
3-100 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

A generalization between actors is shown by a generalization arrow; that is, a solid line
with a closed, hollow arrow head. The arrow head points at the more general actor.

3.58.3 Example

Figure 3-54 Actor Relationships

3.58.4 Mapping

A generalization between two actor symbols and an association between actor symbol
and a use case symbol maps into the corresponding relationship between the
corresponding Elements, as described above.

Part 7 - Interaction Diagrams
The description of behavior involves two aspects: 1) the structural description of the
participants and 2) the description of the communication patterns. The structure of
Instances playing roles in a behavior and their relationships is called a Collaboration.
The communication pattern performed by Instances playing the roles to accomplish a
specific purpose is called an Interaction. The two aspects of behavior are often
described together on a single diagram, but at times it is useful to describe the
structural aspects separately.

Interaction diagrams come in two forms based on the same underlying information,
specified by a Collaboration and possibly by an Interaction, but each form emphasizes
a particular aspect of it. The two forms are sequence diagrams and collaboration
diagrams. A sequence diagram shows the explicit sequence of communications and is
better for real-time specifications and for complex scenarios. A collaboration diagram
shows an Interaction organized around the roles in the Interaction and their

Establish
Credit

Place
Order

Salesperson

Supervisor

1 *

1 *

March 2003 OMG-Unified Modeling Language, v1.5 3-101

3 UML Notation Guide

relationships. It does not show time as a separate dimension, so the sequence of
communications and the concurrent threads must be determined using sequence
numbers.

3.59 Collaboration

3.59.1 Semantics

Behavior is implemented by ensembles of Instances that exchange Stimuli within an
overall interaction to accomplish a task. To understand the mechanisms used in a
design, it is important to see only those Instances and their cooperation involved in
accomplishing a purpose or a related set of purposes, projected from the larger system
of which they are part of. Such a static construct is called a Collaboration.

A Collaboration includes an ensemble of ClassifierRoles and AssociationRoles that
define the participants needed for a given set of purposes. Instances conforming to the
ClassifierRoles play the roles defined by the ClassifierRoles, while Links between the
Instances conform to AssociationRoles of the Collaboration. ClassifierRoles and
AssociationRoles define a usage of Instances and Links, and the Classifiers and
Associations declare all required properties of these Instances and Links.

An Interaction is defined in the context of a Collaboration. It specifies the
communication patterns between the roles in the Collaboration. More precisely, it
contains a set of partially ordered Messages, each specifying one communication; for
example, what Signal to be sent or what Operation to be invoked, as well as the roles
to be played by the sender and the receiver, respectively.

A CollaborationInstanceSet references an ensemble of Instances that jointly perform
the task specified by the CollaborationInstanceSet’s Collaboration. These Instances
play the roles defined by the ClassifierRoles of the Collaboration; that is, the Instances
have all the properties declared by the ClassifierRoles (the Instances are said to
conform to the ClassifierRoles). The Stimuli sent between the Instances when
performing the task are participating in the InteractionInstanceSet of the
CollaborationInstanceSet. These Stimuli conform to the Messages in one of the
Interactions of the Collaboration. Since an Instance can participate in several
CollaborationInstanceSets at the same time, all its communications are not necessarily
referenced by only one InteractionInstanceSet. They can be interleaved.

A Collaboration may be attached to an Operation or a Classifier, like a UseCase, to
describe the context in which their behavior occurs; that is, what roles Instances play to
perform the behavior specified by the Operation or the UseCase. A Collaboration is
used for describing the realization of an Operation or a Classifier. A Collaboration that
describes a Classifier, like a UseCase, references Classifiers and Associations in
general, while a Collaboration describing an Operation includes the arguments and
local variables of the Operation, as well as ordinary Associations attached to the
Classifier owning the Operation. The Interactions defined within the Collaboration
specify the communication pattern between the Instances when they perform the
behavior specified in the Operation or the UseCase. These patterns are presented in

3-102 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

sequence diagrams or collaboration diagrams. A Collaboration may also be attached to
a Class to define the static structure of the Class; that is, how attributes, parameters,
etc. cooperate with each other.

A parameterized Collaboration represents a design construct that can be used
repeatedly in different designs. The participants in the Collaboration, including the
Classifiers and Relationships, can be parameters of the generic Collaboration. The
parameters are bound to particular ModelElements in each instantiation of the generic
Collaboration. Such a parameterized Collaboration can capture the structure of a
design pattern (note that a design pattern involves more than structural aspects).
Whereas most Collaborations can be anonymous because they are attached to a named
ModelElement, Collaboration patterns are free standing design constructs that must
have names.

A Collaboration may be expressed at different levels of granularity. A coarse-grained
Collaboration may be refined to produce another Collaboration that has a finer
granularity.

3.60 Sequence Diagram

3.60.1 Semantics

A sequence diagram presents an Interaction, which is a set of Messages between
ClassifierRoles within a Collaboration, or an InteractionInstanceSet, which is a set of
Stimuli between Instances within a CollaborationInstanceSet to effect a desired
operation or result.

3.60.2 Notation

A sequence diagram has two dimensions: the vertical dimension represents time, and
the horizontal dimension represents different instances. Normally time proceeds down
the page. (The dimensions may be reversed, if desired.) Usually only time sequences
are important, but in real-time applications the time axis could be an actual metric.
There is no significance to the horizontal ordering of the instances.

The different kinds of arrows used in sequence diagrams are described in Section 3.63,
“Message and Stimulus,” on page 3-111. These are the same kinds as in collaboration
diagrams; see Section 3.65, “Collaboration Diagram,” on page 3-114.

Note that much of this notation is drawn directly from the Object Message Sequence
Chart notation of Buschmann, Meunier, Rohnert, Sommerlad, and Stal, which is itself
derived with modifications from the Message Sequence Chart notation.

3.60.3 Presentation Options

The horizontal ordering of the lifelines is arbitrary. Often call arrows are arranged to
proceed in one direction across the page; however, this is not always possible and the
ordering does not convey information.

March 2003 OMG-Unified Modeling Language, v1.5 3-103

3 UML Notation Guide

The axes can be interchanged, so that time proceeds horizontally to the right and
different objects are shown as horizontal lines.

Various labels (such as timing constraints, descriptions of actions during an activation,
and so on) can be shown either in the margin or near the transitions or activations that
they label.

Timing constraints may be expressed using time expressions on message or stimuli
names. The functions sendTime (the time at which a stimulus is sent by an instance)
and receiveTime (the time at which a stimulus is received by an instance) may be
applied to stimuli names to yield a time. The set of time functions is open-ended, so
that users can invent new ones as needed for special situations or implementation
distinctions (such as elapsedTime, executionStartTime, queuedTime, handledTime, etc.)

Construction marks of the kind found in blueprints can be used to indicate a time
interval to which a constraint may be attached (see bottom right of Figure 3-55 on
page 3-104). This notation is visually appealing but it is ambiguous if the arrow is
horizontal, because the send time and the receive time cannot be distinguished. In
many cases the transmission time is negligible, so the ambiguity is harmless, but a tool
must nevertheless map such a notation unambiguously to an expression on message or
stimuli names (as shown in the examples in the left of the diagram) before the
information is placed in the semantic model. (A tool may adopt defaults for this
mapping.) Similarly, a tool might permit the time function to be elided and use the
stimulus name to denote the time of stimulus sending or receipt within a timing
expression (such as “ b.receiveTime - a.sendTime < 1 sec.” in Figure 3-55), but again
this is only a surface notation that must be mapped to a proper time expression in the
semantic model).

3-104 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

3.60.4 Example

Simple sequence diagram with concurrent objects.

Figure 3-55 Simple Sequence Diagram with Concurrent Objects (denoted by boxes
with thick borders).

caller exchange

a: lift receiver

b: dial tone

c: dial digit

{b.receiveTime

{c.receiveTime

. . .

d: route

{d.receiveTime

receiver

phone ringsringing tone

answer phone

stop ringingstop tone

The call is
routed through
the network.

At this point
the parties
can talk.

- a.sendTime < 1 sec.}

- b.sendTime < 10 sec.}

- d.sendTime < 5 sec.}

 < 1 sec.

March 2003 OMG-Unified Modeling Language, v1.5 3-105

3 UML Notation Guide

Figure 3-56 Sequence Diagram with Focus of Control, Conditional, Recursion,
Creation, and Destruction.

[x>0] foo(x)

[x<0] bar(x)

doit(z)
doit(w)

more()

ob1:C1

ob2:C2

ob3:C3 ob4:C4

op()

3-106 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

3.60.5 Mapping

This section summarizes the mapping for the sequence diagram and the elements
within it, some of which are described in subsequent sections.

Figure 3-57 A summary of the UML constructs used in the section below.

3.60.5.1 Sequence diagram

A sequence diagram maps into an Interaction and an underlying Collaboration or an
InteractionInstanceSet and an underlying CollaborationInstanceSet depending on
whether the diagram shows Instances or ClassifierRoles. An Interaction specifies a
sequence of communications; it contains a collection of partially ordered Messages,
each specifying a communication between a sender role and a receiver role. A
CollaborationInstanceSet references a collection of Instances that conform to the
ClassifierRoles in the Collaboration owning the Interaction. These Instances
communicate by dispatching Stimuli that conform to the Messages in the Interaction.
The CollaborationInstanceSet has an InteractionInstanceSet that references these
Stimuli. A sequence diagram presents either a collection of object symbols and arrows

Collaboration

ClassifierRole AssociationRole Interaction

AssociationEndRole Message

1..*
*

*

1

*

2..*

0..1

*

1..*

Instance Link

StimulusLinkEnd

2..*

1

*

* 1 1

*

*

0..1

Procedure
0..1

*

Procedure
0..1

*

CollaborationInstanceSet

InteractionInstanceSet

*

March 2003 OMG-Unified Modeling Language, v1.5 3-107

3 UML Notation Guide

mapping to Instances and Stimuli, or a collection of classifier-role symbols and arrows
mapping to ClassifierRoles and Messages. The Instances and Stimuli conform to the
ClassifierRoles and Messages.

The sequence diagram presents either a Collaboration or a CollaborationInstanceSet. In
the former case, the classifier box with its lifeline maps onto a ClassifierRole in the
Collaboration, and the arrows map onto the Messages in one of the Collaboration’s
Interactions. The name strings in the boxes map onto the names of the ClassifierRoles,
while the classifier names map onto the ClassifierRole’s base Classifiers. The
AssociationRoles among the ClassifierRoles are not shown on the sequence diagram.
They must be obtained in the model from a complementary collaboration diagram or
other means.

If the sequence diagram presents a CollaborationInstanceSet, each object box with its
lifeline maps into an Instance, which conforms to a ClassifierRole in the
CollaborationInstanceSet’s Collaboration. The name field maps into the name of the
Instance, the role name into the ClassifierRole’s name, and the class field maps into the
names of the Classifiers being the base Classifiers of the ClassifierRole. An arrow
maps into a Stimulus connected to two Instances: the sender and the receiver. The Link
used for the communication of the Stimulus plays the role specified by the
AssociationRole connected to the Message. Unless the correct Link can be determined
from a complementary collaboration diagram or other means, the Stimulus is either not
attached to a Link (not a complete model), or it is attached to an arbitrary Link or to a
dummy Link between the Instances conforming to the AssociationRole implied by the
two ClassifierRoles due to the lack of complete information.

The label of the arrow is mapped into either the body attribute of the Procedure, or into
a detailed action model. For the action model, the name of the Operation to be invoked
or Signal to be sent is mapped onto the name of the Operation or Signal invoked by the
actions in the Procedure connected to the Message. Different alternatives exist for
showing the arguments of the Stimulus. If references to the actual Instances being
passed as arguments are shown, these are mapped onto the arguments of the Stimulus.
If the argument expressions are shown instead, and a detailed action model is used,
then these are mapped into CodeActions in the Procedure, or additional actions that
compute the values of the expressions. Finally, if the types of the arguments are shown
together with the name of the Operation or the Signal, these are mapped onto the
parameter types of the Operation or the Attribute types of the Signal, respectively. A
timing label placed on the level of an arrow endpoint maps into the name of the
corresponding Message or Stimulus. A constraint placed on the diagram maps into a
Constraint on the entire Interaction.

An arrow with the arrowhead pointing to an object symbol or role symbol within the
frame of the diagram maps into a Stimulus (Message) dispatched by a
CreateObjectAction. The interpretation is that an Instance is created by dispatching the
Stimulus. If the target of the arrow is a classifier-role symbol, the Instance will
conform to the ClassifierRole. (Note, that the diagram does not necessarily show from
which Classifier the Instance originates; only that the newly created Instance conform
to the ClassifierRole.) After the creation of the Instance, it may immediately start
interacting with other Instances. This implies that the creation method (constructor,
initializer) of the Instance dispatches these Stimuli. If an object termination symbol

3-108 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

(“ X”) is the target of an arrow, the arrow maps into a Stimulus that will cause the
receiving Instance to be removed. If the object termination symbol appears in the
diagram without an incoming arrow, it maps into a Procedure containing a
DestroyObjectAction.

The order of the arrows in the diagram maps onto pairs of associations between the
Stimuli (Messages). A predecessor relationship is established between Stimuli
(Messages) corresponding to successive arrows in the vertical sequence. In case of
concurrent arrows preceding an arrow, the corresponding Stimulus (Message) has a
collection of predecessors. Moreover, each Stimulus (Message) has an activator
association to the Stimulus (Message) corresponding to the incoming arrow of the
activation.

Procedural sequence diagram

On a procedural sequence diagram (one with focus of control and calls), subsequent
arrows on the same lifeline map into Stimuli (Messages) obeying the predecessor
association. An arrow to the head of a focus of control region establishes a nested
activation. The arrow maps into a Stimulus (Message) with the dispatching Procedure
containing a CallOperationAction. The Stimulus holds the sender and receiver
Instance, as well as the argument Instances, to be supplied in the invocation and
references the target Operation to be invoked. The expressions that evaluate to the
arguments of the Operation are, in a detailed action model, mapped into CodeActions
in the Procedure connected to the Stimulus, or additional actions that compute the
values of the expressions. In the case the arrow maps onto a Message the sender and
the receiver are specified by the sender and receiver ClassifierRoles of the Message.
The sender and receiver Instances of a Stimulus conform to these ClassifierRoles. Any
condition or iteration expression attached to the arrow becomes, in a detailed action
model, the test clause action in a ConditionalAction or LoopAction in the dispatching
Procedure. All arrows departing the nested activation map into Stimuli (Messages)
with an activation Association to the Stimulus (Message) corresponding to the arrow at
the head of the activation. A return arrow departing the end of the activation maps into
a Stimulus (Message) with:

• an activation Association to the Stimulus (Message) corresponding to the arrow at
the head of the activation, and

• a predecessor association to the previous Stimulus (Message) within the same
activation; that is, the last Stimulus (Message) being sent in the activation.

A return must be the final Stimulus (Message) within a predecessor chain. It is not the
predecessor of any Stimulus (Message).

3.61 Object Lifeline

3.61.1 Semantics

In a sequence diagram an object lifeline denotes an Instance playing a specific role.
Arrows between the lifelines denote communication between the Instances playing
those roles. Within a sequence diagram the existence and duration of the Instance in a

March 2003 OMG-Unified Modeling Language, v1.5 3-109

3 UML Notation Guide

role is shown, but the relationships among the Instances are not shown. The role is
specified by a ClassifierRole; it describes the properties of an Instance playing the role
and describes the relationships an Instance in that role has to other Instances.

3.61.2 Notation

An Instance is shown as a vertical dashed line called the “ lifeline.” The lifeline
represents the existence of the Instance at a particular time. If the Instance is created or
destroyed during the period of time shown on the diagram, then its lifeline starts or
stops at the appropriate point; otherwise, it goes from the top to the bottom of the
diagram. An object symbol is drawn at the head of the lifeline. If the Instance is
created during the diagram, then the arrow, which maps onto the Stimulus that creates
the Instance, is drawn with its arrowhead on the object symbol. If the Instance is
destroyed during the diagram, then its destruction is marked by a large “ X,” either at
the arrow mapping to the Stimulus that causes the destruction or (in the case of self-
destruction) at the final return arrow from the destroyed Instance. An Instance that
exists when the transaction starts is shown at the top of the diagram (above the first
arrow), while an Instance that exists when the transaction finishes has its lifeline
continue beyond the final arrow.

The lifeline may split into two or more concurrent lifelines to show conditionality.
Each separate track corresponds to a conditional branch in the communication. The
lifelines may merge together at some subsequent point.

3.61.3 Presentation Options

In some cases, it is necessary to link sequence diagrams to each other; for example, it
might not be possible to put all lifelines in one diagram, or a sub-sequence is included
in several diagrams; hence, it is convenient to put the common sub-sequence in a
separate diagram, which is referenced from the other diagrams. In these cases, the cut
between the diagrams can be expressed in one of the diagrams with a dangling arrow
leaving a lifeline but not arriving at another lifeline, and in the other diagram it is
expressed with a dangling arrow arriving at a lifeline from nowhere. In both cases, it is
recommended to attach a note stating which diagram the sequence originates from or
continues in. This is purely notational. The different diagrams show different parts of
the underlying Interaction.

3.61.4 Example

See also Figure 3-56 on page 3-105.

3-110 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

Figure 3-58 The flow shown in the sequence diagram to the left continues in the diagram
to the right.

3.61.5 Mapping

See Section 3.60.5, “ Mapping,” on page 3-106.

3.62 Activation

3.62.1 Semantics

An activation (focus of control) shows the period during which an Instance is
performing a Procedure either directly or through a subordinate procedure. It
represents both the duration of the performance of the Procedure in time and the
control relationship between the activation and its callers (stack frame).

3.62.2 Notation

An activation is shown as a tall thin rectangle whose top is aligned with its initiation
time and whose bottom is aligned with its completion time. The Procedure being
performed may be labeled in text next to the activation symbol or in the left margin,
depending on style. Alternately, the incoming arrow may indicate the Procedure, in
which case it may be omitted on the activation itself. In procedural flow of control, the
top of the activation symbol is at the tip of an incoming arrow (the one that initiates the
procedure) and the base of the symbol is at the tail of a return arrow.

bar(x)

doit(w)

ob3:C3 ob4:C4

[x<0] bar(x)

ob1:C1

Diagram 1
Diagram 2

The flow
continues in
D ia g ram 2 .

The flow
originates in
D iag ra m 1 .

March 2003 OMG-Unified Modeling Language, v1.5 3-111

3 UML Notation Guide

In the case of concurrent Instances each with their own threads of control, an activation
shows the duration when each Instance is performing an Operation or transition in a
state machine. Operations by other Instances are not relevant. If the distinction
between direct computation and indirect computation (by a nested operation call) is
unimportant, the entire lifeline may be shown as an activation.

3.62.3 Example

See Figure 3-55 on page 3-104 and Figure 3-56 on page 3-105.

3.62.4 Mapping

See Section 3.60.5, “ Mapping,” on page 3-106.

3.63 Message and Stimulus

3.63.1 Semantics

A Stimulus is a communication between two Instances that conveys information with
the expectation that action will ensue. A Stimulus will cause an Operation to be
invoked, raise a Signal, or cause an Instance to be created or destroyed.

A Message is a specification of Stimulus, i.e. it specifies the roles that the sender and
the receiver Instances must conform to, as well as the Procedure which will, when
executed, dispatch a Stimulus that conforms to the Message.

3.63.2 Notation

In a sequence diagram a Stimulus as well as a Message is shown as a horizontal solid
arrow from the lifeline of one Instance or ClassifierRole to the lifeline of another
Instance or ClassifierRole. In case of a Stimulus from an Instance to itself, the arrow
may start and finish on the same lifeline. The arrow is labeled with the name of the
Operation to be invoked or the name of the Signal. Its argument values or argument
expressions may be presented, as well.

The arrow may also be labeled with a sequence number to show the sequence of the
Stimulus (Message) in the overall interaction. However, sequence numbers are often
omitted in sequence diagrams, as the physical location of the arrow shows the relative
sequences, but they are necessary in collaboration diagrams. Sequence numbers are
useful on both kinds of diagrams for identifying concurrent threads of control. An
arrow may also be labeled with a condition and/or iteration expression.

3.63.3 Presentation options

The following arrowhead variations may be used to show different kinds of
communications.

3-112 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

filled solid arrowhead

Operation call or other nested flow of control. The entire nested sequence is
completed before the outer level sequence resumes. The arrowhead may be used to
denote ordinary operation calls, but it may also be used to denote concurrently
active instances when one of them sends a Signal and waits for a nested sequence of
behavior to complete before it continues.

stick arrowhead

Asynchronous communication; that is, no nesting of control. The sender dispatches
the Stimulus and immediately continues with the next step in the execution.1

dashed arrow with stick arrowhead

Return from operation call.

Variation:

In a procedural flow of control, the return arrow may be omitted (it is implicit at the
end of an activation). It is assumed that every call has a paired return after any
subordinate stimuli. The return value can be shown on the initial arrow. For
nonprocedural flow of control (including parallel processing and asynchronous
messages) returns should be shown explicitly.

Variation:

Normally message arrows are drawn horizontally. This indicates the duration
required to send the stimulus is “ atomic;” that is, it is brief compared to the
granularity of the interaction and that nothing else can “ happen” during the
transmission of the stimulus. This is the correct assumption within many computers.
If the stimulus requires some time to arrive, during which something else can occur
(such as a stimulus in the opposite direction), then the arrow may be slanted
downward so that the arrowhead is below the arrow tail.

Variation: Branching

A branch is shown by multiple arrows leaving a single point, each possibly labeled
by a condition. Depending on whether the conditions are mutually exclusive, the
construct may represent conditionality or concurrency.

1.UML 1.3 and previous versions included a half-stick arrowhead notation in addition to the
stick arrowhead notation. This notation has been removed because the semantic distinction
between the two was subtle and confusing.

March 2003 OMG-Unified Modeling Language, v1.5 3-113

3 UML Notation Guide

Variation: Iteration

A connected set of arrows may be enclosed and marked as an iteration. For a
generic sequence diagram, the iteration indicates that the dispatch of a set of stimuli
can occur multiple times. For a procedure, the continuation condition for the
iteration may be specified at the bottom of the iteration. If there is concurrency, then
some arrows in the diagram may be part of the iteration and others may be single
execution. It is desirable to arrange a diagram so that the arrows in the iteration can
be enclosed together easily.

Variation:

A lifeline may subsume an entire set of objects on a diagram representing a high-
level view.

Variation:

A distinction may be made between a period during which an Instance has a live
activation and a period in which the activation is actually computing. The former
(during which it has control information on a stack but during which control resides
in something that it called) is shown with the ordinary double line. The latter
(during which it is the top item on the stack) may be distinguished by shading the
region.

3.63.4 Example

See Figure 3-56 on page 3-105.

3.63.5 Mapping

See Section 3.60.5, “ Mapping,” on page 3-106.

3.64 Transition Times

3.64.1 Semantics

A Message may specify several different times; for example, a sending time and a
receiving time. These are formal names that may be used within Constraint
expressions. The set of different kinds of times is open-ended so that users can invent
new ones as needed for special situations, such as elapsedTime and
startExecutionTime. These expressions may be used in Constraints to designate
specific time constraints valid for the Message.

3.64.2 Notation

A transition instance (such as a Stimulus or Message in a sequence diagram, a
collaboration diagram, or a Transition in a state machine) may be given a name. A
timing constraint is formed as an expression based on the name of the transition. For

3-114 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

example, if the name of a Stimulus is stim, its send-time is expressed by stim.sendTime
(), and its receive-time by stim.receiveTime (). The timing constraint may be shown in
the left margin aligned with the arrow (on a sequence diagram) or near the tail of the
arrow (on a collaboration diagram). Constraints may be specified by placing Boolean
expressions, possibly including time expressions, in braces on the sequence diagram.

3.64.3 Presentation Options

When it is clear from the context, the name of a Message or the name of a Stimulus
may itself be used to denote the time at which the transition started. In cases where the
performance of the transition is not instantaneous, the time at which the transition is
ended may be indicated by the same name with a prime sign appended to the name.

3.64.4 Example

See Figure 3-55 on page 3-104.

3.64.5 Mapping

See Section 3.60.5, “ Mapping,” on page 3-106.

Part 8 - Collaboration Diagrams

3.65 Collaboration Diagram

3.65.1 Semantics

A collaboration diagram presents either a Collaboration, which contains a set of roles
to be played by Instances, as well as their required relationships given in a particular
context, or it presents a CollaborationInstanceSet with a collection of Instances and
their relationships. The diagram may also present an Interaction
(InteractionInstanceSet), which defines a set of Messages (Stimuli) specifying the
interaction between the Instances playing the roles within a Collaboration to achieve
the desired result.

A Collaboration is used for describing the realization of an Operation or a Classifier. A
Collaboration that describes a Classifier, like a UseCase, references Classifiers and
Associations in general, while a Collaboration describing an Operation includes the
arguments and local variables of the Operation, as well as ordinary Associations
attached to the Classifier owning the Operation.

3.65.2 Notation

A collaboration diagram shows a graph of either Instances linked to each other, or
ClassifierRoles and AssociationRoles; it may also include the communication stated by
an Interaction or InteractionInstanceSet.

