Interview with Ralph Jocham at Bern

· 10 years agile experience, 7-8 years experience with Scrum

· in ca. 10 Scrum projects → we choose a project with a duration of 16 months (2006/2007), with distributed teams Scrum teams

A tool was required because of the distributed teams.

Drawing theoretical process on the whiteboard.

Product Backlog with user stories, before they had requirements → learning process, after 2 sprints they had learnt.

There were different types (naming conventions) of user stories: „real“ user stories, technical issues etc., but they were all handled same, they were just named differently to have some kind of statistics/tracking afterwards. (which then they never did)

Team: 6-9 members: 2/3 developers, 1/3 testers; then additionally Scrum Master and P.O. Ralph was the Scrum Master. The developers and testers were in India. Main problem of the project: Time difference for the meetings.

Sprint Planning Meeting: Skype: SM, PO, Team; Decisions: Priorization (PO), they realized that usually every story was 2 storypoints, only sometimes exception of 3 points (experience by the team → usually no more individual estimation of the stories). They then realized the ones with highest priorities in order to fit into the 2 weeks sprint considering the velocity of the team.
→ He says that that happens often when same people work toghether → find same rythms

Daily Scrum: 3 days a week (Mo, We, Fr), via Skype, late in the evening or early in the morning, dipending on whether there was summer or winter time in the USA.

One sprint was 2 weeks.

Retrospective: all 3 months, not after every sprint, he says that they should have done it more often. In another project he had done it more often.

Process Refinement: Only 3 retrospectives, one of them post-mortem (for product useless), that was too few.

Team worked really good, highly quality software. Maybe they did some intern (developers/testers) retrospective in India.

Things to improve for a similar project: More exchange (PO, SM going to India, developers going to USA → more team spritit, was planned but then cancelled), more retrospective.

After 3 months showed product to potential customers /important people in the company (big demo) → usability really bad. He had heard about similar projects and had requested an usability expert from beginning, but they said that there was no need. After the demo they changed opinion and usability experts were involved. Worked on UI and process → problematic, change of architecture.

They had 95% test coverage, could enter the software and make changes, without breaking it. It was technically possible because the code was of really good quality → because of Principles of XP applied

Totally one month more caused by this project.

Problem couldnt be avoided by bringing members to USA, there was a need of usability experts from the beginning.

In the beginning 2 developers from India came for 6 weeks to the USA (Palo Alto), because they had no experience with agile development → then they did knowledge transfer to the others when back in India.

Category of Medical Softare Project → Additional documentation required, thats why a tool was needed too. Was for legal medicine.

In beginning: just one blade (with liquid) for the whole process, but then they realized that after 6 months that there was a use case where they diluted that and had then 5 blades parallely. Estimated 2 months for the changes, finally done in already 2 weeks. That worked well, because the people in India were working great (long evaluation process), test driven development, test coverage etc.

→ Good process allows the quick and save changes.

Review: all 2 weeks. India per video there. Management/ Business partecipated. Very important for the project, the stakeholders used the possibility to see the progress. Sometimes also by video from remote.

Tools:

· Excel : User stories, Sprint Burndown, Release Burnup, simulate Scenarios (when we do changes, how much time more we need) → not the perfect tool, but in many cases sufficient. In another project he would use Excel from Google Docs, not MS, as there is the possibility for more users to work on the same document at the same time, just one cell is blocked for writing.

· Sourceforge Enterprise Edition (version 4.2/3): not in particular for Scrum, much adapted to the process/Scrum (user stories, tasks), Traceability was required as medical software → implemented in Sourceforge Enterprise Edition / was used for testing / in evaluation phase the tool was good → in reality (with project data) it was very very slow (he would never use it again) → Used a lot of Excel instead.
There was no add-on for Scrum, but later there was agile add-on (too late for this project), but was very complicated as another server was used because the tool was in Java and the add-on in .NET.
This product was used by the whole company, all had issues because the tool was slow. It was then enhanced probably later on (too late for this project).

· Subversion for version control

· Selfmade tool to put toghether tests and requirements

· Cobertura (v.0.9) → test coverage

· Jdepend (v.1.0) → dependencies, distance to main sequence (from web: „A Java package dependency analyzer that generates design quality metrics.“)

· JCSC → Code Analyze, Codequality (catch-blocks, method lengths, etc)

· CPD → Copy Paste Detector

· Continous Integration with Cruise Control (v.2.1)

· FitNesse → Testing, Wiki to write test sequences

· IntelliJ (4.0 / 5.0)→ good for Code Refactoring, used as IDE, as Java Project

Many elements integrated in the CI on Cruise Control. Very automated, with a new PC could in 10 minutes start to develop → everything was checked-in in SVN, started the setup and everything could be installed manually.

Unit Tests automated, ca. 2500 Tests. Additional manual tests done, because manual work was required (involving the hardware too). Testers in India, Testlead was in California. The automated tests were without GUI (all functionalities were services and could be called also without GUI → could be used as Batchprocess / could be tested).

Even the JDK was checked into Subversion; idea: if someone wants to reuse the whole thing in 20 years and maybe cannot find the needed JDK anymore, there is everything in the Subversion and can be installed easily.

→ All required artefacts in Subversion.

Tools issues: Sourceforge Enterprise Edition, tendence to take some more quality tools
For the rest good tool support, no team communication problems.

In the beginning: cultural differences: In India they say always Yes, even if they no they cannot realize it. The developers had to learn to say No or to talk when they are having issues → Important for the Planning Meeting.

→ If they say yes, that does not mean always yes!

In another project he would read more about the cultural differences before the project, so one can understand better what to focus on.

Non functional requirements → Acceptance requirements for the user story (not generally valid)

vs.

Definition of Done → Generally valid for all the user stories. Developed by the team with help from Scrum Master.

More chosen tools or integrated platforms? → prefers open source direction, has never worked with TFS. Usually no problem to integrate open source tools. If a tool is used and its opensource, it can be changed easily if it does not fulfill requirements perfectly. If a tool has been evaluated and paid it cannot be changed easily.

Visibility for the developers → no shared screen. When developers came to USA they were showed Scrum Boards, should have done that in India too, but probably did not do that.

Needs for a scrum-specific tool? Excel-Export always needed, when the team is toghether: best thing to work with cards on the wall. If then there is really needed a tool, it has no big importance, because they would just synchronize by hand the information after the meetings. → It would be good when the developers work on the Scrum wall with cards and the Scrum Master can work with an Excel-Sheet on the database and enters the data and synchronize.

More automatization? Many things were automated already: Buildnumber, Release and Install creation, the textes could be translated directly in the IDE and they could link directly the help from webpage. Nothing more that might be automated.

With this project the management understood that it might help to work agile → let them work agile.

Big positive point of Scrum wall that no digital tool can fulfill for now: The human factor that someone goes to the wall, maybe esitates to take a certain card, someone sees it and they can discuss. Or someone sees that someone is going to do a change on the wall, as he is walkng across the room to the board.

