
Automatic renovation of Java programs using ReRAGs
— examples and ideas

Torbjörn Ekman and Görel Hedin

Department of Computer Science, Lund University, Sweden
(torbjorn|gorel)@cs.lth.se

Abstract. When new constructs are added to a language there is a need for ren-
ovating existing programs to make use of the new constructs. We discuss how
this can be done using object-oriented ReRAGs (Rewritable Reference Attributed
Grammars), and exemplify with the transition from Java 1.4 to Java 1.5.

1 Introduction

When a language evolves and new features are added, it is usually desirable to renovate
existing programs to make use of the new features. Some new features could make old
programs illegal, and make renovation necessary. Other new features may allow old
idioms to be replaced by clearer code.

The evolution of the Java [GJSB00] language contains many such examples. In
the evolution from Java 1.3 to Java 1.4, the addition of the assert construct included
adding a new keyword to the language. Old programs that happened to use identifiers
with the name "assert" were incompatible with Java 1.4, and needed to be changed.
In the evolution to Java 1.5, a number of new language constructs are added, allowing
many programs to be simplified. An example is the new for loop that allows many
iterations to be expressed in a simpler way. Other Java 1.5 examples include static
imports, automatic boxing and unboxing, and the use of generics. The evolution need
not always concern the language as such. It could as well concern the evolution of
standard frameworks, for example by adding new operations that should be used in
favor over others that are deprecated.

How can automated support of such renovation be implemented? In simple cases
a text replacement tool might do the job. In other cases, more sophisticated techniques
are needed that analyze the program in order to identify exactly which parts of the code
are relevant to replace, and what to replace them with. For example, the new Java 1.5
for construct works only for iterators over types implementing thejava.lang.Iterable
interface, and not over arbitrary types. Another problem may be that many different
idioms may be used in the program, and a tool that identifies some standard predefined
idioms may not be sufficient.

In this paper we outline how these kinds of problems can be handled using Rewritable
Reference Attributed Grammars (ReRAGs), an object-oriented translation technique
that we have recently developed [EH04]. In ReRAGs, a program is represented as an
object-oriented abstract syntax tree (AST). Computations on the AST, e.g., to support
name analysis, type checking, etc., are easy to express in ReRAGs, and can be used by



conditional rewrite rules that can transform the AST to a suitable new form. In our pre-
vious work, we have used ReRAGs to implement a Java compiler. We are now looking
at how ReRAGs can additionally support program renovation.

ReRAGs have similarities to HAGs (higher-ordered attribute grammars) [VSK89]
[Sar99] and to other grammar-based transformation systems such as TXL [CHHP91],
ASF+SDF [vdBHdJ+01], and Stratego [V01], in its support of AST-based transforma-
tions. A major difference is, however, the object-oriented basis of ReRAGs where ASTs
are represented as trees of objects with properties represented as methods and reference-
valued fields. In contrast, TXL and HAGs have a basis in functional programming, and
ASF+SDF and Stratego have an algebraic basis, viewing the ASTs as functional tree-
structured values.

2 The Java 1.5 iterating for loop

The standardfor construct in Java is extended in Java 1.5 with a second form specifically
designed to iterate over collections and arrays. The following example, iterating over
all elements in a collection, illustrates the extended functionality.

Collection c = ... ;

for (Object o : c) {
System.out.print(o);

}

The new loop construct iterates over all elements inc and the current element is
bound through the variableo of type Object. The construct is even more powerful in
combination with generics where the type of the collection and current element can be
parameterized and need thus not be the generic type Object. Generics are not further
discussed in this paper. To be able to iterate over the expressionc it must implement a
new interface,java.lang.Iterable, that defines how to access the iterator. The standard
class libraries are extended to implement this new interface where appropriate.

Two different straight forward implementations of the new loop construct using Java
1.4 constructs are shown below. The first idiom for iterating over a collection is actually
used more than 60 times in the JDK1.4.2 standard libraries. The second, less common
version, occurs more than 10 times.

Collection c = ... ;

for (Iterator i = c.iterator(); i.hasNext(); ) {
System.out.print(i.next());

}

Collection c = ... ;

Iterator i = c.iterator();
while (i.hasNext()) {

System.out.print(i.next());
}



Source code implemented using the above described idioms to iterate over collec-
tions can automatically be renovated to use the new loop constructs. It is, however, im-
portant that this automatic process is safe in that the program semantics are preserved.
We will now describe how the first idiom can be detected and renovated to use the new
for construct.

A for statement starts with anInitPart, Iterator i = c.iterator() in the example above,
followed by aCondition, i.hasNext() above, and finally anIncrPart, empty in the ex-
ample. There is also aBody that contains the code for each step in the iteration. The
InitPart is evaluated before the iteration starts. The iteration repeatedly executes the
Bodyas long as theCondition is true. After each step in the iteration theIncrPart is
executed. We define the following pre-conditions to detect uses of the first idiom that
can safely be transformed:

– InitPart declares and initializes a single referencev of type java.util.Iterator
– initialization invokes theiterator() method defined in thejava.lang.Iterableinter-

face
– Conditionis an expression that invokes thehasNext()method onv
– IncrPart is empty
– There is a single access to the referencev in the statement body and that access is a

method invocation of thenext()method.

The new for statement starts with anInitPart followed by an expression,Collection,
that defines the collection to iterate over and finally a statement,Body, that is repeated
for each element. The transformation from the old statement to the new statement can
then be divided into the following steps:

– The InitPart contains a variable declaration re-using the namev from the old ver-
sion. That name can be used since the iterator will not be used any longer.

– TheCollectionis created from the initialization part ofv in the oldInitPart except
that the invokation ofiterator() is removed.

– The Body from the old statement is transformed by removing the next invocation
from the referencev.

3 Expressing the change using ReRAGs

This section describes how the pre-conditions and transformation can be implemented
using ReRAGs and our existing grammar for Java. The statements are modelled using
the following abstract syntax tree (AST) definitions:

ast ForStmt extends Stmt ::= VariableDecl initPart , [Expr condition],
Stmt incrPart*, Stmt body;

ast IterateStmt extends Stmt ::= VariableDecl initPart ,
Expr collection , Stmt body;

The ForStmt node extends the Stmt node, initPart is a VariableDecl, condition is an
optional Expr, incrPart a list of Stmts, and the body is a single Stmt. Node types with
accessor methods are automatically generated and the interface for the ForStmt is shown
below:



class ForStmt extends Stmt {
int numInitPart() { ... };
VariableDecl initPart(int index) { ... };

boolean hasCondition() { ... };
Expr condition() { ... };

int numIncrPart() { ... };
Stmt incrPart(int index) { ... };

Stmt body() { ... };
}

Definitions of AST-node declarations, attributes, and methods are grouped in modules
where each module describes a certain aspect of the system. An aspect that transforms
uses of the old collection iteration idiom into an iteration using the new for construct is
show below. Four boolean methods checking one pre-condition each are woven into the
ForStmt class using a notation similar to static introduction in AspectJ[KHH+01]. The
first method,checkInitPart, uses the existing name-binding framework to lookup the
java.lang.Iterableinterface. The type of theinitPart is then verified to be an instance
of that particular interface. The second method,checkCondition, is verifying that the
condition is a method access and that the left hand side of the invokation is referencing
the variable declared in theinitPart and that the method invoked is namednext. The third
method,checkIncrPart, then verifies that there are noincrStmts. The body is verified
using a generic traveler that verifies that there is a single access to the variable declared
in the initPart similar tocheckCondition.

The methods are used for pre-condition checking when rewriting ForStmts. The
conditional rewrite declaration,rewrite ForStmt, states that each emphForStmt node is
to be rewritten to anIterateStmtwhencheckInitPart, checkCondition, checkIncrPart,
andcheckBodyare all. The rewrite declaration then rewrites the old statement into the
new one. TheBody is first transformed by invoking therewriteBlockmethod that is
a generic tree traveler that rewrites the body top-down. When the body is rewritten
the type of the initPart is changed to java.lang.Object and the initializer is used as a
collection expression. A new IterateStmt is finally created taking the modified initPart,
collection, and block as parameters.

aspect RenovateIteration {
boolean ForStmt.checkInitPart() {

TypeDecl iterable = lookupType("java.lang.Iterable");
return variableDecl().type().instanceOf(iterable) &&

variableDecl().hasInit();
}

boolean ForStmt.checkCondition() {
if (condition() instanceof MethodAccess) {

MethodAccess m = (MethodAccess)condition();
if (m.reference().decl() == variableDecl() &&

m.name().equals("next"))
return true ;



}
return false ;

}

boolean ForStmt.checkIncrPart() = numIncrPart() == 0;

boolean ForStmt.checkBody() { ... }

rewrite ForStmt {
when (checkInitPart() && checkCondition() && checkIncrPart()

&& checkBody())
to IterateStmt {

body().rewriteBlock(initPart());

initPart().setType(new TypeAccess("java.lang.Object");

Expr collection =
((MethodAccess)initPart().assignmentInit ()). reference();

return new IterateStmt(initPart(), collection , body());
}

}

void ASTNode.rewriteBlock(VariableDecl varDecl) {
for (int i = 0; i < numChild(); i++) {

if (child(i) instanceof MethodAccess) {
MethodAccess m = (MethodAccess)child(i);
if (m.reference().decl() == varDecl

&& name().equals("next")) {
setChild(i, m.reference());

}
}
child(i).rewriteBlock(varDecl);

}
}

}

From the specification above, our ReRAG tool JastAdd II generates a Java imple-
mentation that automatically carries out the renovation of input programs.

4 Conclusions

In this paper we have discussed the need for program renovation when languages evolve,
and exemplified how such renovation can be supported by ReRAGs. We have imple-
mented a full Java 1.4 grammar in ReRAGs, and are currently extending our implemen-
tation to Java 1.5. Within this work, we are also experimenting with how to renovate
existing Java 1.4 programs to exploit the new constructs in Java 1.5. In our experience
so far, we have found several features of ReRAGs to be important for this task.



– The object-oriented basis of ReRAGs gives a natural representation of the program,
familiar to people with an object-oriented background.

– The attribution specified in the Java grammar provides a framework that is easy to
use in specifying the renovation transformations. For example, the AST can be eas-
ily navigated, both along the AST hierarchy and along other dependences such as
use-declaration links and sub-superclass links. The attribution also includes prop-
erties of the different AST nodes, e.g., type information, that is readily available in
order to define the conditions for the rewrite.

– The renovation rewrites are expressed as aspects (similar to AspectJ static intro-
duction) that allows them to be expressed in a modular way, separate from the Java
grammar, but allowing access to the AST framework.

As a result, transformations can be expressed in a both modular and natural way,
and with a small effort. We intend to continue this work by exploring additional ex-
amples, both concerning new or changed language constructs, and concerning changed
framework APIs.

References

[CHHP91] James R. Cordy, Charles D. Halpern-Hamu, and Eric Promislow. Txl: a rapid
prototyping system for programming language dialects.Computer Languages,
16(1):97–107, 1991.

[EH04] Torbjörn Ekman and Görel Hedin. Rewritable Reference Attributed Grammars. In
Proceedings of ECOOP 2004, 2004. Accepted for publication.

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.The Java Language Spec-
ification Second Edition. Addison-Wesley, Boston, Mass., 2000.

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of AspectJ.Lecture Notes in Computer Sci-
ence, 2072:327–355, 2001.

[Sar99] Joao Saraiva.Purely functional implementation of attribute grammars. PhD thesis,
Utrecht University, The Netherlands, 1999.

[vdBHdJ+01] Mark van den Brand, Jan Heering, Hayco de Jong, Merijn de Jonge, Tobias
Kuipers, Paul Klint, Leon Moonen, Pieter Olivier, Jeroen Scheerder, Jurgen Vinju,
Eelco Visser, and Joost Visser. The ASF+SDF Meta-Environment: a Component-
Based Language Development Environment. InProceedings of Compiler Con-
struction 2001, LNCS. Springer, 2001.

[VSK89] H. H. Vogt, S. D. Swierstra, and M. F. Kuiper. Higher order attribute grammars.
In Proceedings of the SIGPLAN ’89 Conference on Programming language design
and implementation, pages 131–145. ACM Press, 1989.


