
Extracting Lexical Views from Software
Sattose

Jean-Rémy Falleri, Michel Dao, Marianne Huchard, Mathieu
Lafourcade, Clémentine Nebut, Violaine Prince

LIRMM, CNRS, Université Montpellier 2 et France Télécom

mai 2009



Motivation

• Strong impact of identifiers for understanding programs
• Many reverse engineering tasks are based on names

• detection of defects
• program restructuring
• aspect mining

• Linguistic resources not sufficient
• wordnet does not contain part of software vocabulary

(hashmap, thread)
• terms are composed, contain abbreviations, etc.



Proposal: extract and organize main terms of the software

Identifier 1 Identifier 2
Step TestWrapper ManualTestWrapper

Tokenization Test,Wrapper Manual,Test,Wrapper
POS tagging (Test,NN),(Wrapper,NN) (Manual,JJ),(Test,NN),(Wrapper,NN)

Dependency sorting (Wrapper,NN),(Test,NN) (Wrapper,NN),(Test,NN),(Manual,JJ)
Lexical enhancement (Wrapper,NN)

Lexical relations hypo(ManualTestWrapper,TestWrapper)
hypo(TestWrapper,Wrapper)

hypo(ManualTestWrapper,Wrapper)

Lexical view

(Wrapper,NN)

(Wrapper,NN)(Test,NN)

(Wrapper,NN)(Test,NN)(Manual,JJ)

Table: Analysing two wrapper identifiers (from Salome-TMF)



Lexical relations

Thing
Element
Object

Animal

Bird Feline Zebra

hyper

h
yp

e
r

syn

hypo

h
yp

oFlying thing

Figure: A sample lexical view



Tokenization (segmentation)

TestWrapper ⇒ Test,Wrapper

Clues for cutting:
• Sequences of numeric characters (block129)
• Sequences of non alpha-numeric characters (next_warning)
• Case changes (as in getNextWarning)

Alternative strategies: use a dictionary (corruption risk)



POS tagging

Classifies the words into grammatical categories: noun, adjective,
verb, etc.
Uses the Tree-tagger tool [Schmid 1994]

Test,Wrapper ⇒ (Test,NN),(Wrapper,NN)

(Manual, Test, Wrapper,NN) ⇒
(Manual,JJ),(Test,NN),(Wrapper,NN)

file, configuration ⇒ (file,NN), (configuration,NN)
- unfortunately (file,VV), (configuration,NN)



Dependency analysis

(Test,NN),(Wrapper,NN) ⇒ (Wrapper,NN),(Test,NN)
Sorts the words according to their importance for the meaning
Wrapper is the noun, Test is a precision about the noun

1. size(I) = 0 ⇒ stop

2. size(I) = 1 ⇒ insert the element of I at the end of N, and remove it from I .

3. size(I) = 2, the first element is a noun, while the second is not, ⇒ the first element is added at
the end of N and removed from I .

4. the first element of I is a verb ⇒ it is added at the end of N and removed from I .

5. the first element of I is a preposition ⇒ it is added at the end of N and removed from I .

6. I is the sequence (E=elements that are not prepositions, P=a preposition, R= the rest) ⇒ apply
rules to E and add the result to N, add P, apply rules to R and add the result to N

7. the last element of I is a number ⇒ it is moved at the beginning of I .

8. (Default rule) the last element of I is added at the end of N and removed from I .



Dependency analysis

JavaBlock12
I = (Java, NN), (Block , NN)(12, CD), N = ∅

1 Rule 7 (last element is a number), move (12, CD) at the
beginning of I
I = (12, CD), (Java, NN), (Block , NN), N = ∅

2 Rule 8 (default), transfer (Block , NN) at the end of N.
I = (12, CD)(Java, NN), N = (Block , NN)

3 Rule 8 (default), transfer (Java, NN) at the end of N.
I = (12, CD), N = (Block , NN)(Java, NN)

4 Rule 2 (size(I )=1), transfer (12, CD) at the end of N
N = (Block , NN)(Java, NN)(12, CD)



Lexical enhancement

With TestWrapper and ManualTestWrapper
Recognizing implicit concept (Wrapper,NN)
They are the common prefixes in output of previous step



Lexical view

Recognizing lexical relations (Wrapper,NN)
(Wrapper,NN)

(Wrapper,NN)(Test,NN)

(Wrapper,NN)(Test,NN)(Manual,JJ)

Some synonym terms can be given in advance
• same length, same prefix = synonyms
• different sizes, common prefix covering one identifier = the

longuest is the hyponym, the smallest is the hyperonym
• otherwise different sizes, common prefix = terms are

co-hyponyms



Lexical view



Lexical view



Validation

Extraction at random of 5 attributes, classes and operations
identifiers from 24 Java open source softwares = 360 identifiers
The output of our technique is compared to manual operation
results.
• ratio of identifiers that have been successfully tokenized,
• ratio of identifiers that have been affected correct

parts-of-speech,
• ratio of identifiers for which the dependency sorting has been

applied correctly.



Validation
• pk

tok successfully tokenized
• pk

tag correct parts-of-speech
• pk

dsort correct dependency analysis

Efficiency of our NLP techniques
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

cls attr op cls attr op cls attr op

Tokenization POS tagging Dependency sorting

1.00
0.97

0.99
0.96

0.94

0.83

0.94 0.94

0.88



Ongoing work

• using the lexical relations in class hierarchy restructuring
• analysing the built lexical views
• finding users for the technique...


