
5

Identity Disharmonies

Identity disharmonies are design flaws that affect single entities such
as classes and methods. The particularity of these disharmonies is
that their negative effect on the quality of design elements can be
noticed by considering these design elements in isolation.

5.1 Rules of Identity Harmony

As mentioned at the end of Chapter 4 before presenting the various
identity disharmonies, let us first take a closer look on the most im-
portant harmony rules related to a single design entity.

We identified three distinct aspects that contribute to the identity
(dis)harmony of a single entity: its size, its interface and its imple-
mentation. We summarize each of these aspects in the form of a rule,
a rationale and a set of practical consequences. The three rules of
identity harmony that we defined are:

Operations and classes should have a harmonious size i.e., they
should avoid both size extremities

Each class should present its identity (i.e., its interface) by a set
of services, which have one single responsibility and which pro-
vide a unique behavior

Data and operations should harmoniously collaborate within
the class to which they semantically belong



74 5 Identity Disharmonies

Proportion Rule

Operations and classes should have a harmonious size,
i.e., they should avoid both size extremities

Rationale

When considering quality and harmony the first aspect we think
about is proportion. The same applies to object-oriented software de-
sign. While this first rule is simple to understand it is crucial to follow
it. Most of the maintenance and reuse problems come from an unbal-
anced distribution of a system’s complexity (responsibilities) among
classes [Rie96, WBM03] or among operations [FBB+99]. This does not
mean that all classes or operations must have the same size; rather,
it warns us about the danger of going to extremes. Both extremes
can be dangerous: too large classes or operations are a maintenance
nightmare, while many tiny classes are in most cases a sign of class
proliferation and hinder understanding. In the same manner, while it
is desirable to have slim operations, sometimes this is abused and
we end up with an excessive number of methods, that again hampers
maintenance.



5.1 Rules of Identity Harmony 75

Presentation Rule

Each class should present its identity (i.e., its interface) by
a set of services, which have one single responsibility and

which provide a unique behavior

Rationale

This rule encourages a balanced distribution of a system’s intelli-
gence among classes [Rie96, WBM03] and was the underlying idea
behind CRC cards (class, responsibility, collaborator) [BS97]. The aim
of the rule is to focus each class on a single task (responsibility), ex-
pressed in terms as a set of services (i.e., a set of public methods).
The rule makes sure that each concrete piece of functionality is im-
plemented once and only once in the system to avoid code duplica-
tion.

Practical Consequences

• Provide services and hide data – A class should present itself
to others only in terms of a set of provided services (i.e., public
methods). Never let a class present itself in terms of its data, as
this breaks encapsulation and consequently spoils the maintenance
benefits of object-oriented design.

• Take responsibility – Most non-abstract services of a class should
be responsible for implementing a piece of the class’s functionality.
A class might have some delegator (i.e., methods that just forward
the call to another method) and some accessor methods, but the
number of such methods should be limited in each class.

• Keep services cohesive – Services provided by a class should be
focused on one single responsibility. The set of services of a class
should have limited size and a high usage cohesion.

This is a restatement of the Interface Segregation Principle [Mar02b]
which states that the clients of a class should not be forced to



76 5 Identity Disharmonies

depend on interfaces that they do not use. Although this conse-
quence also concerns the size of the interface of a class, the main
aspect here is not the proportion, but the avoidance of an eclectic
interface.

• Be unique – When classes have a harmonious identity, then each
piece of concrete functionality has a unique place, i.e., it is imple-
mented once and only once [Bec00]. Consequently, code duplication
is avoided.



5.1 Rules of Identity Harmony 77

Implementation Rule

Data and operations should collaborate harmoniously
within the class to which they semantically belong

Rationale

One of the cornerstones of the object-oriented paradigm is encap-
sulation that makes sure that the data and the operations are kept
together. An abstraction (e.g., a class) is harmonious if its operations
use most of data most of the time [Rie96], i.e., if most attributes of a
class are used together in most methods of that class. This rule does
not allow every piece of the system to be visible and accessible by any
other part of the system. Applying the law of Demeter [LH89] stresses
that locality of data access is important to avoid to have ripple effects
when code changes. Hence keeping data and behavior together is a
good practice and an important refactoring [DDN02].

Practical Consequences

• Operations belong to classes – Every operation should belong to
a class. Thus, avoid as much as possible global operations.

• Keep data close to operations – Data and the operations that use
it most should be placed as close as possible to one another. In other
words, data (e.g., attributes, local variables, etc.) should stay in the
class or method where they are used the most.

• Distribute complexity – The functionality provided by a class
should be distributed among its operations in a balanced manner.

• Operations use most attributes – Within the same class, most
operations should collaborate and use most of the data most of the
time [Rie96]. Thus, avoid abstractions with disjunct sets of behavior
and data.



78 5 Identity Disharmonies

5.2 Overview of Identity Disharmonies

The most frequent and easily recognizable sign of an identity dishar-
mony is excessive size and complexity of a class and its methods (Pro-
portion Rule). Any investigation that intends to assess and improve
the identity harmony of a system usually starts with those classes
and methods that stand out due to their size. This is very important,
because as we will see also in Sect. 5.9 the process of recovering from
design problems uses these outlying design fragments as a starting
point.

Fig. 5.1. Correlation web between identity disharmonies.

In the remainder of this chapter we present detection strategies
that capture oversized and overcomplex methods (Brain Method(92))
and the classes that host them (Brain Class(97)). In many cases these
outliers are caused by the presence of code duplication; consequently
we check for code duplication within classes (Duplication(102)) with
excessive size and complexity (see Fig. 5.1).

Another sign of disharmonious identity is the non-cohesiveness
of behavior (Presentation Rule and Implementation Rule) and the ten-
dency to attract more and more features, to gather more and more
services (Riel calls such a disharmony a God Class(80) [Rie96]). We
defined a detection strategy to detect such classes. The more a class
tends to become a God Class(80), the more the other classes commu-
nicating with it tend to become simple data providers. A data provider
does not offer much functionality; instead it merely provides raw data
and tends to become a Data Class(88) [Rie96, FBB+99]. As an imme-



5.2 Overview of Identity Disharmonies 79

diate consequence, the methods of the (God) classes, which use the
foreign data, smell of Feature Envy(84) [FBB+99], being more inter-
ested in the attributes of other classes than those of their own class.



80 5 Identity Disharmonies

5.3 God Class

In a good object-oriented design the intelligence of a system is uni-Description
formly distributed among the top-level classes [Rie96]. The God Class
design flaw refers to classes that tend to centralize the intelligence of
the system. A God Class performs too much work on its own, dele-
gating only minor details to a set of trivial classes and using the data
from other classes. This has a negative impact on the reusability and
the understandability of that part of the system. This design problem
is comparable to Fowler’s Large Class bad smell [FBB+99].

Classes.Applies To

God Class is potentially harmful to a system’s design because it isImpact

an aggregation of different abstractions and (mis)use other classes
(often mere data holder) to perform its functionality (see Proportion
and Implementation Rules). Most of the time they are against the basic
principles of object-oriented design which is that one class should
have one responsibility. At this point it is important to mention that a
God Class is a real problem if it hampers the evolution of the software
system. Thus a class that has the structural characteristics of a God
Class but that resides in a stable and untouched part of the system
does not pose a problem!

The detection of a God Class is based on three main characteristicsDetection

(Fig. 5.2):

1. They heavily access data of other simpler classes, either directly
or using accessor methods.

2. They are large and complex
3. They have a lot of non-communicative behavior i.e., there is a low

cohesion between the methods belonging to that class.

We first detect the classes that strongly depend on the data of other
classes, as this is the most significant symptom of a God Class. After
that, we filter the first list of suspects by eliminating all the small and
cohesive classes. Small classes are eliminated because they are less
relevant, while cohesive classes are excused because a high cohesion
is a sign of internal harmony between the parts of the class. The
detection strategy is composed of the following heuristics:



5.3 God Class 81

ATFD > FEW

Class uses directly more than a 

few attributes of other classes

WMC ≥ VERY HIGH

Functional complexity of the 

class is very high

TCC < ONE THIRD

Class cohesion is low

AND GodClass

Fig. 5.2. The God Class detection strategy

1. Class uses directly more than a few attributes of other classes.
Since ATFD measures how many foreign attributes are used by
the class, it is clear that the higher the ATFD value for a class, the
higher is the probability that a class is (or is about to become) a
God Class.

2. Functional complexity of the class is very high. This is ex-
pressed using the WMC (Weighted Method Count) metric.

3. Class cohesion is low. As a God Class performs several distinct
functionalities involving disjunct sets of attributes, this has a neg-
ative impact on the class’s cohesion. The threshold indicates that
in the detected classes less than one-third of the method pairs
have in common the usage of the same attribute.

The general design of ArgoUML is good enough so that we could not Example
identify a pure God Class i.e., a class controlling the flow of the appli-
cation and concentrating all the crucial behavior, which would indi-
cate a clear lack of object-oriented design. However, certain classes in
ArgoUML acts as a black hole attracting orphan functionalities. Such
classes are also detected by the metrics presented above and are still
a design problem. A class of ArgoUML which clearly stands out is the
huge class ModelFacade (see Fig. 3.12). This class implements 453



82 5 Identity Disharmonies

Fig. 5.3. The Class Blueprint of ModelFacade

methods, defines 114 attributes, and is more than 3500 lines long.
Moreover, all methods and all attributes are static. Its name hints
at being an implementation of the Facade Design Pattern [GHJV95],
but it has become a sort of black hole of functionality. In Fig. 5.3 we
see its Class Blueprint with a modified layout for the methods and
attributes to make this Class Blueprint fit on one screen. Looking at
the Class Blueprint for this class it seems that the developers use it
for everything that does not fit into other classes, but the downside
is that this class is like a tumor within this system and can only



5.3 God Class 83

be removed if somebody makes a great effort to break away pieces
of functionality and separate them into other classes. We see from
the visualization that many invocations are directed towards distinct
methods, pointing to subsets of connected methods that can be ex-
tracted.

Refactoring a God Class is a complex task, as this disharmony is Refactoring
often a cumulative effect of other disharmonies that occur at the
method level. Therefore, performing such a refactoring requires ad-
ditional and more fine-grained information about the methods of the
class, and sometimes even about its inheritance context. A first ap-
proach is to identify clusters of methods and attributes that are tied
together and to extract these islands into separate classes. Split Up
God Class [DDN02] proposes to incrementally redistribute the re-
sponsibilities of the God Class either to its collaborating classes or to
new classes that are pulled out of the God Class. Feathers [Fea05]
presents some techniques such as Sprout Method, Sprout Class,
Wrap Method to be able to test legacy system that can be used to
support the refactoring of God Classes.



84 5 Identity Disharmonies

5.4 Feature Envy

Objects are a mechanism for keeping together data and the opera-Description
tions that process that data. The Feature Envy design disharmony
[FBB+99] refers to methods that seem more interested in the data
of other classes than that of their own class. These methods access
directly or via accessor methods a lot of data of other classes. This
might be a sign that the method was misplaced and that it should be
moved to another class.

Methods.Applies To

Data and the operations that modify and use it should stay as closeImpact

together as possible. This data-operation proximity can help minimize
ripple effects (a change in a method triggers changes in other methods
and so on; the same applies for bugs, i.e., in case of a poor data-
operation proximity bugs will also be propagated) and help maximize
cohesion (see Implementation Rule).

The detection is based on counting the number of data members thatDetection

are accessed (directly or via accessor methods) by a method from
outside the class where the method under investigation is defined.
Feature Envy happens when the envied data comes from a very few
classes or only one class. The detection strategy (Fig. 5.4) in detail is:

1. Method uses directly more than a few attributes of other
classes. We use the ATFD1 (Access To Foreign Data) metric for
this.

2. Method uses far more attributes from other classes than its
own. We use the LAA (Locality of Attribute Accesses) metric for
this.

3. The used “foreign” attributes belong to very few other classes.
We use the FDP (Foreign Data Providers) metric for this. The rea-

1 In defining the God Class(80) detection strategy we also used a metric
called ATFD, which counts how many distinct attributes from other classes
are accessed by the measured design entity. The only difference is that in
the God Class(80) the metric is defined for a class entity, while here it is
defined for a method entity.



5.4 Feature Envy 85

ATFD > FEW

Method uses directly more than 

a few attributes of other classes

LAA < ONE THIRD

Method uses far more attributes 

of other classes than its own

FDP ≤ FEW

The used "foreign" attributes 

belong to very few other classes

AND Feature Envy

Fig. 5.4. Detection strategy for Feature Envy.

son for introducing this condition is that we want to make a dis-
tinction between a method who uses directly data from many dif-
ferent classes, and the case where the method envies especially
1-2 classes. In the first case, it might be that the method acts like
a controller [Rie96] and/or that it is a Brain Method(92). But in de-
tecting Feature Envy we are more interested in the second case, as
the essence of this disharmony is that the affected method is sim-
ply misplaced, and this is reflected by a well targeted dependency
on the data from another class.

In analyzing this design disharmony two alternative detection ap-
proaches could be used:

1. Count all dependencies. Another way to detect Feature Envy
would be to consider all the dependencies of the measured method,
instead of considering only the data members accessed by a partic-
ular method. In this case we would count both the dependencies
on the class where the method is defined, and those on the other
classes defined in the system.

2. Ignore dispersion. We used the FDP metric in the detection strat-
egy because we were focused on detecting those methods that
can be easily moved to another class and this involves a reduced



86 5 Identity Disharmonies

dispersion of the classes on which the methods rely. We might
want sometimes to eliminate this restriction and in this case we
will again find methods that rely on data taken from many other
classes. Although in this case moving the method is not obvious,
such methods might still require refactoring.

Fig. 5.5. ClassDiagramLayouter is envying the features of ClassDia-
gramNode. In red we colored the invocations that weightAndPlaceClasses
performs towards ClassDiagramNode, while in green we see its class-internal
invocations and accesses.

Looking again at the ArgoUML system we find a good example ofExample
Feature Envy, namely the weightAndPlaceClasses method in the class
ClassDiagramLayouter. Although the method uses data from its own
class it envies the data encapsulated in the class ClassDiagramNode
(i.e., by accessing the data heavily via a large number of accessor
methods), as depicted in Fig. 5.5. Looking closer at the figure we
notice three interesting aspects:

1. The weightAndPlaceClasses method is excessively large.
2. The envied class, i.e.,ClassDiagramNode, contains almost no func-

tionality, but just data which is made accessible via the accessor



5.4 Feature Envy 87

methods (marked in red). A problem is that the envied class does
not provide a clean interface to clients to offer them functionality,
but it exposes its attributes, which is questionable.

3. Looking at ClassDiagramLayouter we notice that the method lay-
out is using several attributes from ClassDiagramNode.

These three observations illustrate the most significant aspect about
Feature Envy, namely that it is a sign of an improper distribution of
a system’s intelligence. While the ClassDiagramLayouter is an exces-
sively complex class (i.e., a Brain Class(97)) with a very high average
complexity of methods (AMW = 5.25) the ClassDiagramNode class
contains very little functionality, being a Data Class(88). For compar-
ison let us mention that the average complexity of methods in this
class, namely the values of the AMW metric, is as low as 1.33.

Finally, as we see in this example, often a Feature Envy method also
has some dependencies on its own class, and not only on the envied
class. This tells us that in order to recover from this problem, it is very
rare that we can move the whole method to the other class. Rather, it
is more often that a part of the method can be extracted and moved
to the envied class (for a more detailed discussion see also Sect. 5.9).

This problem can be solved if the method is moved into the class to Refactoring
which it is coupled the most. If only a part of the method suffers from
a Feature Envy it might be necessary to extract that part into a new
method and after that move the newly created method into the envied
class. If the method envies two different classes, you should move it
to the one that it uses most.

Oftentimes, the class that a method affected by Feature Envy is de-
pending on is a class with not much functionality, sometimes even a
Data Class(88). If this is a case then moving the Feature Envy method
to that class is even more a desirable refactoring, as it re-balances
the distribution of functionality among class and improves the data-
behavior locality.

The concrete refactoring technique for Feature Envy is based on
the Move Method and Extract Method refactorings [FBB+99]. Fur-
thermore, the Move Behavior Close to the Data reengineering pattern
[DDN02] discusses the steps to follow to move behavior close to the
data it uses and the potential difficulties.



88 5 Identity Disharmonies

5.5 Data Class

Data Classes [FBB+99] [Rie96] are “dumb” data holders without com-Description
plex functionality but other classes strongly rely on them. The lack of
functionally relevant methods may indicate that related data and be-
havior are not kept in one place; this is a sign of a non-object-oriented
design. Data Classes are the manifestation of a lacking encapsulation
of data, and of a poor data-functionality proximity.

Classes.Applies To

The principles of encapsulation and data hiding are paramount toImpact

obtain a good object-oriented design. Data Classes break design prin-
ciples because they let other classes see and possibly manipulate
their data, leading to a brittle design (Presentation Rule). Such classes
reduce the maintainability, testability and understandability of a sys-
tem.

We detect Data Classes based on their characteristics (see Fig. 5.6):Detection

we search for “lightweight” classes, i.e., classes which provide almost
no functionality through their interfaces. Next, we look for the classes
that define many accessors (get/set methods) and for those who de-
clare data fields in their interfaces. Finally, we confront the lists and
manually inspect the lightweight classes that declare many public
attributes and those that provide many accessor methods. The detec-
tion strategy in detail is:

WOC < ONE THIRD

Interface of class reveals data 

rather than offering services

AND Data Class

Class reveals many attributes and is 

not complex

Fig. 5.6. The Data Class detection strategy.



5.5 Data Class 89

1. Interface of class reveals data rather than offering services.
The large majority of the class’s interface is exposing data rather
than providing services. We use the WOC (Weight Of Class) metric
for this.

AND

OR

Class reveals many 

attributes and is not 

complex

NOAP + NOAM > FEW

More than a few public 

data

WMC < HIGH

Complexity of class is not 

high

NOAP + NOAM > MANY

Class has many public 

data

WMC < VERY HIGH

Complexity of class is not 

very high

AND

Fig. 5.7. Data Class reveals many attributes and is not complex.

2. Class reveals many attributes and is not complex. The WOC
metric makes sure that the interface of the class is occupied
mainly by data and accessor methods. We also want to be sure
that the absolute number of these encapsulation breakers is high.
We differentiate between two cases (see Fig. 5.7):

a) The classical Data Class is not very large, has almost no func-
tionality, and only provides some data and data accessors. In
this case the class has not a high WMC (Weighted Method
Count) value, and we cannot expect to find much public data.
Therefore, the only request is that the class has more than a
FEW public data holders, expressed using the NOPA (Number
Of Public Attributes) and NOAM (Number Of Accessor Methods)
metrics.

b) The other case is that of a rather large class that apparently
looks “normal” (i.e., it does also define some functionality), ex-
cept for the fact that its (large) public interface contains, apart



90 5 Identity Disharmonies

from the provided services, a significant number of data and
data accessors. For this case, in order to consider the class a
Data Class, we require that it provides MANY public data. At
the same time, we allow the complexity of the class (WMC) to be
considerably high, up to the limit of excessively high (because
a class with extremely high complexity does not conceptually
fit the Data Class term).

In ArgoUML we identified several examples of Data Classes, one ofExample
which is the class Property (see Fig. 5.8).

Fig. 5.8. An example of a Data Class: Property.

The name itself already suggests that the class is not really modelling
an abstraction in the system, but rather keeps together a set of data.
Looking closer, we notice that the class has five attributes. In Fig. 5.8
we depict the Property class together with the classes that use its
data. In spite of the fact that all attributes are declared as private,
the class is still a pure data holder, due to the fact that all (but one)
of its methods are accessors (see methods in red). Thus, the class
has no behavior, it just keeps some data, used by three other classes.
Although none of the involved classes are large, the fact that data



5.5 Data Class 91

and behavior are separated makes that design fragment harder to
understand and to maintain. The fact that in this class all attributes
are private, is a good example of how accessor methods can obey the
principle of data hiding and still let the class be a pure data holder.
Speaking about Data Class examples, let us revisit a previous exam-
ple presented in the context of Feature Envy(84) (see Fig. 5.5 on page
86) in which class ClassDiagramLayouter was envying the attributes
of ClassDiagramNode. The Feature Envy problem is mainly due to the
fact the ClassDiagramNode is a Data Class(88), and thus its behavior
and data are not part of the same class. This reveals an often encoun-
tered relation between the two aforementioned disharmonies: a Data
Class(88) will make the classes that are using it to envy its data; or,
the other way around: when a method is affected by Feature Envy(84),
it is rather probable that we will find Data Classes among the classes
from which that method accesses data.

The basic idea of any refactoring action on a Data Class is to put Refactoring
together in the same class the data and the operations defined on
that data, and to provide proper services to the former clients of the
public data, instead of the direct access to this data.

• This data-operation proximity (see Implementation Rule) can be
achieved in most of the cases by analyzing how clients of the Data
Class use this data. In this way we can identify some pieces of
functionality (behavior) that could be extracted and moved as ser-
vices to the Data Class. This refactoring action is very much re-
lated to what needs to be done when Feature Envy(84) is encoun-
tered. In other words, when refactoring a case of Feature Envy(84),
this could lead to a positive effect towards repairing a envied Data
Class.

• In some other cases, especially if the Data Class is dumb and has
only one or a few clients, we could remove the class completely
from the system and put the data it contains in those classes (for-
mer clients) where the best data-operation proximity is achieved.

• If the Data Class is a rather large class with some functionality,
but also with many exposed attributes, it is very possible that only
a part of the class needs to be cured. In some cases this could
mean extracting the disharmonious parts together to a separate
class and applying the classical treatment, i.e., trying to extract
pieces of functionality from the data clients as services provided
by the new class.



92 5 Identity Disharmonies

5.6 Brain Method

Often a method starts out as a “normal” method but then more andDescription
more functionality is added to it until it gets out of control, becoming
hard to maintain or understand. Brain Methods tend to centralize the
functionality of a class, in the same way as a God Class(80) central-
izes the functionality of an entire subsystem, or sometimes even a
whole system.

Operations, i.e., methods or standalone functions.Applies To

A method should avoid size extremities (Proportion Rule). In the caseImpact

of Brain Methods the problem concerns overlong methods, which are
harder to understand and debug, and practically impossible to reuse.
A well-written method should have an adequate complexity which is
concordance with the method’s purpose (Implementation Rule).

The strategy for detecting this design flaw (see Fig. 5.9) is based onDetection

the presumed convergence of three simple code smells described by
Fowler [FBB+99]:

• Long methods – These are undesirable because they affect the un-
derstandability and testability of the code. Long methods tend to
do more than one piece of functionality, and they are therefore us-
ing many temporary variables and parameters, making them more
error-prone.

• Excessive branching – The intensive use of switch statements
(or if–else–if) is in most cases a clear symptom of a non-object-
oriented design, in which polymorphism is ignored.2

• Many variables used – The method uses many local variables but
also many instance variables.

The detection strategy in detail is:

2 The excessive use of polymorphism also introduces testability and analyz-
ability problems [Bin99]. Yet, the emphasis in the context of this design
flaw is on a very frequent case in which legacy systems migrated from
structured to object-oriented programming.



5.6 Brain Method 93

MAXNESTING ≥ SEVERAL

Method has deep nesting

NOAV > MANY

Method uses many 

variables

LOC > HIGH (Class) / 2

Method is excessively large

CYCLO ≥ HIGH

Method has many 

conditional branches

AND Brain Method

Fig. 5.9. The Brain Method detection strategy.

1. Method is excessively large. We are looking for excessively large
methods. Based on our practical experience, we used the follow-
ing heuristic to set the threshold: a method is considered to be
excessively large if its LOC count is higher than half of the statis-
tical HIGH threshold for classes (see Table 2.2 for the LOC count
of classes) 3.

2. Method has many conditional branches. This is computed using
the CYCLO (McCabe’s Cyclomatic Complexity) metric.

3. Method has deep nesting level. This is computed using the
MAXNESTING (Maximum Nesting Level) metric i.e., the maximum
nesting level of control structures within a method or function.

4. Method uses many variables. Method uses more variables than
a human can keep in short-term memory. Exceeding this limit
always raises the risk of introducing bugs. Notice that all types of
variables are counted including local variables, parameters, but
also attributes and global variables (in programming languages
where this is unfortunately possible). We used NOAV (Number Of
Accessed Variables) to compute this.

3 Only the lines of code in the methods of the class are counted.



94 5 Identity Disharmonies

Fig. 5.10. A Class Blueprint of Modeller and ProjectBrowser.

Fig. 5.10 shows that Modeller is not a class with an excessive numberExample
of methods, but has a certain number of Brain Methods. Some of
the methods reach considerable sizes (eight methods are longer than
50 lines of code), the longest one addDocumentationTag (annotated
as 1a in the figure) is 150 lines of code and invoked by three other
methods, two of which are the second and third longest methods in
this class: addOperation (1b, 116 LOC) and addAttribute (1c, 108
LOC).

The Class Blueprint reveals other disharmonies in this class: there
are 12 attributes in this class, all of them private (which is good), but
there are only four accessor methods. Moreover, the attributes are
accessed both directly and indirectly (using the accessors), denot-
ing a certain inconsistency or lack of access policy. As we will see



5.6 Brain Method 95

in the chapter on collaboration disharmonies, the class Modeller is
also affected by other problems such as Dispersed Coupling(127) and
Intensive Coupling(120).

The class ProjectBrowser has a very high ATFD (Access To Foreign
Data) value, as it accesses the data of seven other classes (this cannot
be seen in the blueprint, since we only display the class itself). As we
look closer at the three disharmonious methods of this class we find
out that this situation has two different reasons: the less “harmless”
one is encountered in the createPanels method (annotated as 2a, 116
LOC) where various UI components are added to an UI panel. There
is also a more harmful case, i.e., a violation of Demeter’s Law[Lie96]
where the programmers build long chains of method calls, most of
which are accessor methods. A relevant example is the following code
sequence found in the setTitle method:

String changeIndicator =

ProjectManager.getManager().

getCurrentProject().

getSaveRegistry().

hasChanged() ? " *" : "";

ArgoDiagram activeDiagram =

ProjectManager.getManager().

getCurrentProject().

getActiveDiagram();

The problem with such long invocation chains is that only one of
the “links” in the middle has to break (because some method has
changed) to make the whole chain break down.

Fowler suggests [FBB+99] that in almost all cases a Brain Method Refactoring
should be split, i.e., that one or more methods (operations) are to be
extracted. He also explains how to find the possible “cutting points”:

[...] whenever we feel the need to comment something, we write
a method instead. Such a method contains the code that was
commented but is named after the intention of the code rather
than how it does it.

In spite of this simple heuristic, refactoring a Brain Method can be
a complex task, which needs a global perspective to solve it. Often we
find Brain Methods among the suspects of the Intensive Coupling(120)
and Dispersed Coupling(127) design flaws. To properly refactor a Brain



96 5 Identity Disharmonies

Method we need a complex (interdependent) three-fold analysis, in-
volving all harmony aspects:

1. Identity harmony. Implies the already-mentioned aspect of its
length which points to a split method refactoring. It may also in-
volve Duplication(102) that implies the extraction of the common
part to a method of that class. Additionally, a Brain Method (or a
part of it) may exhibit Feature Envy(84). In this case, the refactor-
ing would mean extracting a part of the method or – in some rare
cases – moving the method completely to the “data provider”.

2. Collaboration harmony. As mentioned before, it is often the case
that Brain Methods exhibit also Intensive Coupling(120) classifica-
tion disharmony. This could imply the following refactoring: re-
place a “cluster” of calls to lightweight methods and the affer-
ent logic with fewer calls to higher-level (more complex) services
(see also explanations on Intensive Coupling(120)). This implies ex-
tracting a part of the method and moving it to another class.

3. Classification harmony. This aspect of harmony might be in-
volved as well if Duplication(102) is detected in the Brain Method.
If this is the case, often among the other methods that are the “du-
plication partners” we find other Brain Methods. Thus, the method
can be restructured by factoring out the commonalities in the hi-
erarchy (e.g., apply the Template Method [GHJV95] design pat-
tern).



5.7 Brain Class 97

5.7 Brain Class

This design disharmony is about complex classes that tend to accu- Description
mulate an excessive amount of intelligence, usually in the form of
several methods affected by Brain Method(92).

This recalls the God Class(80) disharmony, because those classes
also have the tendency to centralize the intelligence of the system.
It looks like the two disharmonies are quite similar. This is partially
true, because both refer to complex classes. Yet the two problems are
distinct.

The fingerprint of a God Class is not just its complexity, but the
fact that the class relies for part of its behavior on encapsulation
breaking, as it directly accesses many attributes from other classes.

On the other hand, the Brain Class detection strategy is trying to
complement the God Class strategy by catching those excessively
complex classes that are not detected as God Classes either because
they do not abusively access data of “satellite” classes, or because
they are a little more cohesive.

Classes which are not a God Class(80) and contain at least one Applies To
method affected by Brain Method(92).

See impact of the God Class(80) disharmony. Impact

The detection rule can be assumed as follows (see Fig. 5.11). A class Detection

is a Brain Class if it has at least a few methods affected by Brain
Method(92), if it is very large (in terms of LOC), non-cohesive and
very complex. If the class is a “monster” in terms of both size (LOC)
and functional complexity (WMC) then the class is considered to be
a Brain Class even if it has only one Brain Method(92).4 The detection
strategy in detail is:

1. Class contains more than one Brain Method(92) and is very
large. A class is very large if the total number of lines of code
from methods of the class is very high (see Fig. 5.12).

4 Looking carefully at the detection rule and comparing it to the one for God
Class(80), you will notice that nothing hinders a God Class from also being
detected as a Brain Class. For simplification, we exclude a priori classes
classified as God Classes.



98 5 Identity Disharmonies

Brain Class

Class contains more than one 

Brain Method and is very large

Class contains only one Brain 

Method but is extremely large 

and complex

Class is very complex 

and non-cohesive

AND

OR

Fig. 5.11. Detection strategy for Brain Class.

2. Class contains only one Brain Method(92) but is extremely large
and complex. This term covers the above case of a “monster” class
in both size and complexity, and which is not captured by the
previous term due to the fact that the class has only one Brain
Method. In other words, this is the case of a class where most
methods tend to be excessively large and complex, even if they
are not Brain Methods. Compared to the previous term, a special
condition (WMC) was added on the complexity of the class. This
condition overrides the “normal” filtering condition for WMC, as
defined in the third term.

3. Class is very complex and non-cohesive. This last term sets a
requirement on the increased complexity and low cohesion that
characterize mainly all classes with identity disharmonies. This
pair of filtering conditions is similar to the one found in the detec-
tion rule for God Class(80); in fact there is only one difference: the
threshold for the cohesion metrics is more permissive than in the
other detection strategy, as there the very low cohesion is a more
significant characteristic than here.

In Fig. 5.13 we see that the class ParserDisplay not only is visually de-Example
formed, but also plays strange tricks in terms of inheritance. As for
the visual deformation, this class implements some very large meth-
ods, the largest one (the tallest method box) with 576 lines of code
(this method is also the largest in the entire system) and another five
methods longer than 100 lines. In total 13 methods are longer than
50 lines. Moreover, there is a large amount of intra-method dupli-



5.7 Brain Class 99

Class contains more than one 

Brain Method and is very large

Class contains only one Brain 

Method but is extremely large 

and complex

Class is very complex 

and non-cohesive

Class contains more than one 

Brain Method

LOC ≥ VERY HIGH

Total size of methods in class is 

very high

AND

Class contains only one 

Brain Method

LOC ≥ 2 x VERY HIGH

Total size of methods in class is 

extremely high

WMC ≥ 2 x VERY HIGH

Functional complexity of class is 

extremely high

AND

WMC ≥ VERY HIGH

Functional complexity of class is 

very high

TCC < HALF

Class cohesion is low
AND

Fig. 5.12. Main components of the Brain Class detection strategy.

cation: for example, in the constructor of this class, which contains
seven code blocks containing duplication, there are 89 lines of code in
total, whereas the constructor has 132 lines in total. Another partic-
ular aspect of this class is its inheritance relationship with its super-
class, whose discussion we postpone to the section on classification
harmony.

The class FigClass is severely affected by the Brain Method(92)
disharmony. This class has another problem: code duplication. Eleven
of its methods are affected by Duplication(102), nine (!) of which are
involved in duplication with three of the sibling classes, especially



100 5 Identity Disharmonies

Fig. 5.13. A Class Blueprint of ParserDisplay with its completely abstract su-
perclass Parser and a Class Blueprint of FigClass.

with FigInterface and FigUseCase. What is even more interesting is
that among the nine methods with Duplication(102) we found all three
Brain Methods of the class, all of them with significant amounts of
duplication. Our conclusion is that if the duplication “plague” were



5.7 Brain Class 101

removed this class would become much lighter, and less problem-
atic. As you can see, in order to restore one aspect of harmony the
other aspects must be considered as well. In this concrete example,
we would not have found the cause of the Brain Method(92) problem
if we had not looked at the duplication within the hierarchy.

The primary characteristic of a Brain Class is the fact that it contains Refactoring
Brain Method. Therefore the main refactoring actions for these classes
must be directed towards curing the Brain Method(92) disharmonies.
Additionally, in our approach classes affected either by Brain Class(97)
or God Class(80) represent the starting point in the detection and
correction of identity disharmonies (see Sect. 5.9).

Apart from that, in our experience, there are at least three types
of Brain Class, each of them requiring a different treatment:

1. The methods suffering from Brain Method(92) contained in the
class are semantically related (oftentimes overloaded methods),
and contain a significant amount of duplicated code. Factoring
out the commonalities from these methods in form of one or more
private or protected methods, while making the initial methods
provide only the slight differences would significantly reduce the
complexity of the class.

2. A possible type of Brain Method appears when a class is conceived
in a procedural programming style. Consequently, the class is
mainly used as a grouping mechanism for a collection of some-
how related methods that provide some useful algorithms. In this
case the class is non-cohesive. Refactoring such a class requires
to split it into two or more cohesive classes. Yet, performing such a
refactoring requires a substantial amount contextual information
(e.g., which class(es) use(s) which parts of the initial class, where
is stored the data on which each Brain Method operates on etc.)

3. There are cases where a Brain Class proves to be rather harmless.
In several case studies we encountered cases where an excessively
complex class was a matured utility class, usually not very much
related to the business domain of the application (e.g., a class
modelling a Lisp interpreter in a 3-D graphics framework). If, ad-
ditionally, the maintainers of the system or the analysis of the
system’s history [RDGM04] show that no maintenance problems
have been raised by that class then it makes no sense to start a
costly effort of refactoring that class just for the sake of getting
better metric values for the system.



102 5 Identity Disharmonies

5.8 Significant Duplication

The detection of code duplication plays an essential role in the as-Description
sessment and improvement of a design. But detected clones might
not be relevant if they are too small or if they are analyzed in isola-
tion. In this context, the goal of this detection strategy is to capture
those portions of code that contain a significant amount of duplica-
tion. What does significant mean? In our view a case of duplication is
considered significant if:

• It is the largest possible chain of duplication that can be formed
in that portion of code, by uniting all islands of exact clones that
are close enough to each other.

• It is large enough.

Pairs of operations.Applies To

Code duplication harms the uniqueness of entities within a system.Impact

For example, a class that offers a certain functionality should be
solely responsible for that functionality. If duplication appears, it be-
comes much harder to locate errors because the assumption “only
class X implements this, therefore the error can be found there” does
not hold anymore. Thus, the presence of code duplication has (at
least) a double negative impact on the quality of a system: (1) the
bloating of the system and (2) the co-evolution of clones (the clones
do not all evolve the same way) which also implies the cloning of er-
rors.

In practice, duplications are rarely the result of pure copy–paste ac-Detection

tions, but rather of copy–paste–adapt “mutations”. These slight mod-
ifications tend to scatter a monolithic copied block into small frag-
ments of duplicated code. The smaller such a fragment is, the lower
the refactoring potential, since the analysis becomes harder, and the
granted importance is decreased, too. So, for example, imagine we
found two operations that have five identical lines, followed by one
line that is different, which is followed by another four identical lines.
Did we find two clones (of five and four lines) or one single clone



5.8 Significant Duplication 103

spread over ten lines (5 + 1 + 4 lines)? In such cases, it is almost
always better to choose the second option.

Thus, there are two cases of duplication: the copy–paste case
and the copy–paste–adapt case. This detection strategy captures both
cases. The first term deals with the case of a brute-force duplication
which is significantly large. The second term tackles the case of du-
plication with slight adaptations, assuming that the largest possible
chain of duplication is considered. In both case the key element is
the size of the duplication.

In order to introduce the Significant Duplication detection strategy
(see Fig. 5.14), we need first to present three low-level duplication
metrics:

• Size of Exact Clone (SEC). An exact clone is a group of consecu-
tive line-pairs that are detected as duplicated. Consequently, the
Size of Exact Clone metric measures the size of a clone in terms
of lines of code. The size of a clone is relevant, because in most of
the cases our interest in a piece of duplicated code is proportional
to its size.

• Line Bias (LB). When comparing two pieces of code (e.g., two files
or two functions) we usually find more than one exact clone. In this
context, Line Bias is the distance between two consecutive exact
clones, i.e., the number of non-matching lines of code between
two exact clones. The LB value may allow us to decide if two exact
clones belong to the same cluster of duplicated lines (e.g., the gap
between the two exact clones could be a modified portion of code
within a duplicated block of code).

• Size of Duplication Chain (SDC). To improve the code we need
to see more than just a pile of small duplication chunks. We want
to see the big picture, i.e., to cluster the chunks of duplication
into a more meaningful block of duplication. This is what we call
a duplication chain. Thus, a duplication chain is composed of a
number of smaller islands of exact clones that are close enough
pairwise to be considered as belonging together, i.e., their LB value
is less than a given threshold.

Now, with these metrics in mind we can revisit the example men-
tioned earlier in this section, with two functions having two exact
clones. In terms of the low-level duplication metrics introduced in
this section, we can now say that the first clone has a SEC value of
5, while the second one has a SEC value of 4. Between the two clones



104 5 Identity Disharmonies

there is a gap of one line; thus, the LB value is 1. Consequently the
SDC metric has a value of 10 lines (5 + 1 + 4 lines).

Based on these low-level metrics we can now introduce the heuris-
tics for this detection strategy:

Significant 

Duplication

SEC > AVERAGE(LOC/Operation)

Significant standalone 

exact clone

Significant Duplication Chain

OR

Significant Duplication 

Chain

SDC ≥ 2x(FEW+1)+1

Duplication chain has at least a 

size of two relevant exact clones

SEC > FEW

Exact clones are longer than a 

few lines of code

LB ≤ FEW

Distance between clones is not 

more than a few lines of code

AND

Fig. 5.14. The Significant Duplication detection strategy.

1. Significant Standalone Exact Clone. This case captures the case
of a contiguous, isolated block of duplication, i.e., a single exact
clone that has no other clones in its neighborhood. Thus, the only
thing that counts is the size of the exact clone. We consider a stan-
dalone clone to be large enough if it is at least as large as the
statistical average size of an operation.

2. Significant Duplication Chain. We stated earlier that a block of
duplicated code is significant only if it is the largest one that could



5.8 Significant Duplication 105

be built in a particular area of the two pieces of code that are
compared. In other words, we try to build the largest chain of
relevant exact clones that are not too far from each other. As you
might notice, the previous phrase is fuzzy if not associated with
a measurement. Based on the low-level metrics defined earlier,
we eliminate the “fuzziness” and make the identification of these
clusters reproducible. This term is composed of three metrics (see
Fig. 5.14), each one carrying out a particular role:

a) Duplication chain has at least a size of two relevant ex-
act clones. This threshold is an indirect one, meaning that the
duplication chain has at least the total size of two significant
exact clones separated by a gap of minimal distance. The term
2⇥ (FEW + 1) is based on the condition that each of the (mini-
mum) two fragments involves more than a few duplicated lines.
Because the minimal distance (i.e., the smallest LB value) is
one line of code, we add to the first threshold term one more
line. It ensures that the total length of the duplication chain is
large enough to qualify it as significant.

b) Exact clones are longer than a few lines of code. This makes
sure that the chain is not composed only of irrelevant “duplica-
tion crumbs”, i.e., that each fragment of the duplication chain
is not very small.

c) Distance between clones is not more than a few lines of
code. This quantifies the “neighborhood” aspect as it ensures
that the pieces of the chains are not too far from each other to
be considered as belonging to the same duplication chain. In
other words, the threshold for the LB metric is used as a stop
condition in the process of looking for further neighbor clones.

Looking at the ArgoUML case study just shows that code duplication Example
is one of the plagues that are omnipresent; but this can be now quan-
tified. In the case of ArgoUML , we checked for Significant Duplication
and we found that 239 classes (17% of all the classes) are affected by
it. Summing the SDC duplication metric at the system level, we end
up with more than 10,000 duplication lines!5

Usually duplication is a design disharmony that often appears in
conjunction with other disharmonies. Therefore, we believe that it
5 Note that one code line may be involved in more than one duplication

chain, and thus it is multiply counted; still, the number of lines of code
involved in duplication is impressive.



106 5 Identity Disharmonies

does not make sense to discuss just a single concrete example of du-
plication. So, the aspect of duplication will occur over and over again,
as we discuss in an integrated manner various design problems that
we encountered in ArgoUML .

The essence of a refactoring that intends to eliminate duplication isRefactoring
based on Beck’s Once and Only Once Rule [Bec97]:

By eliminating the duplicates, you ensure that the code says
everything once and only once, which is the essence of good
design.

Thus, it is clear that we have to put all “instances” of a duplicated
portion of code into one single location. But what is the proper lo-
cation? To be able to answer this question we obviously need more
information about the context of the duplicated entities.

The first problem is that by detecting only exact clones we usu-
ally end up with lots of small clones (duplication crumbs) which are
irrelevant in themselves; yet, ignoring them would be a mistake as
they could be in fact part of a large duplication chain, as a result
of an extensive copy–paste–adapt process. The Significant Duplication
strategy helps us in solving this first headache and keeps only signif-
icant portions of code affected by duplication.

This brings us to the second headache: How to refactor the code
so that duplication is removed? Are all significant duplication blocks
the same? Can we apply the same treatment to all? Especially when
speaking about object-oriented design, the answer to these questions
is definitely (and obviously): No! This is why we identify three different
contexts in which duplication appears.6

Case I: Duplication Within the Same Class

In this case the two methods involved in a (significant) duplication
block belong to the same class. This is probably the easiest refactor-
ing: all that needs to be done is to extract the commonality in the
form of a new method and call the new method from both places (see
Fig. 5.15).

Case II: Duplication Within the Same Hierarchy

In this second case the two methods that are part of a (significant) du-
plication block are not part of the same class, but belong to the same
6 Note that we speak here exclusively about duplication of functional code,

i.e., duplication that appears in the bodies of functions and methods.



5.8 Significant Duplication 107

m2

m1

m1'

m2'

m3

AA

Fig. 5.15. Recovering from Duplication within the same class.

m1

B C

m2

A

m1

B C

m2

A

m3

Fig. 5.16. Recovering from Duplication within sibling classes.

class hierarchy, which means that either they are in an ancestor–
descendant relation or they share a common base class. This type of
duplication can be eliminated in one of the following ways, depend-
ing on the inheritance relation between the methods involved in the
duplication (see Fig. 5.16):

• Siblings duplication. If duplication appears in two methods that
have a common ancestor, then the commonality is extracted in
the form of a new method placed into the common ancestor.

• Parent–child duplication. This case of duplication is a strange one,
because the two classes are in a direct relation. Thus, any com-
monality could have been placed in the base class. The refactoring
consists of extracting any common code and placing it in the par-
ent class, where it logically belongs.

A special case is the one where the duplication between two inheri-
tance-related methods is fragmented, i.e., the code is similar but not



108 5 Identity Disharmonies

identical. In this case you would probably be able to apply the Tem-
plate Method design pattern [GHJV95], as this would help separate
the common code (which goes into the closest ancestor class) from
the fragments that are different (which will become the hooks from
the pattern mentioned above).

Case III: Duplication Within Unrelated Classes

In this third case the two operations that share a duplicated block
are neither part of the same class, nor of the same hierarchy; either
the two operations are part of two independent classes (in the sense
of classification) or they are (one of them or both) global functions.

If you find duplicated code in methods belonging to unrelated
classes, there are three major options on where to place the common
code, extracted from the two (or more) classes:

• One hosts, one calls. In this case we notice that the code belongs
to one of the protagonist classes. Thus, it will host the common
code, in the form a method, while the other class will invoke that
method. This usually applies when the portions of duplication are
not very large and especially not encountered in many methods.
If the duplication between two classes affects many methods, then
we probably miss an abstraction, i.e., a third class. Thus, we de-
fine the new class and place the duplicated code there. Now, the
question is how to relate the two former classes with this third
one? The answer depends on the context, boiling down to two op-
tions: association and inheritance.

• Third class hosts, both inherit. If we find that the two classes are
conceptually related, then they probably miss a common base
class. Consequently the third class becomes the base class of the
two.
Good examples for this case are the classes FigNodeModelEle-
ment and FigEdgeModelElement which indeed miss a common
base class.

• Third class hosts, both call. If the two unrelated classes involved
in duplication are not conceptually related we need to introduce
an association from the two classes to the third one and call from
both classes the method that now hosts the formerly duplicated
code.



5.9 Recovering from Identity Disharmonies 109

5.9 Recovering from Identity Disharmonies

Where to Start

In practice we do not have enough time to analyze each suspect class
or method reported by the detection strategies. Therefore, a pragmatic
question pops up: How do we find the most important identity har-
mony offenders? We used the following criteria in selecting the classes
that especially need attention with respect to identity harmony:

• Classes that contain a higher number of disharmonious methods
have priority.

• Classes in which more than one identity disharmony appears have
priority.

• Classes that are affected by other disharmonies (i.e., collaboration
or classification disharmonies) go first in order to reveal relations
to other aspects of harmony.

This can be done in two steps (see Fig. 5.17):

1. Start with the “intelligence magnets”, i.e., with those classes that
tend to accumulate much more functionality than an abstraction
should normally have. In terms of the detection strategies pre-
sented so far, this means to make a blacklist containing all classes
affected by the God Class(80) or by the Brain Class(97) disharmony.

2. For each of the classes in the blacklist built in Step 1 find the
disharmonious methods. A method is considered disharmonious if
at least one of the following is true:
• it is a Brain Method(92);
• it contains duplicated code;
• it accesses attributes from other classes, either directly or by

means of accessor methods.

We mainly use the following quantification means:

Count disharmonious methods. To both assess and cure such a
disharmonious class we need first to examine how much the
identity problems have spread among the methods of that class.
Therefore, we have to count how many methods we can identify
as having identity problems. The more disharmonious methods a
class has, the more critical its identity is. When do we consider a
method as being disharmonious? We do so if at least one of the
following conditions holds:



110 5 Identity Disharmonies

Fig. 5.17. Overview of the assessment process related to Identity Harmony.

1. It contains duplicated code in common with methods of the
same class.

2. It is a Brain Method(92).
3. It accesses directly attributes of other classes.

Number of Methods (NOM). This metric gives us information about
the functional size of the class. If we correlate the number of
disharmonious methods with NOM, we can also determine what
percentage of the class is affected by these identity problems.

Number of methods detected as Brain Method(92). We use this num-
ber to see how many of the disharmonious methods are detected
as being a Brain Method(92).

Duplicated LOC. This metric tells us for each class the amount of
intra-class duplication, which refers to source code duplicated
within a class, i.e., among the methods defined in the same class.



5.9 Recovering from Identity Disharmonies 111

This information helps us also to get a better understanding of
what the problem is with the disharmonious methods.

Access To Foreign Data (ATFD). This metric is included because it
quantifies one of the key disharmonies of an identity distortion,
i.e., the brute usage of attributes from other classes. As you may
notice, this is again one of the reasons that qualify a method as
being disharmonious.

How to Start

How should you start when you want to improve the identity harmony
of your system’s classes? Assuming that for a class in the blacklist we
have gathered its disharmonious methods, then in order to recover
from identity design disharmonies we have to follow the roadmap
described in Fig. 5.18, and explained briefly below.

• Action 1: Remove duplication. The first thing to be done is to
check if a method contains portions of Duplication(102) and re-
move that duplication in conformity with the indications provided
in Sect. 5.8. Because we analyze the class from the perspective of
identity harmony we concentrate on removing the intra-class du-
plication first. If a lot of duplication is found, the result of this step
can have a significant positive impact on the class, especially on
its Brain Methods.

• Action 2: Remove temporary fields. Among the bad smells in code
described in [FBB+99] we find one called Temporary Field. This
is an attribute of a class used only in a single method; in such
cases the attribute should have been defined as a local variable.
Obviously, detecting such situations can be done by checking in
the class who other than the inspected method uses a particular
attribute. If no one else does, then we need to remove the tem-
porary field and replace it with a local variable. Why do we care?
Remember that for both Brain Class(97) and God Class(80) one of
the “fingerprints” is a low cohesion. One of the causes of low co-
hesion could also be a bunch of such temporary fields, which do
not really characterize the abstraction modelled by the class, and
thus hamper the understanding of the class.

• Action 3: Improve data-behavior locality. If in our inspection pro-
cess we reach a foreign data user, i.e., a method that accesses



112 5 Identity Disharmonies

Method with 

Identity Disharmony

Intraclass 
Duplication Host

Temporary Field 
User

Foreign Data 
User

Feature Envy

Brain Method

Data Class

Remove Duplication

Replace Attribute 

with Local Variable

Move Behavior to 

Data Provider

Group used foreign 

data by their 

definition classes

Refactor for optimal 

Data-Behavior 

Locality

More Foreign 
Data?

Extract Method

STOP

YES

YES

YES

YES

YES

YES

YES

NO

NO

NO

NO

NO

NO

NO

Fig. 5.18. How to address Identity Disharmonies in methods

attributes of other classes, then we have to refactor it so that we
reach an optimal data-behavior locality. A foreign data user has
one characteristic: the value for the ATFD metric is at least one.
In a simplistic way we can say that refactoring in this case requires
one of these two actions:
– Extract a part of the method and move it to the definition class of

the accessed attribute. The “ideal” case is when the method is
affected by Feature Envy(84) and the class that provides the at-



5.9 Recovering from Identity Disharmonies 113

tributes is a Data Class(88). In this case the method was simply
misplaced, and needs to be moved to the Data Class(88). But
life is rarely that easy, so the situations that you will proba-
bly encounter are more “gray” than “black and white”. In most
cases only a fragment of the method needs to be extracted and
moved to another place. This entire discussion is beyond the
scope of this book, but here is a rule of thumb that we of-
ten use: if the class that provides the accessed attributes is
“lightweight” (i.e., Data Class(88) or close to it) try to extract
fragments of functionality from the “heavyweight” class and
move them to the “lightweight” one.

– Move the attribute from its definition class to the class where the
user method belongs. This is very rarely the case, especially in
the context of Brain Class(97) and God Class(80). It applies only
for cases where the attribute belongs to a small class that has
no serious reason to live, and which will be eventually removed
from the system.

• Action 4: Refactor Brain Method. If you reached this step while in-
specting a method that was initially reported as a Brain Method(92),
first look if this is still the case after proceeding with Step 1
and Step 3. Sometimes, removing duplication and refactoring a
method for better data-behavior locality solves the case of the Brain
Method(92). If the problem is not solved, revisit Sect. 5.6 where we
discussed the main refactoring cases for a Brain Method(92).


