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Abstract
Object aliasing causes as many problems in dynamic lan-
guages as it does in static languages. Most existing work on
aliasing, such as ownership types, relies on static checking
based on annotations and type declarations. We introduce
ConstraintedJava, a scripting language based on BeanShell
that provides dynamic ownership checking. Dynamic owner-
ship provides the encapsulation benefits of static ownership
types but preserves the flexibility of dynamic languages.

Categories and Subject Descriptors D.3.3 [Software]: Pro-
gramming Languages—Constructs and Features

General Terms Languages

1. Introduction
Dynamic languages are more flexible than static languages.
Closures, comprehensions, polymorphism, reflection and
message sending were all supported in dynamic languages
long before their static counterparts. Dynamic languages are
also safer than static languages: null pointers, type errors,
stack overflows, and message not understood errors that can
crash programs (or entire machines) in static languages are
prevented or handled gracefully in dynamic languages.

In this paper we describe our efforts in applying dynamic
techniques to catch errors in program design — by encapsu-
lating abstractions against aliasing. Consider the following
example of browser-side scripting implementing a web-based
document handling API:

class DocumentProxy {
// ... public API goes here
private var docServerSocket = new ServerSocket(...);
public hole() {return docServerSocket}

}
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The DocumentProxy class offers a public API to a back-end
document server, storing the network socket in a private
docServerSocket field. By ignorance, weakness, or deliberate
fault, a programmer could write a method that exports an alias
to this socket, breaking the DocumentProxy abstraction and
potentially corrupting the back end database. Note that access
restrictions such as public or private qualifiers do not help
here, because they prevent access to variables but not to the
objects held by those variables.

2. Dynamic Ownership
Dynamic Ownership [23] is our proposal to strengthen encap-
sulation in dynamic languages. Most other alias protection
schemes, such as Balloons [1], Islands [14], and Ownership
Types [7], rely on features of static languages that dynamic
languages lack. Many dynamic languages allow code to be
added to a running program. This means that we cannot run
a checker over the entire program to check for violations
of our ownership rules during a compile step: the code that
constitutes the whole program may be augmented after this
occurs. This is especially true in languages like Self [31],
Smalltalk [12], Ruby [29], and even Java [2].

Our model for dynamic ownership provides alias protec-
tion and encapsulation enforcement by maintaining a dy-
namic notion of object ownership at runtime, and then placing
restrictions on messages sent between objects based on their
ownership. References between objects are not restricted in
any way, and do not affect the behaviour of the encapsulation
enforcement. Unrestricted references allow, for instance, con-
tainer objects such as lists which hold references to a set of
objects but do not own them. Dynamic ownership can also be
extended easily to support features such as ownership-based
(“sheep”) clone, exported interfaces, and ownership transfer
that are difficult to support in static ownership systems. As
the encapsulation restrictions are based on runtime behaviour
rather than compile-time structure, they are ideally suited to
implementation in a dynamic language.

2.1 Encapsulation Guarantees
Dynamic Ownership enforces two invariants: representation
encapsulation and external independence [23].
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Representation encapsulation requires that an object may
only be accessed by messages passing though its interface:
to access the state of objects that an object encapsulates
(the encapsulating object’s representation), the message
invocation sequence must go through the encapsulating
object, as it owns the objects that make up its representa-
tion.

External independence means that an object must not be
dependent on the mutable state of objects that are external
to it. We consider an object which is able to gain any
information at all derived from another object’s mutable
state as being dependent on that object’s mutable state.
Objects external to an encapsulating object are defined
as any object in the system that the object holds or can
obtain a reference to, but does not own or encapsulate.
This includes references passed as parameters, stored in
fields, and returned by method sends. We sometimes refer
to these external objects as an object’s arguments.

Note that these invariants only restrict the type of messages
sent between objects. They do not restrict in any way the
passing of references to methods, or the storage of references
in fields or local variables. This lack of restrictions on
references is a major difference from many type systems
designed to provide aliasing protection.

2.2 The Ownership Tree
To enforce these invariants, Dynamic Ownership gives each
object an owner: some other object in the system which owns
it. This ownership relation forms a tree (the ownership tree)
as each object has only one owner, and ownership may not
be cyclic.

Figure 1. Encapsulation: ownership, visibility and aggrega-
tion

We write b.owner = a when an object a in the ownership
tree owns another object b. For example, in figure 1, the
House owns the Lounge. Alternatively, b is owned by a when
b.owner = a. For example, in our example of the suburb, the
Nodes are owned by the List. An object a in the ownership
tree is said to contain an object b if there is some path
from b to a following owner pointers. In figure 1 the Street
contains the Lounge, but does not own it. Objects which
would otherwise have no owner, such as the first objects
created by a program, are owned by the topmost node in the
ownership tree called the root owner.

Dynamic ownership programs can be thought of as a tree
of encapsulated objects, the set of the other objects they
contain making up their representation. Every object in the
ownership tree marks an encapsulation boundary: an object’s
owner is considered the interface through which other parts
of the system should interact with the object.

The ownership tree places no constraints on the graph of
other pointers in the system. For example, figure 1 shows a
system with a street object containing a number of buildings,
a house and a school. The street owns a list and the buildings
within the street, but not the nodes that make up the list’s
internal representation. We think of the street as the interface
to the list and its contents, and the list as the interface to the
list’s structure (the nodes), but not the objects held in the
list (the buildings). As each object’s ownership information
is explicitly stored in the object itself, this information is
retained when the object (such as a building) is placed in a
container object (such as the street’s list of buildings) — the
ownership information is not lost or changed.

Because ownership and pointers are independent, an ob-
ject’s ownership can be changed dynamically. A room could
be moved between buildings, then its ownership changed to
reflect its new status. Permission to change ownership lies
with the object’s owner.

2.3 Visibility
Dynamic ownership uses the ownership tree to restrict in-
teractions between objects. We say that an object a is only
visible to an object b if there exists some object c such that
c owns a and c contains b. This means that both a and b are
encapsulated within c, and b can access a without breaking
through any encapsulation boundaries. Visible objects can be
any number of links up the ownership tree but at most one
link down, because going down the tree requires crossing into
encapsulation boundaries.

In figure 1, the Suburb, Street, List and School are all
visible to the House. This is an incoming visibility; the
Suburb is visible to the House, but the House is not visible
to the Suburb. House would not be breaking through an
encapsulation boundary to access School, as School is owned
by Street, and Street contains House. Direct access to the
School’s Classroom from House would breach School’s
encapsulation, however.

Dynamic Ownership uses visibility directly to guarantee
representation encapsulation. The rule is a simple one: mes-
sages are sent only if the receiving object is visible to the
sending object. Any other send would require crossing an
encapsulation boundary, so a system providing dynamic own-
ership must ensure each message send is to a visible object.

2.4 Message Sends
External independence is a more subtle condition: it requires
that objects only depend on the mutable state of their owners,
or of the objects they themselves contain. In figure 1, School
is visible to House (so House could send a message to School),
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but if that message’s result relies on School’s state, then it will
establish an external dependency of House upon School. On
the other hand, House may depend on the state of the Lounge
or Kitchen that it owns. By sending messages to Lounge or
Kitchen, House may also depend on the state an objects
owned by the Lounge or Kitchen, because it transitively
contains all of those objects.

To enforce external independence, Dynamic Ownership
further classifies message sends. If the target of a message
send is this or is owned by self then we say the send is
internal, while sends to other visible objects are external.
External sends are prevented from establishing dependencies
on mutable state. Dynamic Ownership recognise two kinds
of externally independent messages that do not establish
dependencies — pure messages that do not access state, and
oneway messages that do not return results.

Pure messages Pure messages are defined as being unable
to return information about mutable state. This means that
they are unable to access non-final fields, or send messages
that would cause information about non-final fields to be
returned to the pure send (i.e. other messages that may
establish external dependencies).

Uses for pure messages include retrieving information
about immutable objects, such as a character from an im-
mutable string object or a co-ordinate from an immutable
point object.

Oneway messages Oneway messages are defined as being
able to perform any action, like a normal message send,
including sending normal methods, or reading and changing
non-final fields, apart from returning a value or throwing an
exception.

As oneway messages are allowed to access mutable state
they are useful for gathering output such as updates to window
display, sending test results in a test harness, implementing
an assertion facility, or providing additions to an HTML
document to be sent to a web browser. Adding items to a
list could be a oneway message, as it does not need to return
any information.

Message Dispatch Dynamic Ownership thus requires two-
dimensional check whenever a message is dispatched: de-
pending on the relationship between sender and receiver (in-
ternal, external, or not visible) and the type of message (unre-
stricted, pure, or oneway). This check dynamically ensures
the encapsulation invariants [13].

Table 1 shows which categories of message sends are
permitted (�) or forbidden (×). An internal send (to the sender
itself, or to an object the sender owns) is always permitted,
unless the currently executing invocation is pure. A pure
method invocation, or an outgoing send (to a visible object
that is not owned by the sender) may make only pure or
oneway sends. Finally, any kind of message send to a receiver
that is not visible to the sender is forbidden.

Relationship of Message Type
Sender and Normal Externally Independent
Receiver (Unrestricted) Pure Oneway

Internal � � �
(from normal or oneway)

Internal × � �
(from pure method)

Outgoing × � �
(visible but not owned)

Not visible × × ×

Table 1. Dynamic ownership message dispatch.

Adding such a restrictive message dispatch check to a
dynamic language reduces the flexibility and power of the
language, as well as (hopefully) increasing safety. The project
we are engaged in is first to design languages supporting
Dynamic Ownership, and then to investigate whether (and in
what contexts) its benefits overcome its liabilities.

3. ConstrainedJava
We have designed and implemented the ConstrainedJava lan-
guage as a proof of concept design incorporating Dynamic
Ownership [13]. ConstrainedJava is built as an extension to
BeanShell [22], a dynamically typed dialect of Java. To Bean-
Shell’s object model, we added support for managing object
owners, and a few programmer visible methods (owner, gift,
export) and method qualifiers (factory, pure, oneway).

3.1 Classes and Objects
ConstrainedJava classes, methods, fields and the like are de-
clared similarly to Java, except that types can be omitted
entirely or replaced with the “anything” type var. The follow-
ing code example demonstrates this with a simple factorial
function:

class MathStuff {
...
factorial(x) {
if (x < 2) return 1;
return x ∗ factorial(x − 1);

}}
ConstrainedJava supports classes and single inheritance.

Interfaces are not supported, as dynamic typing means they’re
not needed. Classes are defined with the class keyword, fol-
lowed by a class name, and optionally the extends keyword
along with the name of the class to inherit from. Fields can
be declared inside them, with the keyword var or the name
of a type, followed by the name of the field. Methods are
declared by specifying an optional return type, followed by
the method name, the arguments, and the method body. A
class’s constructor is merely a method with the same name
as the class and no return type.

For example, the following class implements a simple
rectangle that can draw itself:

class Rectangle extends Drawable {
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var topLeft;
var bottomRight;

Rectangle( topLeft, bottomRight) {
topLeft = topLeft; bottomRight = bottomRight;

}
draw(g) {
g.drawRect(topLeft.getX(), topLeft.getY(),
bottomRight.getX(), bottomRight.getY());

}}
The class defines two fields, topLeft and bottomRight. It

also defines a constructor taking default values for those
fields, and a method to draw the rectangle when passed a
java.awt.Graphics object.

3.1.1 Creating Objects
An object is constructed in the same way it would be in ordi-
nary Java: using the new keyword. A new object’s owner is
initially the object that called its constructor. In the follow-
ing example, the Lounge object’s owner would be the House
object that created it:

class House {
var myKitchen = new Kitchen(); ...

3.1.2 Sending Messages
Message sending is also syntactically similar to Java —
although message sends are dynamically checked to ensure
they don’t violate the rules of the encapsulation enforcement
part of Constrained Java (see section 2.1).

someObject.callMethod();

class Thing {
callMethod() {
...

}}

3.1.3 Blocks
ConstrainedJava provides Smalltalk-like blocks, i.e. closures.
A block acts like an object with a single method, value().
The code executes in the scope of the method in which it
was defined, and is able to access the local variables defined
in that method. The value method returns the result of the
last expression, unless a return statement is executed, in
which case the method declaring the block returns the value
provided to the return statement in the block.

For example, a method that returned the first item in a
list greater than some specified value could use a closure as
follows:

class MathStuff {
...
firstAbove(list, a) {
list.forEach(block(b) {
if (b.above(a)) return a;

});

return null; // if no match
}

}
In this code, the forEach method on the list is passed a

block. The block is defined to take one parameter, and return a
value depending on a condition. When the block executes the
statement return a, the stack will be unwound, the forEach
loop will be terminated, and the sender of the firstAbove
method will have the value of the variable a returned to it. If
no match is found, the method returns null.

3.2 Ownership in ConstrainedJava
ConstrainedJava implements the Dynamic Ownership struc-
ture described in section 2.2. An owner pointer is present
in every object, which can be read by sending the owner()
method. Operations are provided to make use of and change
these owner pointers. For example, the code below informs
an object’s owner that one of its children has changed, by
sending a notifyChanged() method.

...
setChanged() {
owner().notifyChildChanged(this);

}
...

An object’s owner() returns a reference that is treated
as any other object reference: it may be stored elsewhere,
passed to other objects and receive other messages. Note that
an object does not have control over which object owns it: if
messages are sent to an object’s owner, care must be taken to
ensure that the owner is able to handle the messages sent to
it.

3.2.1 Ownership Change
Dynamic Ownership allows object ownership to be changed
at runtime. Programs may need to change objects’ ownership
either to reflect changes in the domain (as in a Kitchen
moving between buildings) or to support implementation
efficiency (moving nodes to merge linked lists).

Changes of ownership are initiated with the gift method,
which when sent to an object by its owner causes that object’s
owner to be changed to the object specified as the method’s
only parameter:

class thingy {
...
line = new Line(p1, p2);
// this owns line
line.gift(drawing);
// now, drawing owns line
drawing.add(line);

}
Changing an object’s ownership moves it within the own-

ership tree, changing the object it is encapsulated within. We
check that this does not create a cycle in the ownership tree
by ensuring that the object whose ownership is being changed
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does not contain its new owner: this ensures the ownership
tree remains a tree. Operations that affect the ownership of an
object may only be performed by the object’s current owner.

Ownership change occurs independently of any references
held by any objects, including the previous owner, the new
owner, or the object whose ownership is being changed may
hold. Dynamic Ownership does not require or enforce the
tree of ownership pointers to have any relationship with any
other references in the program — but of course changing an
object’s ownership will have consequences for its visibility,
and thus for which messages it can receive.

3.2.2 Factory Methods
A common case of ownership change is a factory method –
one which returns an object for use by another part of the
system. Factory methods are commonly used to create a new
object (or retrieve one from a pool), perform some extra
initialisation on it, and then return the new object for use by
the factory method’s sender.

ConstrainedJava’s ownership system supports factory
methods through the factory method modifier, which trans-
fers the ownership of the returned object to the factory
method’s sender. If the object containing the factory method
does not own the object returned by that method, the program
will throw an OwnershipError.

The example method below creates a new widget object,
adds it to a list of widgets, and then returns the new object. As
the method is marked as being a factory method, the object
that sent the newWidget method will gain ownership of the
new widget object returned by the method.

class WidgetFactory {
...
factory newWidget(a) {
w = new Widget(a);
widgetList.add(w);
return w;

}}
Note that after the newWidget method returns, the factory
will retain a reference to the newly created widget, even
though the factory no longer owns the widget. Assuming the
widget is still visible to the factory, the factory will be able to
send oneway or pure messages to the widget, for example to
allocate or deallocate caches, or to redraw the screen.

This facility for factory methods could be emulated with
the gift method described in the previous section The require-
ment to transfer ownership of an object to a method’s sender
is present sufficiently often that it is nonetheless a useful
feature to have.

3.2.3 Pure and Oneway Methods
ConstrainedJava requires externally independent methods to
be labelled with a pure or oneway method modifier. For
example, the add method in a list might be marked oneway:

class List { // ...

Figure 2. Sheep clone of an object

public oneway add(o) {
// ...
}}

if it does not need to return a result.
Similarly, a message which returns an object’s hash code

could be labelled pure — assuming the method only accesses
final fields or sends other pure methods:

class Student {
final int number; // set by constructors
final String surname; // set by constructors

public pure hashCode() {
return number + surname.hashCode();

}}
Neither oneway nor pure modifiers impose any compile-

time restrictions. If a pure method accesses mutable state or
sends a normal method, an OwnershipException is thrown,
while return values and exceptions from oneway methods
are discarded and not returned to the sender.

3.3 Cloning Objects
Having ownership information available allows the imple-
mentation of an ownership-directed sheep clone [23].

A sheep clone is somewhere between a shallow clone
(cloning only the target object) and a deep clone (cloning
the transitive closure of the target and all objects it refers to).
An ownership based sheep clone acts as a “do what I mean”
clone for aggregate objects, cloning the objects which are
contained by the target object.

Like a deep clone, a sheep clone recursively follows
references from the cloned object to find other objects as
candidates for cloning. But unlike a deep clone, not all of
these objects are cloned. The ownership tree is consulted;
only references to objects contained by the object which is
the subject of the clone are followed. References to objects
in other parts of the ownership tree are retained in the cloned
object graph.
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For example, in figure 2, a sheep clone of the List object
is requested. The sheep clone operation follows the link from
the list to the first node, and the first node to the second node,
and each time, successfully checks that the new object found
is contained within the list. When the sheep clone operation
follows the references from the nodes to the Lounge and
Kitchen, it checks if they’re contained within the list by
following owner pointers. As this check fails, the Lounge
and Kitchen objects are not marked for cloning.

Then the objects identified for cloning by the last step are
duplicated. The ownership structure of the original object tree
is replicated, as are the references between the cloned objects.
References to objects outside the set of cloned objects are
retained, so the cloned nodes still have pointers to the same
lounge and kitchen objects as the original nodes.

3.4 Exported objects
Interface objects, such as iterators, present a problem with the
message send rules in section 2.4. The interface objects will
be created by objects such as lists, but the object owning the
list can’t send unrestricted messages to them unless it owns
them, and if ownership of the interface object is transferred
to the list’s owner, then the iterator can’t access the list’s
mutable state (figure 3).

Figure 4. Export: the interface solution

Dealing with interface objects such as iterators requires
some sort of export operation: a way for the iterator object to
send unrestricted messages to the list, and be sent unrestricted
messages by at minimum the list’s owner.

We have augmented the Dynamic Ownership model to
provide such an export operation. When an object (such as a
list) exports another object (such as an iterator), the exported
object no longer has a separate ownership identity. The
exported object occupies the same location in the ownership
tree as its former owner; any objects it owned are now
effectively also owned by the object which exported it. An
object cannot be un-exported; once it has been exported, it is
inextricably linked to the object that exported it. Exporting
is a transitive relation. If some object a owns object b, and
b has already exported object c , then when a exports b , all
three objects will share the same ownership.

class List {
...
factory iterator() {
it = new Iterator(this);
it.export();
return it;

}}
This neatly solves the interface problem. An exported

object will have the same rights to access its exporter and the
objects it contains as the exporter itself has. Other objects in
the system will have the same rights to access it as they have
to access its exporter. For example, in figure 4, the aggregate
object is able to send unrestricted messages to the iterator,
and the iterator is able to send unrestricted messages to both
the list and the links in the list. In effect, the iterator becomes
part of the interface of the list object – the list’s owner can
mutate the list through either the list or the iterator.

Exporting doesn’t break the guarantees made by the
ownership system. While it changes how an object can be
owned, it still maintains the tree structure, and associated
rules and guarantees. The effect of the change is to allow
several objects to form the encapsulation boundary to a
set of objects they jointly own, rather than a single object
forming this encapsulation boundary. Messages between
these boundary objects, and from any one of them to any
of the objects they jointly own are classified as internal calls.

Internally, adding an export operation means that objects’
owner fields are supplemented by an ownership context field,
referring to an ownership context object, which may have one
or more objects associated with it. When one object exports
another, the exported object shares the exporting object’s
ownership context. The rules for message sends from table 1
are reinterpreted in terms of these contexts. In the eyes of
the ownership system, the exported and exporting objects are
now the same, as they share the same ownership context.

Exporting should be used sparingly, however, as it creates
a set of related objects between which all messages are
classed as internal calls. If every object in a program was
exported, then every object would occupy the same position
in the ownership tree, all messages sent between them would
be classed as internal calls, and no encapsulation guarantees
would be provided at all.

4. Implementation
The ConstrainedJava language is a modified version of the
BeanShell interpreter, with extensions to support Dynamic
Ownership. Adding Dynamic Ownership to the BeanShell
required a number of changes. ConstrainedJava tracks the
ownership of each object by adding an owner pointer. Own-
ership tracking is complicated by the need to allow for the
export operation, with ownership contexts supplementing
owner fields, as described above.

Ownership checks Checks have been added to facilitate
message restrictions. Every method call is checked to ensure
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Figure 3. The interface problem

that the message send restrictions are not violated, traversing
the ownership tree as necessary, and throwing an exception if
the check fails..

In addition, methods which have been marked pure must
not be allowed to access mutable state. This is implemented
by setting a pure-mode flag for the current thread, and
checking each field access to ensure that pure mode only
accesses final fields.

Oneway methods are accommodated by forcing them to
return void, and ignoring any exceptions they throw.

Finally, gift, export, and factory method sends are
checked so that they may only be sent to an object by that ob-
ject’s owner (or returned by the owner, in the case of factory
methods) or an exception is thrown.

Calling Java ConstrainedJava inherits from BeanShell the
ability to call native Java code, and to instantiated native Java
objects, as if they were ConstrainedJava objects. Because
ConstrainedJava uses reflection to call Java methods (rather,
say, than interpreting method bytecodes), ConstrainedJava
has no control over the behaviour of native Java code. Native
Java objects created by ConstrainedJava code are wrapped to
give them owner pointers, but these wrappers can be lost when
Java code deals with native objects, losing the ownership
checks. We recommend programmers compartmentalise Java
objects to a small part of the program, and they need to
be aware that ConstrainedJava cannot retrofit ownership
checking into those objects.

4.1 Performance
Our implementation of ConstrainedJava is only a proof of con-
cept: it has not been optimised for performance. To gain some
impression of the overhead imposed by ownership checking,
we instrumented ConstrainedJava to record information about
the performance of the ownership system while running a
number of demonstration and benchmark programs. The ma-
jor overhead added by the ConstrainedJava system is that
every field access and message send requires the ownership
system to check what restrictions may apply to it.

First, we gathered some ownership statistics by running
a series of small benchmarks totalling 1700 lines of code.

While these benchmarks are not large enough to be sure the
results will generalise to large systems, we think the results
are indicative. Most (77%) of messages (this includes field
accesses) are sent to an object directly owned by the message
sender — these are internal sends of unrestricted messages.
Only 22% are external sends, restricted to being externally
independent — pure or oneway. The remaining 1.2% are
(unrestricted) internal sends within an object. Checking if a
message sender a directly owns the receiver b is a relatively
cheap operation; it requires checking that b.owner == a – that
the receiver’s owner is the sender.

A simple 70 line program [13, Appendix B] to perform
inserts into a sorted list was benchmarked on a 2.8GHz Pen-
tium 4 running NetBSD and Sun’s Java 1.5.0 HotSpot JVM,
with both the original Beanshell 1.3.0 on which the Con-
strainedJava prototype implementation was based, the new
Beanshell 2.0b4 from which some changes were taken, and
the ConstrainedJava prototype implementation, both with en-
capsulation enforcement on and turned off. For comparison,
we also include results from other scripting languages. Aver-
ages are over the last 40 iterations of a loop of 47 runs, with
an inner loop that performs 4000 inserts.

Interpreter Min Ave

ConstrainedJava (no EE) 367 380

ConstrainedJava (EE) 389 404

BeanShell 1.3.0 259 267

BeanShell 2.0b4 3566 3617

JavaScript 20 21

Python 2.4.3 49 51

OpenJFX-200707201531 631 637

Table 2. Performance (all times in milliseconds)

The data (table 2) show that maintaining the ownership
information, which is still done even with encapsulation en-
forcement turned off, causes the program to run 41% slower.
Adding message send checks only reduces performance by a
further 6%.

The reason for the much slower BeanShell 2.0b4 result is
a new structure for handling BeanShell-generated objects. We
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include these figures to show that while ConstrainedJava’s
performance is slower that BeanShell 1.3, it is still signifi-
cantly quicker than BeanShell 2.0. Comparison with other
scripting languages shows that while both BeanShell and
ConstrainedJava are much slower than optimised interpreters
such as JavaScript, the performance is comparable with the
recently released language JavaFX Script.

5. Discussion
In this section we discuss and evaluate some features of
ConstrainedJava, based on our experience so far.

5.1 Labelling Methods
ConstrainedJava requires externally independent methods
to be labelled with a pure or oneway method modifier.
Checks are then performed at runtime to ensure a pure
or oneway method conforms to the constraints implied by
that label — if a pure method accesses mutable state, an
OwnershipException is thrown, and anything returned by a
oneway method is eaten by the interpreter and not passed
through to that method’s sender. Therefore, it would be
possible to partially or completely forego method labels
and rely on runtime checks to ensure that the method either
does not access mutable state or does not return any result.
Defaulting to assuming pure mode if the message send rules
require a method to be externally independent would be one
way of doing this.

Not requiring such labelling turns out to be a bad idea,
however. It makes these methods pure or oneway polymor-
phic – in some situation they are restricted, and in others
they are not. Experience with using ConstrainedJava to write
programs shows that it is very easy to write methods marked
pure that access mutable state by mistake. When they’re not
labelled as pure, ownership errors in an unlabelled method
are less obviously the cause of a problem: it is not forced
to run in pure mode unless the message send rules require
it to. As most messages are classified as internal sends (see
section 4.1) problems with code in such methods will only
show up intermittently, when they are sent by some other
object.

Oneway mode will not cause ownership errors to be
thrown, rather exceptions or return values are silently dis-
carded. Methods declared as pure, however, will cause own-
ership errors to be thrown when non-final fields are accessed,
or non-externally independent methods are sent. For example,
in the following class there are two pure methods, one which
accesses a non-final field, which is disallowed dynamically,
and one which delegates this to an externally independent
oneway method, which is allowed:

class Foo {
final f;
var m;

public pure doStuffBad() {

m++; // disallowed
i = f + 4; // ok
return i; // ok

}
public pure doStuffGood() {
incM(); // ok
i = f + 4; // ok
return i; // ok

}
private oneway incM() {
m++;

}}
The point here is that the increment m++ is treated as a normal
message send that reads and writes state, so it cannot be
called from a pure method, however encapsulating it inside
the oneway incM helper method masks those effects from
the calling thread, and makes an extra, effectively outer-level,
call on the Foo object to update the field.

This ambiguity, however, does illustrate one design choice
in ConstrainedJava: to annotate methods, rather than mes-
sage sends: there is no distinction in the caller between sends
to pure, oneway, and normal methods. An alternative de-
sign could distinguish these syntactically within the sending
method, rather than at the receiver, however exploring that
part of the design space remains as future work. This would
also remove another issue with this design, which is that
different subclasses can implement the same messages in
different ways — a oneway method can override a normal
method that overrides a pure method — and in any combina-
tion. We have designed our programs so that this issue has not
arisen, but it could lead to problems where dynamic dispatch
ends up selecting different types of methods without warning.

5.2 Blocks
ConstrainedJava’s blocks (section 3.1.3) provide the same
facilities as Smalltalk’s blocks. They allow an object to be
created with a single value() method, which runs in the scope
in which the block was defined.

a(b) {
b.visitNodes(block oneway (x) {

if (x.equals(””)) { return false; }
});

return true;
}

ConstrainedJava uses exporting (section 3.4) to deal with
blocks. A block never has a separate owner – it inherits the
ownership context of the object that created it, effectively
being exported by its creator. Thus, blocks maintain access to
the object that created them, and messages sent to them have
the same restrictions imposed on them that messages sent to
their creator object have.

Some common uses of blocks are allowed by the message
send rules; some others, in particular, many Smalltalk-style
control structures do not. Using blocks with a forEach method
on a collection to iterate through that collection requires the
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block to be marked oneway. The collection’s call back to the
block counts as an external send, and is thus allowed. For
example, in the following code snippet:

var sumlist(list) {
sum = 0;
list.forEach( block oneway (x) { sum += x } );
return sum;

}
when the object representing the block block oneway (x) {...}
is created, ConstrainedJava automatically causes it to ex-
ported by its owner – effectively, for ownership purposes, it
becomes a part of the object it was declared in.

Emulating more Smalltalk-style control structures is
harder. Implementing a Smalltalk-style if using blocks and
ifTrue and ifFalse methods on singleton True and False ob-
jects does not, however, work. While an ifTrue message can
be sent to a singleton boolean object, if that object is True,
then it cannot send a message back to the block passed to it,
as the block would not be visible to the shared singleton True
object, which would be owned by the root object.

5.3 Binary Methods
The issue with blocks illustrates a wider problem the Dy-
namic Ownership model has with binary methods — that is,
methods involving two or more objects. In static languages,
such methods can also cause problems for object-oriented
type systems [5]. Consider a simple equals method:

class Avatar {
int level = 1;
Weapon weapon = new Sword();
boolean equals(Avatar other) {
return (level == other.level) &&
(weapon.equals(other.weapon));

}}
The equals method cannot be pure, because it references
the mutable level and strength fields; not can it be one way
because it must return a result to its caller — we show an
(unnecessary) explicit boolean return type here. The method
also needs to read and return the mutable state of its other
argument. Both objects must be mutually visible to each other,
so they must be very closely related indeed in the ownership
hierarchy. This can cause problems in practice, especially as
a recursive comparison of two complex objects is practically
impossible — if each Avatar owns their Weapon object
then the recursive call weapon.equals(other.weapon) will
always fail, because other.weapon will not be visible from
this.weapon, assuming this and other are sibling objects.

Our implementation of ConstrainedJava includes several
experimental mechanisms to address this problem, by grant-
ing a method temporary access (“borrowing” [4]) to objects
passed as method arguments — much as a method always
gains internal access to this) [13]. We plan to continue to
investigate support for binary methods in future language
designs.

5.4 Patterns in ConstrainedJava
Finally we describe how a number of common design pat-
terns [11] interact with the object ownership and encapsula-
tion enforcement provided by ConstrainedJava.

5.4.1 Proxy
Proxy objects act as stand-ins for some other object, providing
access to its facilities while imposing extra requirements, like
not instantiating the proxied object until it is required, or
disallowing access to some of its methods.

A proxy object must own or export the object it is provid-
ing access to, if it needs to send unrestricted methods within
the object. If the proxy object does own the proxied object,
without exporting it, objects not contained by the proxy will
be unable to send any messages to the object the proxy is
encapsulating.

5.4.2 Iterator
An iterator is similar to a proxy in that it provides access to
some other object, usually a collection. But unlike a proxy,
it must do this without usurping ownership of that object.
Collections may have several iterators in use at once, and
only one of them would be allowed to own the collection.

The solution to this problem provided by our ownership
system is the export facility, which allows the iterator to
become part of the collection’s public interface, able to send
and receive messages as if it were the collection object itself.

5.4.3 Visitor
A Visitor is an object that performs some operation when
passed an object. Visitors are themselves typically passed to
some aggregate object. This aggregate causes some method
on the visitor to be called for each of some set of other objects;
maybe by those objects themselves – for example, the nodes
in a graph.

The problem here concerns the nature of the calls back
to the visitor object. As the visitor is likely to be owned by
the owner of the aggregate objects whose elements are being
visited, sends to externally independent methods could be
made to the visitor object. In this case, however, the visitor
would have no ability to make sends to the elements at all, and
only send externally independent messages to the aggregate
that owns the elements.

If the visitor called back, by another oneway method, the
object that owns it and the aggregate being visited, that
would allow this owning object to send messages to the
aggregate, manipulating the element. Additionally, if the
visitor object was merely a closure that was part of the object
owning the aggregate, then a call back from the visitor to
the aggregate would not be necessary. Calling the aggregate
to manipulate the objects it contains is very similar to the
style of programming used when conforming to the Law of
Demeter [17].
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5.4.4 Composite
Composite has no special problems with the encapsulation
system – the digraph of references from composites to leaves
and other composites would be nicely mirrored by the owner
pointers going in the opposite direction. If it is used with
the visitor pattern, however, the restrictions mentioned in
section 5.4.3 would apply.

5.4.5 Factory Method
A factory method instantiates an object on behalf of some
other object, often using runtime information to make deci-
sions about the type of object to create.

Factory methods typically change mutable state and return
an object; therefore, they count as normal methods and can
only be sent from the object they are part of, or that object’s
owner. Dynamic Ownership provides the factory method
modifier (see section 3.2.2) which transfers the ownership
of the object returned by the factory method to the object
sending then message.

5.4.6 Singleton
The singleton pattern ensures that a program only ever creates
one instance of a particular class.

While this is not in itself a problem for the ownership
system, it does influence what a singleton class can do. If the
singleton is to be accessed directly by several objects which
do not contain each other, then many objects in the system
will only be able to send externally independent methods on
the singleton object, as they do not contain the singleton.

In some cases this is not a problem. Operations such
as sending messages to be logged, or other output, can
be performed with oneway methods, which are externally
independent. But maintaining a cache accessible by the
whole program requires unrestricted methods to be sent.
ConstrainedJava does not currently provide a mechanism
to support this.

5.4.7 Observer
The observer pattern does not pose any particular problems
to our ownership system. While the observer is visible to the
observed object, oneway “I’ve changed” messages can be
sent back to the observer. The message that subscribed the
observer to updates would have to be sent by the observed
object’s owner, but this can be passed down the ownership
tree, law-of-demeter style [17].

6. Related Work
Many systems have been proposed to deal with the problem
of unrestricted aliasing. Most of these existing systems rely
on language facilities which are often absent in object ori-
ented dynamic languages – explicit typing, a single compile
time, and a rigid notion of class. These same features are
common to most class-based object oriented languages, such
as Java [2], C++ [15] and C� [10].

Islands [14] enforce encapsulation via programmer anno-
tations on fields and methods. Groups of objects, known as
Islands, are defined. Each Island has a bridge object; static
references to objects within the island other than the bridge
from objects outside the island are disallowed.

The Balloon Types system [1] allows classes to be declared
as being balloons. Balloon objects cannot have more than
one reference to them held at any one time, and objects
not encapsulated by a balloon object may not refer to the
objects that the balloon encapsulates. Therefore, balloon
objects can not be aliased, and the objects encapsulated by a
balloon may not be aliased by objects outside of the balloon.
Balloon Types enforces these restriction by a compile-time
full program analysis, unlike most other static systems which
merely enforce simple local rules at compile-time.

Flexible Alias Protection (FLAP) [24] is a system for en-
forcing encapsulation. FLAP defines a set of modes (rep, arg
and free mode) that can be used to annotate variable defini-
tions and object constructions, which are then propagated
through the program. This set of modes are used to statically
enforce a set of invariants:

• No Representation Exposure: Component objects which
make up an aggregate object’s representation (rep mode)
should not be returned to the rest of the system.

• No Argument Dependence: An expression referring to an
object which is an argument of an aggregate object (arg
mode) cannot be used to access that object’s mutable state.

• No Role Confusion: Expressions of a mode other than
free cannot be assigned to a variable of another mode.

These invariants are enforced by ensuring that references held
in one mode may be converted to references held in another
mode only in certain circumstances, and disallowing certain
operations with references held in a certain mode. For in-
stance, references held in arg mode may only be used to send
clean methods, which are not allowed to access mutable state.
Dynamic Alias Protection was first proposed as a dynamic
analogue to Flexible Alias Protection [23]. ConstrainedJava’s
Dynamic Ownership is the first implementation of this pro-
posal, extends it in significant ways (exporting and ownership
transfer), and demonstrates that the performance overheads
are manageable.

Ownership types [7] are static type systems that provide
ownership information. Objects own object contexts – types
are annotated with context declarations, to produce ownership
types. Then, variables with ownership types referring to
different contexts cannot refer to the same object. This
ownership information is then used to provide a mechanism
to limit the visibility of object references. Later work [6]
extends this to allow support for interface objects, borrowing,
and numerous other extensions. For example, SafeJava [3]
extends Ownership Types to allow instances of inner classes
to be exported; while Ownership Generic Java [26] provides
a static ownership system on top of the Java language,
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utilising Java’s existing type checking and generic parameters
to provide a simple extension to the language to support
ownership.

Universe Types [20] extend Ownership Type by permitting
read-only access to any object, but only read-write access to
owned objects (internal sends). This prevents representation
exposure, but does not prevent argument dependence —
although in Universes, objects’ invariants may not depend on
external objects, mitigating that problem. Recent Universes
implementations [9] provide dynamic ownership checking,
to support dynamic “ownership casts” in an otherwise static
system, and ownership transfer based on uniqueness [19]. In
contrast, ConstrainedJava is a purely dynamic language, and
object transfers are unaffected by any references to objects
being transferred. The problem with all these approaches
that follow on from flexible alias protection is that they are
only suitable for statically checked languages — dynamic
ownership aims to fill that gap.

The object-oriented encapsulation system [27] provides a
flexible encapsulation enforcement system suited to dynamic
languages. Classes can restrict how their subclasses can
utilise them, and references have access policies allowing
only certain sets of methods to be called using them. This
work addresses different problems to Dynamic Ownership,
since (like other encapsulation systems that are not ownership
related) it controls only access to the names of methods and
fields, but not to the objects stored in those fields.

Finally ConstrainedJava is related to other object-oriented
dynamic languages that maintain tree structures of objects.
Amulet and Garnet, for example, maintained an explicit ob-
ject tree that modelled a UI widget tree [21]; NewtonScript’s
dual inheritance was often used similarly [28]. Similar struc-
tures were used in scripting languages for adventure games
[16] and music [25, 30]. While these languages support an
object tree structure, very few use it to provide any kind of
encapsulation or ownership support to programmers.

One exception is the object-oriented multi-user “adven-
ture” LambdaMOO [8, 18] that gives objects, attributes and
verbs (methods) unix-like “permissions”. The main use of
these permissions is access control in the multi-user environ-
ment: if a programmer does not have write permission to an
object or method, they cannot modify that object or method’s
code. Attribute permissions provide name-based read or write
protection, both per-field and per-user, while other permis-
sions allow objects to host new objects created inside them,
or ensure that attributes of new objects will belong to those
objects (rather than the factory that created them). Compared
with ConstrainedJava, LambdaMOO’s permissions are richer
because they take multiple users into account, and control
editing code as well as data, however LambdaMOO’s objects
(while organised into a tree) are not encapsulated within that
tree.

Figure 5 roughly compares some of these (and some other)
systems balance of expressiveness and safety.

Figure 5. Safety vs Expressiveness

7. Conclusion
We have presented the design and implementation of Con-
strainedJava, the first language to support Dynamic Owner-
ship. ConstrainedJava includes a number of dynamic checks
that ensure objects cannot suffer from representation expo-
sure or external dependence, while maintaining the flexibility
of a dynamic language. Dynamically recording ownership
structure, for example, allows ConstrainedJava to support
an ownership-based “sheep” clone, ownership transfer, and
exported interfaces, with acceptable performance.

Ideally there are a number of further issues we hope
to address in this design space. Given the development of
scripting languages since this project began, we would like
to implement the Dynamic Ownership and encapsulation
enforcement system on top of a more mainstream language
than BeanShell. It could be useful to produce a formalism
for the ownership and enforcement system provided by
ConstrainedJava, to prove that the encapsulation invariants
are maintained by the language. Finally, we hope to gain
more experience with dynamic ownership support in dynamic
languages.
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