

3.25.5 Example

+size: Area = (100,100)
#visibility: Boolean = invisible
+default-size: Rectangle
#maximum-size: Rectangle
-xptr: XWindowPtr

3.25.6 Mapping

A string entry within the attribute compartment maps into an Attribute within the Class
corresponding to the class symbol. The properties of the attribute map in accord with
the preceding descriptions. If the visibility is absent, then no conclusion can be drawn
about the Attribute visibilities unless a filter is in effect; for example, only public
attributes shown. Likewise, if the type or initial value are omitted. The omission of an
underline always indicates an instance-scope attribute. The omission of multiplicity
denotes a multiplicity of 1.

Any properties specified in braces following the attribute string map into properties on
the Attribute. In addition, any properties specified on a previous stand-alone property
specification entry apply to the current Attribute (and to others).

3.26 Operation

Entries in the operation compartment are strings that show operations defined on
classes and methods supplied by classes.

3.26.1 Semantics

An operation is a service that an instance of the class may be requested to perform. It
has a name and a list of arguments.

3.26.2 Notation

An operation is shown as a text string that can be parsed into the various properties of
an operation model element. The default syntax is:

visibility name (parameter-list) : return-type-expression { property-string }

• Where visibility is one of:

+ public visibility

protected visibility

March 2003 OMG-Unified Modeling Language, v1.5 3-45

3 UML Notation Guide

- private visibility

~ package visibility

The visibility marker may be suppressed. The absence of a visibility marker
indicates that the visibility is not shown (not that it is undefined or public). The
visibility marker is a shorthand for a full visibility property specification string.

Visibility may also be specified by keywords (public, protected, private, package).
This form is used particularly when it is used as an inline list element that applies
to an entire block of operations.

Additional kinds of visibility might be defined for certain programming languages,
such as C++ implementation visibility (actually all forms of nonpublic visibility are
language-dependent). Such visibility must be specified by property string or by a
tool-specific convention.

• Where name is an identifier string.

• Where return-type-expression is a language-dependent specification of the
implementation type or types of the value returned by the operation. The colon and
the return-type are omitted if the operation does not return a value (as for C++
void). A list of expressions may be supplied to indicate multiple return values.

• Where parameter-list is a comma-separated list of formal parameters, each
specified using the syntax:

kind name : type-expression = default-value

• where kind is in, out, or inout, with the default in if absent.

• where name is the name of a formal parameter.

• where type-expression is the (language-dependent) specification of an
implementation type.

• where default-value is an optional value expression for the parameter, expressed
in and subject to the limitations of the eventual target language.

• Where property-string indicates property values that apply to the element. The
property string is optional (the braces are omitted if no properties are specified).

A class-scope operation is shown by underlining the name and type expression string.
An instance-scope operation is the default and is not marked.

An operation that does not modify the system state (one that has no side effects) is
specified by the property “ {query}” ; otherwise, the operation may alter the system
state, although there is no guarantee that it will do so.

The concurrency semantics of an operation are specified by a property string of the
form “ {concurrency = name}, where name is one of the names: sequential, guarded,
concurrent. As a shorthand, one of the names may be used by itself in a property string
to indicate the corresponding concurrency value. In the absence of a specification, the
concurrency semantics are unspecified and must therefore be assumed to be sequential
in the worst case.

3-46 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

The top-most appearance of an operation signature declares the operation on the class
(and inherited by all of its descendents). If this class does not implement the operation;
that is, does not supply a method, then the operation may be marked as “ {abstract}” or
the operation signature may be italicized to indicate that it is abstract. A subordinate
appearance of the operation signature without the {abstract} property indicates that the
subordinate class implements a method on the operation.

The actual text or procedure of a method may be indicated in a note attached to the
operation.

If the objects of a class accept and respond to a given signal, an operation entry with
the keyword «signal» indicates that the class accepts the given signal. The syntax is
identical to that of an operation. The response of the object to the reception of the
signal is shown with a state machine. Among other uses, this notation can show the
response of objects of a class to error conditions and exceptions, which should be
modeled as signals.

The specification of operation behavior is given as a note attached to the operation.
The text of the specification should be enclosed in braces if it is a formal specification
in some language (a semantic Constraint); otherwise, it should be plain text if it is just
a natural-language description of the behavior (a Comment).

A stereotype keyword in guillemets precedes the entire operation string, including any
visibility indicators. A property list in braces follows the entire operation string.

3.26.3 Presentation Options

The argument list and return type may be suppressed (together, not separately).

A tool may show the visibility indication in a different way, such as by using a special
icon or by sorting the elements by group.

The syntax of the operation signature string can be that of a particular programming
language, such as C++ or Smalltalk. Specific tagged properties may be included in the
string.

A procedure body for a method may be shown in a note attached to the operation entry
within the compartment (Figure 3-24 on page 3-47). The line is drawn to the string
within the compartment. This approach is useful mainly for showing small method
bodies.

March 2003 OMG-Unified Modeling Language, v1.5 3-47

3 UML Notation Guide

.

Figure 3-24 Note showing method body

3.26.4 Style Guidelines

Operation names typically begin with a lowercase letter. Operation names are in plain
face. An abstract operation may be shown in italics.

3.26.5 Example

Figure 3-25 Operation List with a Variety of Operations

3.26.6 Mapping

A string entry within the operation compartment maps into an Operation or a Method
within the Class corresponding to the class symbol. The properties of the operation
map in accordance with the preceding descriptions. See the description of Section3.25,
“Attribute,” on page 3-41 for additional details. Parameters without keywords map into
Parameters with kind=in, otherwise according to the keyword. Return value names map
into Parameters with kind=return.

If the entry has the keyword «signal», then it maps into a Reception on the Class
instead.

report ()

BurglarAlarm

isTripped: Boolean = false

PoliceStation

1 station

*

{ if isTripped
then station.alert(self)}

alert (Alarm)

+create ()

+display (): Location
+hide ()

-attachXWindow(xwin:Xwindow*)

3-48 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

The topmost appearance of an operation specification in a class hierarchy maps into an
Operation definition in the corresponding Class or Interface. Interfaces do not have
methods. In a Class, each appearance of an operation entry maps into the presence of a
Method in the corresponding Class, unless the operation entry contains the {abstract}
property (including use of conventions such as italics for abstract operations). If an
abstract operation entry appears within a hierarchy in which the same operation has
already been defined in an ancestor, it has no effect but is not an error unless the
declarations are inconsistent.

Note that the operation string entry does not specify the body of a method.

3.27 Nested Class Declarations

3.27.1 Semantics

A class declared within another class belongs to the namespace of the other class and
may only be used within it. This construct is primarily used for implementation
reasons and for information hiding.

3.27.2 Notation

A declaring class and a class in its namespace may be connected by a line, with an
“ anchor” icon on the end connected to a declaring class (Figure 3-26 on page 3-48).
An anchor icon is a cross inside a circle. The contents of the package are declared
within the class and belong to its namespace.

3.27.3 Mapping

If Class B is attached to Class A by an “ anchor” line with the “ anchor” symbol on
Class A, then Class B is declared within the Namespace of Class A. That is, the
relationship between Class A and Class B is the namespace-ownedElement association.

Figure 3-26 Nested class declaration

DeclaringClass

NestedClass

March 2003 OMG-Unified Modeling Language, v1.5 3-49

3 UML Notation Guide

3.28 Type and Implementation Class

3.28.1 Semantics

Classes can be stereotyped as Types or Implementation Classes (although they can be
left undifferentiated as well). A Type is used to specify a domain of objects together
with operations applicable to the objects without defining the physical implementation
of those objects. A Type may not include any methods, but it may provide behavioral
specifications for its operations. It may also have attributes and associations that are
defined solely for the purpose of specifying the behavior of the type’s operations.

An Implementation Class defines the physical data structure (for attributes and
associations) and methods of an object as implemented in traditional languages (C++,
Smalltalk, etc.). An Implementation Class is said to realize a Type if it provides all of
the operations defined for the Type with the same behavior as specified for the Type’s
operations. An Implementation Class may realize a number of different Types.

3.28.2 Notation

An undifferentiated class is shown with no stereotype. A type is shown with the
stereotype “ «type».” An implementation class is shown with the stereotype
“ «implementationClass».” A tool is also free to allow a default setting for an entire
diagram, in which case all of the class symbols without explicit stereotype indications
map into Classes with the default stereotype. This might be useful for a model that is
close to the programming level.

The implementation of a type by a class is modeled as the Realization relationship,
shown as a dashed line with a solid triangular arrowhead (a dashed “ generalization
arrow”). This symbol implies the realizing class provides at least all the operations of
the Type, with conforming behavior, but it does not imply inheritance of structure
(attributes or associations). The generalization hierarchy of a set of classes frequently
parallels the generalization hierarchy of a set of types that they realize, but this is not
mandatory, as long as each class provides the operations of the types that it realizes.

3-50 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

3.28.3 Example

Figure 3-27 Notation for Types and Implementation Classes

3.28.4 Mapping

A class symbol with a stereotype (including “ type” and “ implementationClass”) maps
into a Class with the corresponding stereotype. A class symbol without a stereotype
maps into a Class with the default stereotype for the diagram (if a default has been
defined by the modeler or tool); otherwise, it maps into a Class with no stereotype. The
realization arrow between two symbols maps into an Abstraction relationship, with the
«realize» stereotype, between the Classifiers corresponding to the two symbols.
Realization is usually used between a class and an interface, but may also be used
between any two classifiers to show conformance of behavior.

3.29 Interfaces

3.29.1 Semantics

An interface is a specifier for the externally-visible operations of a class, component,
or other classifier (including subsystems) without specification of internal structure.
Each interface often specifies only a limited part of the behavior of an actual class.
Interfaces do not have implementation. They lack attributes, states, or associations;
they only have operations. (An interface may be the target of a one-way association,

Set
«type»

addElement(Object)
removeElement(Object)
testElement(Object):Boolean

* elements

Object
«type»

HashTableSet
«implementationClass»

addElement(Object)
removeElement(Object)
testElement(Object):Boolean

1 body

HashTable
«implementationClass»

setTableSize(Integer)

March 2003 OMG-Unified Modeling Language, v1.5 3-51

3 UML Notation Guide

however, but it may not have an association that it can navigate.) Interfaces may have
generalization relationships. An interface is formally equivalent to an abstract class
with no attributes and no methods and only abstract operations, but Interface is a peer
of Class within the UML metamodel (both are Classifiers).

3.29.2 Notation

An interface is a Classifier and may be shown using the full rectangle symbol with
compartments and the keyword «interface». A list of operations supported by the
interface is placed in the operation compartment. The attribute compartment may be
omitted because it is always empty.

An interface may also be displayed as a small circle with the name of the interface
placed below the symbol. The circle may be attached by a solid line to classifiers that
support it. This indicates that the class provides all of the operations in the interface
type (and possibly more). The operations provided are not shown on the circle
notation; use the full rectangle symbol to show the list of operations. A class that uses
or requires the operations supplied by the interface may be attached to the circle by a
dashed arrow pointing to the circle. The dashed arrow implies that the class requires no
more than the operations specified in the interface; the client class is not required to
actually use all of the interface operations.

The Realization relationship from a classifier to an interface that it supports is shown
by a dashed line with a solid triangular arrowhead (a “ dashed generalization symbol”).
This is the same notation used to indicate realization of a type by an implementation
class. In fact, this symbol can be used between any two classifier symbols, with the
meaning that the client (the one at the tail of the arrow) supports at least all of the
operations defined in the supplier (the one at the head of the arrow), but with no
necessity to support any of the data structure of the supplier (attributes and
associations).

3.29.3 Example

Figure 3-28 Shorthand Version of Interface Notation

+crea te ()
+ log in (U serN am e, P asswd)
+ find (S to re Id)
+ge tP O S to ta ls (P O S id)
+upda teS to reTo ta ls (Id ,S a les)
+ge t(Item)

-s to re Id: In teger
-P O S lis t: L is t

Store

P O S term ina l

P O S te rm ina lH om e

<<use>>

S to reH om e

S to re

POSterm inal

3-52 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

Figure 3-29 Longhand Version of Interface Notation

3.29.4 Mapping

A class rectangle symbol with stereotype «interface», or a circle on a class diagram,
maps into an Interface element with the name given by the symbol. The operation list
of a rectangle symbol maps into the list of Operation elements of the Interface.

A dashed generalization arrow from a class symbol to an interface symbol, or a solid
line connecting a class symbol and an interface circle, maps into an Abstraction
dependency with the «realize» stereotype between the corresponding Classifier and
Interface elements. A dependency arrow from a class symbol to an interface symbol
maps into a Usage dependency between the corresponding Classifier and Interface.

3.30 Parameterized Class (Template)

3.30.1 Semantics

A template is the descriptor for a class with one or more unbound formal parameters.
It defines a family of classes, each class specified by binding the parameters to actual
values. Typically, the parameters represent attribute types; however, they can also
represent integers, other types, or even operations. Attributes and operations within the
template are defined in terms of the formal parameters so they too become bound when
the template itself is bound to actual values.

A template is not a directly usable class because it has unbound parameters. Its
parameters must be bound to actual values to create a bound form that is a class. Only
a class can be a superclass or the target of an association (a one-way association from
the template to another class is permissible, however). A template may be a subclass of
an ordinary class. This implies that all classes formed by binding it are subclasses of
the given superclass.

Parameterization can be applied to other ModelElements, such as Collaborations or
even entire Packages. The description given here for classes applies to other kinds of
modeling elements in the obvious way.

+create()
+log in(UserNam e, Passwd)
+find(S toreId)
+getPO Stotals(P OS id)
+updateS toreTotals(Id ,Sales)
+get(Item)

-s toreId: In teger
-PO Slis t: L is t

Store

PO Sterm inal

PO Sterm inalH om e

<<use>>

StoreH om e

POSterminal

+getPO Stotals(P OS id)
+updateS toreTotals(Id ,Sales)
+get(Item)

<<interface>>
Store

March 2003 OMG-Unified Modeling Language, v1.5 3-53

3 UML Notation Guide

3.30.2 Notation

A small dashed rectangle is superimposed on the upper right-hand corner of the
rectangle for the class (or to the symbol for another modeling element). The dashed
rectangle contains a parameter list of formal parameters for the class and their
implementation types. The list must not be empty, although it might be suppressed in
the presentation. The name, attributes, and operations of the parameterized class appear
as normal in the class rectangle; however, they may also include occurrences of the
formal parameters. Occurrences of the formal parameters can also occur inside of a
context for the class, for example, to show a related class identified by one of the
parameters.

3.30.3 Presentation Options

The parameter list may be comma-separated or it may be one per line.

Parameters are restricted attributes, shown as strings with the syntax:

name : type = default-value

• Where name is an identifier for the parameter with scope inside the template.

• Where type is a string designating a Classifier for the parameter. If it is a simple
word, it must be the name of a Classifier. Otherwise it is a programming-language
dependent string that maps into a ProgrammingLanguageDataType according to the
programming language (if any) for the diagram context or specified in a support
tool.

• Where default-value is a string designating an Expression for a default value that is
used when the corresponding argument is omitted in a Binding. The equal sign and
expression may be omitted, in which case there is no default value and the argument
must be supplied in a Binding.

If the type name is omitted, the parameter type is assumed to be Classifier. The value
supplied for an argument in a Binding must be the name of a Classifier (including a
class or a data type). Other parameter types (such as Integer) must be explicitly
shown. The value supplied for an argument in a Binding must be an actual instance
value of the given kind.

3-54 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

3.30.4 Example

Figure 3-30 Template Notation with Use of Parameter as a Reference

3.30.5 Mapping

The addition of the template dashed box to a symbol causes the addition of the
parameter names in the list as ModelElements within the Namespace of the
ModelElement corresponding to the base symbol (or to the Namespace containing a
ModelElement that is not itself a Namespace). Each of the parameter ModelElements
has the templateParameter association to the base ModelElement.

3.31 Bound Element

3.31.1 Semantics

A template cannot be used directly in an ordinary relationship such as generalization or
association, because it has a free parameter that is not meaningful outside of a scope
that declares the parameter. To be used, a template’s parameters must be bound to
actual values. The actual value for each parameter is an expression defined within the
scope of use. If the referencing scope is itself a template, then the parameters of the
referencing template can be used as actual values in binding the referenced template.
The parameter names in the two templates cannot be assumed to correspond because
they have no scope outside of their respective templates.

FArray

FArray<Point,3>

T,k:Integer

«bind» (Address,24)

T
k..k

AddressList

March 2003 OMG-Unified Modeling Language, v1.5 3-55

3 UML Notation Guide

3.31.2 Notation

A bound element is indicated by a text syntax in the name string of an element, as
follows:

Template-name ‘<‘ value-list ‘>’

• Where value-list is a comma-delimited non-empty list of value expressions.

• Where Template-name is identical to the name of a template.

For example, VArray<Point,3> designates a class described by the template Varray.

The number and type of values must match the number and type of the template
parameters for the template of the given name.

The bound element name may be used anywhere that an element name of the
parameterized kind could be used. For example, a bound class name could be used
within a class symbol on a class diagram, as an attribute type, or as part of an operation
signature.

Note that a bound element is fully specified by its template; therefore, its content may
not be extended. Declaration of new attributes or operations for classes is not
permitted, for example, but a bound class could be subclassed and the subclass
extended in the usual way.

The relationship between the bound element and its template alternatively may be
shown by a Dependency relationship with the keyword «bind». The arguments are
shown in parentheses after the keyword. In this case, the bound form may be given a
name distinct from the template.

3.31.3 Style Guidelines

The attribute and operation compartments are normally suppressed within a bound
class, because they must not be modified in a bound template.

3.31.4 Example

See Figure 3-30 on page 3-54.

3.31.5 Mapping

The use of the bound element syntax for the name of a symbol maps into a Binding
dependency between the dependent ModelElement (such as Class) corresponding to
the bound element symbol and the provider ModelElement (again, such as Class)
whose name matches the name part of the bound element without the arguments. If the
name does not match a template element or if the number of arguments in the bound
element does not match the number of parameters in the template, then the model is ill
formed. Each argument position in the bound element maps into a TemplateArgument
bearing a binding link to the Binding dependency and a modelElement link to the

3-56 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

ModelElement that is implicitly substituted for the template parameter in the
corresponding position in the template definition. An explicitly drawn «bind»
dependency symbol maps to a Binding dependency with arguments as described above.

3.32 Utility

A utility is a grouping of global variables and procedures in the form of a class
declaration. This is not a fundamental construct, but a programming convenience. The
attributes and operations of the utility become global variables and procedures. A
utility is modeled as a stereotype of a classifier.

3.32.1 Semantics

The instance-scope attributes and operations of a utility are interpreted as global
attributes and operations. It is inappropriate for a utility to declare class-scope
attributes and operations because the instance-scope members are already interpreted
as being at class scope.

3.32.2 Notation

A utility is shown as the stereotype «utility» of Class. It may have both attributes and
operations, all of which are treated as global attributes and operations.

3.32.3 Example

Figure 3-31 Notation for Utility

3.32.4 Mapping

This is not a special symbol. It simply maps into a Class element with the «utility»
stereotype.

MathPak
«utility»

sin (Angle): Real

sqrt (Real): Real
random(): Real

cos (Angle): Real

March 2003 OMG-Unified Modeling Language, v1.5 3-57

3 UML Notation Guide

3.33 Metaclass

3.33.1 Semantics

A metaclass is a class whose instances are classes.

3.33.2 Notation

A metaclass is shown as the stereotype «metaclass» of Class.

3.33.3 Mapping

This is not a special symbol. It simply maps into a Class element with the «metaclass»
stereotype.

3.34 Enumeration

3.34.1 Semantics

An Enumeration is a user-defined data type whose instances are a set of user-specified
named enumeration literals. The literals have a relative order but no algebra is defined
on them.

3.34.2 Notation

An Enumeration is shown using the Classifier notation (a rectangle) with the keyword
«enumeration». The name of the Enumeration is placed in the upper compartment. An
ordered list of enumeration literals may be placed, one to a line, in the middle
compartment. Operations defined on the literals may be placed in the lower
compartment. The lower and middle compartments may be suppressed.

3.34.3 Mapping

Maps into an Enumeration with the given list of enumeration literals.

3.35 Stereotype Declaration

3.35.1 Semantics

A Stereotype is a user-defined metaelement whose structure matches an existing UML
metaelement (its “ base class”). Because it is user defined, a stereotype declaration is an
element that appears at the “ model” layer of the UML four-layer metamodeling
hierarchy although it conceptually belongs in the layer above, the metamodel layer.

3-58 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

3.35.2 Notation

Because stereotypes span two different metamodeling layers, a special notation is
required to clearly indicate the crossover between the two layers. Specifically, it is
necessary to show how a model-level element (the stereotype) relates to its
metaelement (its UML base class). This is denoted using a special stereotype of
Dependency called «stereotype» as shown in Figure 3-32 on page 3-59.

The Stereotype itself is shown using the Classifier notation (a rectangle) with the
keyword «stereotype» (Figure 3-32). The name of the Stereotype is placed in the upper
compartment. Constraints on elements described by the stereotype may be placed in a
named compartment called Constraints. Required tags may be placed in a named
compartment called Tags. Individual items (tags) in the list are defined according to
the following format:

tagDefinitionName : String [multiplicity]

where string can be either a string matching the name of a data type representing
the type of the values of the tag, or it is a reference to a metaclass or a stereotype. In
the latter case, the string has the form:

«metaclass» metaclassName

or

«stereotype» stereotypeName

where metaclassName is the name of the referenced metaclass and is the name of
the references stereotype. The multiplicity element is optional and conforms to
standard rules for specifying multiplicities. In case of a range specification, a lower
bound of zero indicates an optional tag.

March 2003 OMG-Unified Modeling Language, v1.5 3-59

3 UML Notation Guide

Figure 3-32 Notational form for declaring a stereotype

In the example diagram in Figure 3-32, the stereotype Persistent is a stereotype of the
UML metaelement Class. TableName is an optional tag whose type is a model type
called String while SQLFile is a reference to an instance of Component in the model.

An icon can be defined for the stereotype, but its graphical definition is outside the
scope of UML and must be handled by an editing tool.

An alternative and usually more compact way of specifying stereotypes and tags using
tables is shown in Figure 3-33 and Figure 3-34, respectively.

Figure 3-33 Tabular form for specifying stereotypes

Figure 3-34 Tabular form for specifying tags

Stereotype Base Class Parent Tags Constraints Description

Architectural
Element

Generalizable
Element

N/A N/A N/A A generic stereotype that is the parent
of all other stereotypes used for archi-
tectural modeling .

Capsule Class Architectural
Element

isDynamic self.isActive = true Indicates a class that is used to model
the structural components of an archi-
tecture specification.

Tag Stereotype Type Multiplicity Description

isDynamic Capsule UML::Datatypes::Boolean 1 Used to identify if the associated capsule class may be
created and destroyed dynamically.

Class
«metaclass»

«stereotype»

Constraints
{TableName should not be
longer than 8 characters}

«stereotype»
Persistent

Tags

SQLFile : «metaclass» Component
TableName : String [0..1]

3-60 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

Each row of the stereotype specification table in Figure 3-33 defines one stereotype
and each row in the tag specification table in Figure 3-34 contains one tag definition.

The columns of the stereotype specification table are defined as follows:

• Stereotype - the name of the stereotype.

• Base Class - the UML metamodel element that serves as the base for the
stereotype.

• Parent - the direct parent of the stereotype being defined (NB: if one exists,
otherwise the symbol “ N/A” is used).

• Tags - a list of all tags of the tagged values that may be associated with this
stereotype (or N/A if none are defined).

• Constraints - a list of constraints associated with the stereotype.

• Description - an informal description with possible explanatory comments.

The columns of the tag specification table are defined as follows:

• Tag - the name of the tag.

• Stereotype - the name of the stereotype that owns this tag, or “ N/A” if it is a stand
alone tag.

• Type - the name of the type of the values that can be associated with the tag.

• Multiplicity - the maximum number of values that may be associated with one tag
instance.

• Description - an informal description with possible explanatory comments.

In the case of both the stereotype specification table and the tag specification table,
columns that are not applicable may be omitted.

In the example stereotype specification table of Figure 3-34, two related stereotypes
are defined. The first row declares the stereotype ArchitecturalElement, which is a
stereotype of GeneralizableElement, while the second row declares the stereotype
Capsule, which is a specialization of the ArchitecturalElement stereotype, but which
applies only to instances of Class, which is a subclass of GeneralizableElement in the
metamodel.

The equivalent declaration as the one table in Figure 3-34, less the constraints and the
informal descriptions, is shown graphically in Figure 3-35.

Figure 3-35 Graphical equivalent of the stereotype declarations shown in Figure 3-34

G e ne ra liz ea b leE le m e nt
< < m eta c las s > >

C la s s ifie r
< < m eta c las s > >

C la s s
< < m eta c las s > >

A rc hite c tu ra lE le m e nt
< < s te re o ty p e> >

C a ps u le
< < s te re o ty p e> >

< < s te re o ty p e> > < < s te re o ty p e> >

March 2003 OMG-Unified Modeling Language, v1.5 3-61

3 UML Notation Guide

3.35.3 Mapping

A classifier with a stereotype «metaclass» maps into a UML metaelement and a
classifier with a stereotype «stereotype» maps into a Stereotype. The «stereotype»
dependency maps to the baseClass attribute definition of the stereotype. The
constraints listed in the Constraints compartment map to stereotype constraints and
the items in the Tags compartment map to the defined tags of the stereotype. Each
item in the Tags list maps to a TagDefinition. The string before the colon separator
maps to the name of the tag definition while the string following the colon maps to an
instance of Name. If a multiplicity specification is included in the item, it maps to the
multiplicity attribute of the tag definition.

3.36 Powertype

3.36.1 Semantics

A Powertype is a user-defined metaelement whose instances are classes in the model.

3.36.2 Notation

A Powertype is shown using the Classifier notation (a rectangle) with the stereotype
keyword «powertype». The name of the Powertype is placed in the upper compartment.
Because the elements are ordinary classes, attributes and operations on the powertype
are usually not defined by the user.

The instances of the powertype may be indicated by placing a dashed line across the
parent lines of the classes with the syntax

discriminatorName: powertypeName,

where the powertype name on the line implicitly defines a powertype if one is not
explicitly defined.

3.36.3 Mapping

Maps into a Class with the «powertype» stereotype with the given classes as instances.

3.37 Class Pathnames

3.37.1 Notation

Class symbols (rectangles) serve to define a class and its properties, such as
relationships to other classes. A reference to a class in a different package is notated by
using a pathname for the class, in the form:

package-name :: class-name

3-62 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

References to classes also appear in text expressions, most notably in type
specifications for attributes and variables. In these places a reference to a class is
indicated by simply including the name of the class itself, including a possible package
name, subject to the syntax rules of the expression.

3.37.2 Example

Figure 3-36 Pathnames for Classes in Other Packages

3.37.3 Mapping

A class symbol whose name string is a pathname represents a reference to the Class
with the given name inside the package with the given name. The name is assumed to
be defined in the target package; otherwise, the model is ill formed. A Relationship
from a symbol in the current package; that is, the package containing the diagram and
its mapped elements to a symbol in another package is part of the current package.

3.38 Accessing or Importing a Package

3.38.1 Semantics

An element may reference an element contained in a different package. On the package
level, the «access» dependency indicates that the contents of the target package may be
referenced by the client package or packages recursively embedded within it. The
target references must have visibility sufficient for the referents: public visibility for an
unrelated package, public or protected visibility for a descendant of the target package,
or any visibility for a package nested inside the target package (an access dependency
is not required for the latter case). A package nested inside the package making the
access gets the same access.

Banking::CheckingAccount

Deposit

time: DateTime::Time
amount: Currency::Cash

March 2003 OMG-Unified Modeling Language, v1.5 3-63

3 UML Notation Guide

Note that an access dependency does not modify the namespace of the client or in any
other way automatically create references; it merely grants permission to establish
references. Note also that a tool could automatically create access dependencies for
users if desired when references are created.

An import dependency grants access and also loads the names with appropriate
visibility in the target namespace into the accessing package; that is, a pathname is not
necessary to reference them. Such names are not automatically re-exported; however; a
name must be explicitly re-exported (and may be given a new name and visibility at
the same time).

3.38.2 Notation

The access dependency is displayed as a dependency arrow from the referencing
(client) package to the target (supplier) package containing the target of the references.
The arrow has the stereotype keyword «access». This dependency indicates that
elements within the client package may legally reference elements within the supplier.
The references must also satisfy visibility constraints specified by the supplier. Note
that the dependency does not automatically create any references. It merely grants
permission for them to be established.

The import dependency has the same notation as the access dependency except it has
the stereotype keyword «import».

3-64 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

3.38.3 Example

Figure 3-37 Access Dependency Among Packages

3.38.4 Mapping

This is not a special symbol. It maps into a Permission dependency with the stereotype
«access» or «import» between the two packages.

3.39 Object

3.39.1 Semantics

An object represents a particular instance of a class. It has identity and attribute values.
A similar notation also represents a role within a collaboration because roles have
instance-like characteristics.

3.39.2 Notation

The object notation is derived from the class notation by underlining instance-level
elements, as explained in the general comments in Section 3.12, “ Type-Instance
Correspondence,” on page 3-14.

An object shown as a rectangle with two compartments.

Banking::CheckingAccount

CheckingAccount

Banking

«access»

Customers

March 2003 OMG-Unified Modeling Language, v1.5 3-65

3 UML Notation Guide

The top compartment shows the name of the object and its class, all underlined, using
the syntax:

objectname : classname

The classname can include a full pathname of enclosing package, if necessary. The
package names precede the classname and are separated by double colons. For
example:

display_window: WindowingSystem::GraphicWindows::Window

A stereotype for the class may be shown textually (in guillemets above the name
string) or as an icon in the upper right corner. The stereotype for an object must match
the stereotype for its class.

To show multiple classes that the object is an instance of, use a comma-separated list
of classnames. These classnames must be legal for multiple classification; that is, only
one implementation class permitted, but multiple types permitted.

To show the presence of an object in a particular state of a class, use the syntax:

objectname : classname ‘[‘ statename-list ‘]’

The list must be a comma-separated list of names of states that can legally occur
concurrently.

The second compartment shows the attributes for the object and their values as a list.
Each value line has the syntax:

attributename : type = value

The type is redundant with the attribute declaration in the class and may be omitted.

The value is specified as a literal value. UML does not specify the syntax for literal
value expressions; however, it is expected that a tool will specify such a syntax using
some programming language.

The flow relationship between two values of the same object over time can be shown
by connecting two object symbols by a dashed arrow with the keyword «become». If
the flow arrow is on a collaboration diagram, the label may also include a sequence
number to show when the value changes. Similarly, the keyword «copy» can be used to
show the creation of one object from another object value.

3.39.3 Presentation Options

The name of the object may be omitted. In this case, the colon should be kept with the
class name. This represents an anonymous object of the given class given identity by
its relationships.

The class of the object may be suppressed (together with the colon).

The attribute value compartment as a whole may be suppressed.

Attributes whose values are not of interest may be suppressed.

3-66 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

Attributes whose values change during a computation may show their values as a list of
values held over time. In an interactive tool, they might even change dynamically. An
alternate notation is to show the same object more than once with a «becomes»
relationship between them.

3.39.4 Style Guidelines

Objects may be shown on class diagrams. The elements on collaboration diagrams are
not objects, because they describe many possible objects. They are instead roles that
may be held by object. Objects in class diagrams serve mainly to show examples of
data structures.

3.39.5 Variations

For a language such as Self in which operations can be attached to individual objects at
run time, a third compartment containing operations would be appropriate as a
language-specific extension.

3.39.6 Example

Figure 3-38 Objects

3.39.7 Mapping

In an object diagram, or within an ordinary class diagram, an object symbol maps into
an Object of the Class (or Classes) given by the classname part of the name string. The
attribute list in the symbol maps into a set of AttributeLinks attached to the Object,
with values given by the value expressions in the attribute list in the symbol. If a list of
states in brackets follows the class name, then this maps into a ClassifierInState with
the named Class as its type and the named States as the states. The ClassfierInState
classifies the Object.

triangle: Polygon

center = (0,0)
vertices = ((0,0),(4,0),(4,3))
borderColor = black
fillColor = white

triangle: Polygon

triangle

:Polygon

scheduler

March 2003 OMG-Unified Modeling Language, v1.5 3-67

3 UML Notation Guide

3.40 Composite Object

3.40.1 Semantics

A composite object represents a high-level object made of tightly-bound parts. This is
an instance of a composite class, which implies the composition aggregation between
the class and its parts. A composite object is similar to (but simpler and more restricted
than) a collaboration; however, it is defined completely by composition in a static
model. See Section 3.48, “ Composition,” on page 3-81.

3.40.2 Notation

A composite object is shown as an object symbol. The name string of the composite
object is placed in a compartment near the top of the rectangle (as with any object).
The lower compartment holds the parts of the composite object instead of a list of
attribute values. (However, even a list of attribute values may be regarded as the parts
of a composite object, so there is not a great difference.) It is possible for some of the
parts to be composite objects with further nesting.

3.40.3 Example

Figure 3-39 Composite Objects

horizontalBar:ScrollBar

verticalBar:ScrollBar

awindow : Window

surface:Pane

title:TitleBar

moves

moves

3-68 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

3.40.4 Mapping

A composite object symbol maps into an Object of the given Class with composition
links to each of the Objects and Links corresponding to the class box symbols and to
association path symbols directly contained within the boundary of the composite
object symbol (and not contained within another deeper boundary).

3.41 Association

Binary associations are shown as lines connecting two classifier symbols. The lines
may have a variety of adornments to show their properties. Ternary and higher-order
associations are shown as diamonds connected to class symbols by lines.

3.42 Binary Association

3.42.1 Semantics

A binary association is an association among exactly two classifiers (including the
possibility of an association from a classifier to itself).

3.42.2 Notation

A binary association is drawn as a solid path connecting two classifier symbols (both
ends may be connected to the same classifier, but the two ends are distinct). The path
may consist of one or more connected segments. The individual segments have no
semantic significance, but may be graphically meaningful to a tool in dragging or
resizing an association symbol. A connected sequence of segments is called a path.

In a binary association, both ends may attach to the same classifier. The links of such
an association may connect two different instances from the same classifier or one
instance to itself. The latter case may be forbidden by a constraint if necessary.

The end of an association where it connects to a classifier is called an association end.
Most of the interesting information about an association is attached to its ends.

The path may also have graphical adornments attached to the main part of the path
itself. These adornments indicate properties of the entire association. They may be
dragged along a segment or across segments, but must remain attached to the path. It is
a tool responsibility to determine how close association adornments may approach an
end so that confusion does not occur. The following kinds of adornments may be
attached to a path.

3.42.2.1 association name

Designates the (optional) name of the association.

March 2003 OMG-Unified Modeling Language, v1.5 3-69

3 UML Notation Guide

It is shown as a name string near the path (but not near enough to an end to be
confused with a rolename). The name string may have an optional small black solid
triangle in it. The point of the triangle indicates the direction in which to read the
name. The name-direction arrow has no semantics significance, it is purely descriptive.
The classifiers in the association are ordered as indicated by the name-direction arrow.

Note – There is no need for a name direction property on the association model; the
ordering of the classifiers within the association is the name direction. This convention
works even with n-ary associations.

A stereotype keyword within guillemets may be placed above or in front of the
association name. A property string may be placed after or below the association name.

3.42.2.2 association class symbol

Designates an association that has class-like properties, such as attributes, operations,
and other associations. This is present if, and only if, the association is an association
class. It is shown as a class symbol attached to the association path by a dashed line.

The association path and the association class symbol represent the same underlying
model element, which has a single name. The name may be placed on the path, in the
class symbol, or on both (but they must be the same name).

Logically, the association class and the association are the same semantic entity;
however, they are graphically distinct. The association class symbol can be dragged
away from the line, but the dashed line must remain attached to both the path and the
class symbol.

3.42.3 Presentation Options

When two paths cross, the crossing may optionally be shown with a small semicircular
jog to indicate that the paths do not intersect (as in electrical circuit diagrams).

3.42.4 Style Guidelines

Lines may be drawn using various styles, including orthogonal segments, oblique
segments, and curved segments. The choice of a particular set of line styles is a user
choice.

3.42.5 Options

3.42.5.1 Xor-association

An xor-constraint indicates a situation in which only one of several potential
associations may be instantiated at one time for any single instance. This is shown as a
dashed line connecting two or more associations, all of which must have a classifier in

3-70 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

common, with the constraint string “ {xor}” labeling the dashed line. Any instance of
the classifier may only participate in one of the associations at one time. Each
rolename must be different. (This is simply a predefined use of the constraint notation.)

3.42.6 Example

Figure 3-40 Association Notation

3.42.7 Mapping

An association path connecting two class symbols maps to an Association between the
corresponding Classifiers. If there is an arrow on the association name, then the Class
corresponding to the tail of the arrow is the first class and the Classifier corresponding
to the head of the arrow is the second Classifier in the ordering of ends of the
Association; otherwise, the ordering of ends in the association is undetermined. The
adornments on the path map into properties of the Association as described above. The
Association is owned by the package containing the diagram.

Person

Manages

Job
Company

boss

worker

employeeemployer
1..∗

∗

∗

0..1

Job

Account

Person

Corporation

{Xor}

salary

March 2003 OMG-Unified Modeling Language, v1.5 3-71

3 UML Notation Guide

3.43 Association End

3.43.1 Semantics

An association end is simply an end of an association where it connects to a classifier.
It is part of the association, not part of the classifier. Each association has two or more
ends. Most of the interesting details about an association are attached to its ends. An
association end is not a separable element, it is just a mechanical part of an association.

3.43.2 Notation

The path may have graphical adornments at each end where the path connects to the
classifier symbol. These adornments indicate properties of the association related to the
classifier. The adornments are part of the association symbol, not part of the classifier
symbol. The end adornments are either attached to the end of the line, or near the end
of the line, and must drag with it. The following kinds of adornments may be attached
to an association end.

3.43.2.1 multiplicity

Specified by a text syntax. Multiplicity may be suppressed on a particular association
or for an entire diagram. In an incomplete model the multiplicity may be unspecified in
the model itself. In this case, it must be suppressed in the notation. See Section 3.44,
“ Multiplicity,” on page 3-75.

3.43.2.2 ordering

If the multiplicity is greater than one, then the set of related elements can be ordered or
unordered. If no indication is given, then it is unordered (the elements form a set).
Various kinds of ordering can be specified as a constraint on the association end. The
declaration does not specify how the ordering is established or maintained. Operations
that insert new elements must make provision for specifying their position either
implicitly (such as at the end) or explicitly. Possible values include:

• unordered - the elements form an unordered set. This is the default and need not be
shown explicitly.

• ordered - the elements of the set have an ordering, but duplicates are still prohibited.
This generic specification includes all kinds of ordering. This may be specified by
the keyword syntax “ {ordered}.”

An ordered relationship may be implemented in various ways; however, this is
normally specified as a language-specified code generation property to select a
particular implementation. An implementation extension might substitute the data
structure to hold the elements for the generic specification “ ordered.”

At implementation level, sorting may also be specified. It does not add new semantic
information, but it expresses a design decision:

3-72 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

• sorted - the elements are sorted based on their internal values. The actual sorting
rule is best specified as a separate constraint.

3.43.2.3 qualifier

A qualifier is optional, but not suppressible. See Section 3.45, “ Qualifier,” on
page 3-76.

3.43.2.4 navigability

An arrow may be attached to the end of the path to indicate that navigation is
supported toward the classifier attached to the arrow. Arrows may be attached to zero,
one, or two ends of the path. To be totally explicit, arrows may be shown whenever
navigation is supported in a given direction. In practice, it is often convenient to
suppress some of the arrows and just show exceptional situations. See Section 3.22.3,
“ Presentation Options,” on page 3-36 for details.

3.43.2.5 aggregation indicator

A hollow diamond is attached to the end of the path to indicate aggregation. The
diamond may not be attached to both ends of a line, but it need not be present at all.
The diamond is attached to the class that is the aggregate. The aggregation is optional,
but not suppressible.

If the diamond is filled, then it signifies the strong form of aggregation known as
composition. See Section 3.48, “ Composition,” on page 3-81.

3.43.2.6 rolename

A name string near the end of the path. It indicates the role played by the class
attached to the end of the path near the rolename. The rolename is optional, but not
suppressible.

3.43.2.7 interface specifier

The name of a Classifier with the syntax:

‘:’ classifiername, . . .

It indicates the behavior expected of an associated object by the related instance. In
other words, the interface specifier specifies the behavior required to enable the
association. In this case, the actual classifier usually provides more functionality than
required for the particular association (since it may have other responsibilities).

The use of a rolename and interface specifier are equivalent to creating a small
collaboration that includes just an association and two roles, whose structure is defined
by the rolename and attached classifier on the original association. Therefore, the

March 2003 OMG-Unified Modeling Language, v1.5 3-73

3 UML Notation Guide

original association and classifiers are a use of the collaboration. The original classifier
must be compatible with the interface specifier (which can be an interface or a type,
among other kinds of classifiers).

If an interface specifier is omitted, then the association may be used to obtain full
access to the associated class.

3.43.2.8 changeability

If the links are changeable (can be added, deleted, and moved), then no indicator is
needed. The property {frozen} indicates that no links may be added, deleted, or moved
from an object (toward the end with the adornment) after the object is created and
initialized. The property {addOnly} indicates that additional links may be added
(presumably, the multiplicity is variable); however, links may not be modified or
deleted.

3.43.2.9 visibility

Specified by a visibility indicator (‘+’ , ‘#’ , ‘-’ or explicit property name such as
{public}) in front of the rolename. Specifies the visibility of the association traversing
in the direction toward the given rolename. See Section 3.25, “Attribute,” on page3-41
for details of visibility specification.

Other properties can be specified for association ends, but there is no graphical syntax
for them. To specify such properties, use the constraint syntax near the end of the
association path (a text string in braces). Examples of other properties include
mutability.

3.43.3 Presentation Options

If there are two or more aggregations to the same aggregate, they may be drawn as a
tree by merging the aggregation end into a single segment. This requires that all of the
adornments on the aggregation ends be consistent. This is purely a presentation option,
there are no additional semantics to it.

Various options are possible for showing the navigation arrows on a diagram. These
can vary from time to time by user request or from diagram to diagram.

• Presentation option 1: Show all arrows. The absence of an arrow indicates
navigation is not supported.

• Presentation option 2: Suppress all arrows. No inference can be drawn about
navigation. This is similar to any situation in which information is suppressed from
a view.

• Presentation option 3: Suppress arrows for associations with navigability in both
directions, show arrows only for associations with one-way navigability. In this
case, the two-way navigability cannot be distinguished from no-way navigation;
however, the latter case is normally rare or nonexistent in practice. This is yet
another example of a situation in which some information is suppressed from a
view.

3-74 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

3.43.4 Style Guidelines

If there are multiple adornments on a single association end, they are presented in the
following order, reading from the end of the path attached to the classifier toward the
bulk of the path:

• qualifier

• aggregation symbol

• navigation arrow

Rolenames and multiplicity should be placed near the end of the path so that they are
not confused with a different association. They may be placed on either side of the
line. It is tempting to specify that they will always be placed on a given side of the line
(clockwise or counterclockwise), but this is sometimes overridden by the need for
clarity in a crowded layout. A rolename and a multiplicity may be placed on opposite
sides of the same association end, or they may be placed together (for example, “ *
employee”).

3.43.5 Example

Figure 3-41 Various Adornments on Association Roles

3.43.6 Mapping

The adornments on the end of an association path map into properties of the
corresponding role of the Association. In general, implications cannot be drawn from
the absence of an adornment (it may simply be suppressed) but see the preceding
descriptions for details. The interface specifier maps into the “ specification” rolename
in the AssociationEnd-Classifier association.

Polygon Point
Contains

{ordered}

3..∗1

GraphicsBundle

color
texture
density

1

1

-bundle

+vertex

March 2003 OMG-Unified Modeling Language, v1.5 3-75

3 UML Notation Guide

3.44 Multiplicity

3.44.1 Semantics

A multiplicity item specifies the range of allowable cardinalities that a set may assume.
Multiplicity specifications may be given for roles within associations, parts within
composites, repetitions, and other purposes. Essentially a multiplicity specification is a
subset of the open set of nonnegative integers.

3.44.2 Notation

A multiplicity specification is shown as a text string comprising a comma-separated
sequence of integer intervals, where an interval represents a (possibly infinite) range of
integers, in the format:

lower-bound .. upper-bound

where lower-bound and upper-bound are literal integer values, specifying the closed
(inclusive) range of integers from the lower bound to the upper bound. In addition, the
star character (*) may be used for the upper bound, denoting an unlimited upper
bound. In a parameterized context (such as a template), the bounds could be
expressions but they must evaluate to literal integer values for any actual use. Unbound
expressions that do not evaluate to literal integer values are not permitted.

If a single integer value is specified, then the integer range contains the single integer
value.

If the multiplicity specification comprises a single star (*), then it denotes the
unlimited nonnegative integer range, that is, it is equivalent to 0..* (zero or more).

A multiplicity of 0..0 is meaningless as it would indicate that no instances can occur.

Expressions in some specification language can be used for multiplicities, but they
must resolve to fixed integer ranges within the model; that is, no dynamic evaluation of
expressions, essentially the same rule on literal values as most programming
languages.

3.44.3 Style Guidelines

Preferably, intervals should be monotonically increasing. For example, “ 1..3,7,10” is
preferable to “ 7,10,1..3” .

Two contiguous intervals should be combined into a single interval. For example,
“ 0..1” is preferable to “ 0,1” .

3.44.4 Example

0..1

1

3-76 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

0..*

*

1..*

1..6

1..3,7..10,15,19..*

3.44.5 Mapping

A multiplicity string maps into a Multiplicity value with one or more
MultiplicityRanges. Duplications or other nonstandard presentation of the string itself
have no effect on the mapping. Note that Multiplicity is a value and not an object. It
cannot stand on its own, but is the value of some element property.

3.45 Qualifier

3.45.1 Semantics

A qualifier is an attribute or list of attributes whose values serve to partition the set of
instances associated with an instance across an association. The qualifiers are attributes
of the association.

3.45.2 Notation

A qualifier is shown as a small rectangle attached to the end of an association path
between the final path segment and the symbol of the classifier that it connects to. The
qualifier rectangle is part of the association path, not part of the classifier. The qualifier
rectangle drags with the path segments. The qualifier is attached to the source end of
the association. An instance of the source classifier, together with a value of the
qualifier, uniquely select a partition in the set of target classifier instances on the other
end of the association; that is, every target falls into exactly one partition.

The multiplicity attached to the target end denotes the possible cardinalities of the set
of target instances selected by the pairing of a source instance and a qualifier value.
Common values include:

• “ 0..1” (a unique value may be selected, but every possible qualifier value does not
necessarily select a value).

• “ 1” (every possible qualifier value selects a unique target instance; therefore, the
domain of qualifier values must be finite).

• “ *” (the qualifier value is an index that partitions the target instances into subsets).

The qualifier attributes are drawn within the qualifier box. There may be one or more
attributes shown one to a line. Qualifier attributes have the same notation as classifier
attributes, except that initial value expressions are not meaningful.

March 2003 OMG-Unified Modeling Language, v1.5 3-77

3 UML Notation Guide

It is permissible (although somewhat rare), to have a qualifier on each end of a single
association.

3.45.3 Presentation Options

A qualifier may not be suppressed (it provides essential detail whose omission would
modify the inherent character of the relationship).

A tool may use a lighter line for qualifier rectangles than for class rectangles to
distinguish them clearly.

3.45.4 Style Guidelines

The qualifier rectangle should be smaller than the attached class rectangle, although
this is not always practical.

3.45.5 Example

Figure 3-42 Qualified Associations

3.45.6 Mapping

The presence of a qualifier box on an end of an association path maps into a list of
qualifier attributes on the corresponding Association Role. Each attribute entry string
inside the qualifier box maps into an Attribute.

3.46 Association Class

3.46.1 Semantics

An association class is an association that also has class properties (or a class that has
association properties). Even though it is drawn as an association and a class, it is
really just a single model element.

Square

Chessboard

rank:Rank
file:File

Person

Bank

account #

∗
0..1 1

1

3-78 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

3.46.2 Notation

An association class is shown as a class symbol (rectangle) attached by a dashed line
to an association path. The name in the class symbol and the name string attached to
the association path are redundant and should be the same. The association path may
have the usual adornments on either end. The class symbol may have the usual
contents. There are no adornments on the dashed line.

3.46.3 Presentation Options

The class symbol may be suppressed. It provides subordinate detail whose omission
does not change the overall relationship. The association path may not be suppressed.

3.46.4 Style Guidelines

The attachment point should not be near enough to either end of the path that it
appears to be attached to, the end of the path, or to any of the association end
adornments.

Note that the association path and the association class are a single model element and
have a single name. The name can be shown on the path, the class symbol, or both. If
an association class has only attributes, but no operations or other associations, then
the name may be displayed on the association path and omitted from the association
class symbol to emphasize its “ association nature.” If it has operations and other
associations, then the name may be omitted from the path and placed in the class
rectangle to emphasize its “ class nature.” In neither case are the actual semantics
different.

3.46.5 Example

Figure 3-43 Association Class

Person

Manages

Company

boss

worker

employeeemployer
1..∗

∗

∗

0..1

Job
salary

March 2003 OMG-Unified Modeling Language, v1.5 3-79

3 UML Notation Guide

3.46.6 Mapping

An association path connecting two class boxes connected by a dashed line to another
class box maps into a single AssociationClass element. The name of the
AssociationClass element is taken from the association path, the attached class box, or
both (they must be consistent if both are present). The Association properties map from
the association path, as specified previously. The Class properties map from the class
box, as specified previously. Any constraints or properties placed on either the
association path or attached class box apply to the AssociationClass itself; they must
not conflict.

3.47 N-ary Association

3.47.1 Semantics

An n-ary association is an association among three or more classifiers (a single
classifier may appear more than once). Each instance of the association is an n-tuple of
values from the respective classifier. A binary association is a special case with its own
notation.

Multiplicity for n-ary associations may be specified, but is less obvious than binary
multiplicity. The multiplicity on a role represents the potential number of instance
tuples in the association when the other N-1 values are fixed.

An n-ary association may not contain the aggregation marker on any role.

3.47.2 Notation

An n-ary association is shown as a large diamond (that is, large compared to a
terminator on a path) with a path from the diamond to each participant class. The name
of the association (if any) is shown near the diamond. Role adornments may appear on
each path as with a binary association. Multiplicity may be indicated; however,
qualifiers and aggregation are not permitted.

An association class symbol may be attached to the diamond by a dashed line. This
indicates an n-ary association that has attributes, operations, and/or associations.

3.47.3 Style Guidelines

Usually the lines are drawn from the points on the diamond or the midpoint of a side.

3-80 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

3.47.4 Example

This example shows the record of a team in each season with a particular goalkeeper.
It is assumed that the goalkeeper might be traded during the season and can appear
with different teams.

Figure 3-44 Ternary association that is also an association class

3.47.5 Mapping

A diamond attached to some number of class symbols by solid lines maps into an N-
ary Association whose AssociationEnds are attached to the corresponding Classes. The
ordering of the Classifiers in the Association is indeterminate from the diagram. If a
class box is attached to the diamond by a dashed line, then the corresponding Classifier
supplies the classifier properties for an N-ary AssociationClass.

PlayerTeam

Year

Record

goals for
goals against
wins
losses

goalkeeper

∗

∗

∗

season

team

ties

March 2003 OMG-Unified Modeling Language, v1.5 3-81

3 UML Notation Guide

3.48 Composition

3.48.1 Semantics

Composite aggregation is a strong form of aggregation, which requires that a part
instance be included in at most one composite at a time and that the composite object
has sole responsibility for the disposition of its parts. The multiplicity of the aggregate
end may not exceed one (it is unshared). See Section 3.43, “Association End,” on
page 3-71 for further details.

The composite in a composition “ projects” its identity onto the parts in the
relationship. In other words, each part object in an object model can be identified with
a unique composite object. It keeps its own identity as its primary identity. The point is
that it can also be identified as being part of a unique composite. Composition is
transitive. If object A is part of object B that is part of object C, then object A is also
part of object C. A part may be identified with several composite objects in this way,
each at a different level of detail.

The parts of a composition may include classes and associations (they may be formed
into AssociationClasses if necessary). The meaning of an association in a composite
object is that any tuple of objects connected by a single link must all belong to the
same container object. In other words, the composite object projects its identity onto
each link corresponding to the part end of a composition aggregation. If an association
and two classes it relates are all related as parts to the same class as composite, a link
that is an instance of the association is identified with an object that is an instance of
the composite class; the objects connected by the link are also identified with the
composite object; and they must all be associated with the same composite object.

3.48.2 Notation

Composition may be shown by a solid filled diamond as an association end adornment.
Alternately, UML provides a graphically-nested form that is more convenient for
showing composition in many cases.

Instead of using binary association paths using the composition aggregation
adornment, composition may be shown by graphical nesting of the symbols of the
elements for the parts within the symbol of the element for the whole. A nested class-
like element may have a multiplicity within its composite element. The multiplicity is
shown in the upper right corner of the symbol for the part. If the multiplicity mark is
omitted, then the default multiplicity is many. This represents its multiplicity as a part
within the composite classifier. A nested element may have a rolename within the
composition; the name is shown in front of its type in the syntax:

rolename ‘:’ classname

This represents its rolename within its composition association to the composite.

Alternately, composition is shown by a solid-filled diamond adornment on the end of
an association path attached to the element for the whole. The multiplicity may be
shown in the normal way.

3-82 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

Note that attributes are, in effect, composition relationships between a classifier and
the classifiers of its attributes.

An association drawn entirely within a border of the composite is considered to be part
of the composition. Any instances on a single link of it must be from the same
composite. An association drawn such that its path breaks the border of the composite
is not considered to be part of the composition. Any instances on a single link of it
may be from the same or different composites.

Note that the notation for composition resembles the notation for collaboration. A
composition may be thought of as a collaboration in which all of the participants are
parts of a single composite object.

Note that nested notation is not the correct way to show a class declared within another
class. Such a declared class is not a structural part of the enclosing class but merely has
scope within the namespace of the enclosing class, which acts like a package toward
the inner class. Such a namescope containment may be shown by placing a package
symbol in the upper right corner of the class symbol. A tool can allow a user to click
on the package symbol to open the set of elements declared within it. The “ anchor
notation” (a cross in a circle on the end of a line) may also be used on a line between
two class boxes to show that the class with the anchor icon declares the class on the
other end of the line.

3.48.3 Design Guidelines

Note that a class symbol is a composition of its attributes and operations. The class
symbol may be thought of as an example of the composition nesting notation (with
some special layout properties). However, attribute notation subordinates the attributes
strongly within the class; therefore, it should be used when the structure and identity of
the attribute objects themselves is unimportant outside the class.

March 2003 OMG-Unified Modeling Language, v1.5 3-83

3 UML Notation Guide

3.48.4 Example

Figure 3-45 Different Ways to Show Composition

Window

scrollbar [2]: Slider
title: Header
body: Panel

Window

scrollbar title body

scrollbar:Slider

Header Panel

2 1 1

Window

Slider

2

title:Header
1

body:Panel
1

1
11

3-84 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

3.48.5 Mapping

A class box with an attribute compartment maps into a Class with Attributes. Although
attributes may be semantically equivalent to composition on a deep level, the mapped
model distinguishes the two forms.

A solid diamond on an association path maps into the aggregation-composition
property on the corresponding Association Role.

A class box with contained class boxes maps into a set of composition associations;
that is, one composition association between the Class corresponding to the outer class
box and each of the Classes corresponding to the enclosed class boxes. The
multiplicity of the composite end of each association is 1. The multiplicity of each
constituent end is 1 if not specified explicitly; otherwise, it is the value specified in the
corner of the class box or specified on an association path from the outer class box
boundary to an inner class box.

3.49 Link

3.49.1 Semantics

A link is a tuple (list) of object references. Most commonly, it is a pair of object
references. It is an instance of an association.

3.49.2 Notation

A binary link is shown as a path between two instances. In the case of a link from an
instance to itself, it may involve a loop with a single instance. See “Association” on
page 3-68 for details of paths.

A rolename may be shown at each end of the link. An association name may be shown
near the path. If present, it is underlined to indicate an instance. Links do not have
instance names, they take their identity from the instances that they relate. Multiplicity
is not shown for links because they are instances. Other association adornments
(aggregation, composition, navigation) may be shown on the link ends.

A qualifier may be shown on a link. The value of the qualifier may be shown in its
box.

3.49.2.1 Implementation stereotypes

A stereotype may be attached to the link end to indicate various kinds of
implementation. The following stereotypes may be used:

«association» association (default, unnecessary to specify except for
emphasis)

«parameter» method parameter

March 2003 OMG-Unified Modeling Language, v1.5 3-85

3 UML Notation Guide

3.49.2.2 N-ary link

An n-ary link is shown as a diamond with a path to each participating instance. The
other adornments on the association, and the adornments on the association ends, have
the same possibilities as the binary link.

3.49.3 Example

Figure 3-46 Links

3.49.4 Mapping

Within an object diagram, each link path maps to a Link between the Instances
corresponding to the connected class boxes. If a name is placed on the link path, then
it is an instance of the given Association (and the rolenames must match or the
diagram is ill formed).

«local» local variable of a method

«global» global variable

«self» self link (the ability of an instance to send a message to itself)

downhillSkiClub:Club Joe:Person

Jill:Person

Chris:Person

member

member

member

treasurer

officer

president

officer

3-86 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

3.50 Generalization

3.50.1 Semantics

Generalization is the taxonomic relationship between a more general element (the
parent) and a more specific element (the child) that is fully consistent with the first
element and that adds additional information. It is used for classes, packages, use
cases, and other elements.

3.50.2 Notation

Generalization is shown as a solid-line path from the child (the more specific element,
such as a subclass) to the parent (the more general element, such as a superclass), with
a large hollow triangle at the end of the path where it meets the more general element.

A generalization path may have a text label called a discriminator that is the name of a
partition of the children of the parent. The child is declared to be in the given partition.
The absence of a discriminator label indicates the “ empty string” discriminator which
is a valid value (the “ default” discriminator).

Generalization may be applied to associations as well as to classes. To notate
generalization between associations, a generalization arrow may be drawn from a child
association path to a parent association path. This notation may be confusing because
lines connect other lines. An alternative notation is to represent each association as an
association class and to draw the generalization arrow between the rectangles for the
association classes, as with other classifiers. This approach can be used even if an
association does not have any additional attributes, because a degenerate association
class is a legal association.

The existence of additional children in the model that are not shown on a particular
diagram may be shown using an ellipsis (. . .) in place of a child.

Note – This does not indicate that additional children may be added in the future. It
indicates that additional children exist right now, but are not being seen. This is a
notational convention that information has been suppressed, not a semantic statement.

March 2003 OMG-Unified Modeling Language, v1.5 3-87

3 UML Notation Guide

Predefined constraints may be used to indicate semantic constraints among the
children. A comma-separated list of keywords is placed in braces either near the shared
triangle (if several paths share a single triangle) or near a dotted line that crosses all of
the generalization lines involved. The following keywords (among others) may be used
(the following constraints are predefined):

The discriminator must be unique among the attributes and association roles of the
given parent. Multiple occurrences of the same discriminator name are permitted and
indicate that the children belong to the same partition.

The use of multiple classification or dynamic classification affects the dynamic
execution semantics of the language, but is not usually apparent from a static model.

3.50.3 Presentation Options

A group of generalization paths for a given parent may be shown as a tree with a
shared segment (including the triangle) to the child, branching into multiple paths to
each child.

If a text label is placed on a generalization triangle shared by several generalization
paths to children, the label applies to all of the paths. In other words, all of the children
share the given properties.

overlapping An element may have two or more children from the set as ancestors. An
instance may be a direct or indirect instance of two or more of the
children.

disjoint No element may have two children in the set as ancestors. No instance
may be a direct or indirect instance of two of the children.

complete All children have been specified (whether or not shown). No additional
children are expected.

incomplete Some children have been specified, but the list is known to be
incomplete. There are additional children that are not yet in the model.
This is a statement about the model itself. Note that this is not the same
as the ellipsis, which states that additional children exist in the model
but are not shown on the current diagram.

3-88 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

3.50.4 Example

Figure 3-47 Styles of Displaying Generalizations

Shape

SplineEllipsePolygon

Shape

SplineEllipsePolygon

Shared Target Style

Separate Target Style

. . .

. . .

March 2003 OMG-Unified Modeling Language, v1.5 3-89

3 UML Notation Guide

Figure 3-48 Generalization with Discriminators and Constraints, Separate Target Style

Figure 3-49 Generalization with Shared Target Style

3.50.5 Mapping

Each generalization path between two element symbols maps into a Generalization
between the corresponding GeneralizableElements. A generalization tree with one
arrowhead and many tails maps into a set of Generalizations, one between each

Vehicle

WindPowered
Vehicle

MotorPowered
Vehicle

Land
Vehicle

Water
Vehicle

venue

venuepower
power

SailboatTruck

{overlapping} {overlapping}

Tree

Oak Elm

{disjoint, incomplete}

Birch

species

3-90 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

element corresponding to a symbol on a tail and the single GeneralizableElement
corresponding to the symbol on the head. That is, a tree is semantically
indistinguishable from a set of distinct arrows, it is purely a notational convenience.

Any property string attached to a generalization arrow applies to the Generalization. A
property string attached to the head line segment on a generalization tree represents a
(duplicated) property on each of the individual Generalizations.

The presence of an ellipsis (“ ...”) as a child node of a given parent indicates that the
semantic model contains at least one child of the given parent that is not visible on the
current diagram. Normally, this indicator will be maintained automatically by an
editing tool.

3.51 Dependency

3.51.1 Semantics

A dependency indicates a semantic relationship between two model elements (or two
sets of model elements). It relates the model elements themselves and does not require
a set of instances for its meaning. It indicates a situation in which a change to the
target element may require a change to the source element in the dependency.

3.51.2 Notation

A dependency is shown as a dashed arrow between two model elements. The model
element at the tail of the arrow (the client) depends on the model element at the
arrowhead (the supplier). The arrow may be labeled with an optional stereotype and an
optional individual name.

It is possible to have a set of elements for the client or supplier. In this case, one or
more arrows with their tails on the clients are connected to the tails of one or more
arrows with their heads on the suppliers. A small dot can be placed on the junction if
desired. A note on the dependency should be attached at the junction point.

The following kinds of Dependency are predefined and may be indicated with
keywords. Note that some of these correspond to actual metamodel classes and others
to stereotypes of metamodel classes. All of these are shown as dashed arrows with
keywords in guillemets. The name column shows the name of the metamodel class or
the informal name of the class with the given keyword stereotype.

March 2003 OMG-Unified Modeling Language, v1.5 3-91

3 UML Notation Guide

3.51.3 Presentation Options

Note – The connection between a note or constraint and the element it applies to is
shown by a dashed line without an arrowhead. This is not a Dependency.

Keyword Name Description

access Access The granting of permission for one package to reference the public elements owned by
another package (subject to appropriate visibility). Maps into a Permission with the
stereotype access.

bind Binding A binding of template parameters to actual values to create a nonparameterized
element. See Section 3.31, “ Bound Element,” on page 3-54 for more details. Maps into
a Binding.

derive Derivation A computable relationship between one element and another (one more than one of
each). Maps into an Abstraction with the stereotype derivation.

import Import The granting of permission for one package to reference the public elements of another
package, together with adding the names of the public elements of the supplier
package to the client package. Maps into a Permission with the stereotype import.

refine Refinement A historical or derivation connection between two elements with a mapping (not
necessarily complete) between them. A description of the mapping may be attached to
the dependency in a note. Various kinds of refinement have been proposed and can be
indicated by further stereotyping. Maps into an Abstraction with the stereotype
refinement.

trace Trace A historical connection between two elements that represents the same concept at
different levels of meaning. Maps into an Abstraction with the stereotype trace.

use Usage A situation in which one element requires the presence of another element for its
correct implementation or functioning. May be stereotyped further to indicate the exact
nature of the dependency, such as calling an operation of another class, granting
permission for access, instantiating an object of another class, etc. Maps into a Usage.
If the keyword is one of the stereotypes of Usage (call, create, instantiate, send), then
it maps into a Usage with the given stereotype.

3-92 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

3.51.4 Example

Figure 3-50 Various Dependencies Among Classes

Figure 3-51 Dependencies Among Packages

«friend»
ClassA ClassB

ClassC

«instantiate»

«call»

ClassD

operationZ()
«friend»

ClassD ClassE

«refine» ClassC combines
two logical classes

Controller

Diagram
Elements

Domain
Elements

Graphics
Core

«access»

«access»

«access»

«access»

«access»

March 2003 OMG-Unified Modeling Language, v1.5 3-93

3 UML Notation Guide

3.51.5 Mapping

A dashed arrow maps into the appropriate kind of Dependency (based on keywords)
between the Elements corresponding to the symbols attached to the ends of the arrow.
The stereotype and the name (if any) attached to the arrow are the stereotype and name
of the Dependency.

3.52 Derived Element

3.52.1 Semantics

A derived element is one that can be computed from another one, but that is shown for
clarity or that is included for design purposes even though it adds no semantic
information.

3.52.2 Notation

A derived element is shown by placing a slash (/) in front of the name of the derived
element, such as an attribute or a rolename.

3.52.3 Style Guidelines

The details of computing a derived element can be specified by a dependency with the
stereotype «derive». Usually it is convenient in the notation to suppress the dependency
arrow and simply place a constraint string near the derived element, although the arrow
can be included when it is helpful.

3.53 InstanceOf

3.53.1 Semantics

Shows the connection between an instance and its classifier.

3.53.2 Notation

Shown as a dashed arrow with its tail on the instance and its head on the classifier. The
arrow has the keyword «instanceOf».

3.53.3 Mapping

Maps into an instance relationship from the instance to the classifier.

