
Visualizing and Characterizing the Evolution of Class Hierarchies

Tudor Ĝırba and Michele Lanza
Software Composition Group

University of Berne
Switzerland

{girba, lanza}@iam.unibe.ch

Abstract

Analyzing historical information can show how a soft-
ware system evolved into its current state, but it can also
show which parts of the system are more evolution prone.
Yet, historical analysis implies processing a vast amount
of information which makes the interpretation difficult.
To address this issue, we introduce the notion of history
of source code artifacts as a first class entity and define
measurements which summarize the evolution of such en-
tities. We then use these measurements to define polymet-
ric views for visualizing the effect of time on class hierar-
chies1. We show the application of our approach on one
large open source case study and reveal how we classify
the class hierarchies based on their history.

Keywords: reverse engineering, software evolution,
historical measurements, software visualization, polymet-
ric views

1 Introduction

Analyzing historical information is difficult due to the
vast amount of information that needs to be processed,
transformed, and understood. Suppose we had as a case
study 40 versions of a software system’s code, each ver-
sion consisting on average of ca. 400 classes. We would
have to analyze 40 times more data (ca. 16000 classes,
i.e.,class versions) which would make the analysis much
more difficult. Still, the code history of a system holds
useful information that can be used to reverse engineer

1The visualizations in this paper make use of colors, please obtain a
color-printed or electronic version for better understanding.

the most recent version of the system and to get an overall
picture of its evolution. Nevertheless, it requires one to
create higher level views of the data.

In this paper we concentrate on describing and under-
standing the evolution of class hierarchies. We introduce
the notion of history as a first class entity and define mea-
surements which summarize the evolution of an entity or
a set of entities.

We use these measurements to define theClass Hi-
erarchy History Complexity View, a polymetric view [8]
[10] for visualizing the effect of time on class hierarchies.
Based on theClass Hierarchy History Complexity View
we define four characteristics of the evolution of class hi-
erarchies: the age of the hierarchy, the inheritance rela-
tionship stability, the class size stability, and the develop-
ment effort concentration balance. Based on these char-
acteristics we define a vocabulary to describe patterns of
evolution of class hierarchies.

We start by introducing the notion of a history and then
define history measurements. In Section 3 we introduce
the visualization based on the defined history measure-
ments, and we introduce a vocabulary we use to describe
patterns of class hierarchies evolution. In Section 5 we
apply our approach on a case study called Jun, an open
source software system, and discuss the results. Prior to
concluding we present the related work.

2 History Measurements

To introduce the visualization, we first need to introduce
our approach to measuring the evolution of entities. Thus,
we define ahistory to be a sequence of versions of the

1

same kind of entity (e.g., class history, system history,
etc.). By a version we understand a snapshot of an entity
at a certain point in time (e.g.,class version, system ver-
sion, etc.). Having history as a first class entity we define
historical measurements which we later use to vizualize
the evolution of class hierarchy.

1 2 3 4

Class
History A

Class
History B

Class
History C

Figure 1: Example of a system history displayed with a
simplified Evolution Matrix view.

Example. In Figure 1 we use a simplified example of the
Evolution Matrix view [9] to display a system history with four
versions. A cell in the matrix is marked by a square and rep-
resents a class version. A row in the matrix represents a class
history and a column represents a system version. We see that
class A was present in all four versions of the system, class B
was removed in the last system version, while class C appeared
in the system only after the first system version.

2.1 Evolution of a Version Property (E)

We define a generic measurement, called evolution of a
version propertyP (E(P, i)), as being the absolute differ-
ence of that property between versioni− 1 andi:

(i > 1) Ei(P, C) = |Pi(C) − Pi−1(C)| (1)

E(P, 1..n)is the sum of the absolute difference of prop-
erty P in subsequent versions from version1 (i.e., the first
version) to versionn (i.e., the latest version) of a history
H:

(n > 1) E1..n(P, C) =
∑n

i=2 Ei(P, C) (2)

We instantiate this measurement by applying it on dif-
ferent version properties of classes like:NOM (the num-
ber of methods) orNOS(the number of statements). Thus
we have two class history measurements: Evolution of
Number of Methods (ENOM) and Evolution of Number
of Statements (ENOS).

ENOM1..n(C) = E1..n(NOM, C) (3)

ENOS1..n(C) = E1..n(NOS, C) (4)

2.2 The age of a history and removed histo-
ries

Age of a history. We define theAgeas being the number
of versions of a history.
Removed histories.We say a history has been removed
if its last version is not part of the last version of the
system,i.e., if it did not survive until the most recent
version of the system.

1 3

2 2 2 2

D

B

ENOM AGE

7

0

5

7 3

5

2 4 3 5A

0F 1 2

2 4 7C 5 3

8

2

7

1

1 2 3 4 5versions

Legend:
x a class version with x methods

Removed

No

No

No

No

Yes

Figure 2: An example of evolutionary measurements.

Example. In Figure 2 we display an Evolution Matrix of five
system versions. Each cell in the matrix is a class version and

2

the number inside the cell represents the number of methods in
that particular version. We can see that:

• Class B was in the system from the very beginning to the
very end, but no methods were detected as being added or
removed during its history.

• Class A was also present in all the versions, but as opposite
to class D, many more methods were added or removed
during its history.

• Class A was in the system almost twice as many versions
as class D, but in both class histories there were equal
amounts of methods added or removed in subsequent ver-
sions.

• Class C has been removed from the system in its second
last version.

3 Principles of a Polymetric View

Color Metric

Position Metrics (X, Y)

Width Metric

Height
Metric

Edge Width Metric
and Color Metric

Entities

Relationship

Figure 3: The principles of a polymetric view.

We use visualizations to understand the details of the
evolution of class hierarchies. The visualization we pro-
pose is based on the polymetric views described by Lanza
[8] [10]. In Figure 3 we see that, given two-dimensional
nodes representing entities and edges representing rela-
tionships, we enrich these simple visualizations with up
to 5 metrics on the node characteristics and 2 metrics on
the edge characteristics:

Node Size.The width and height of a node can render
two measurements. We follow the convention that
the wider and the higher the node, the bigger the
measurements its size is reflecting.

Node Color.The color interval between white and black
can display a measurement. Here the convention is
that the higher the measurement the darker the node
is. Thus light gray represents a smaller metric mea-
surement than dark gray.

Node Position.The X and Y coordinates of the position
of a node can reflect two other measurements. This
requires the presence of an absolute origin within a
fixed coordinate system, therefore not all views can
exploit such metrics (for example in the case of a
tree view, the position is intrinsically given by the
tree layout and cannot be set by the user).

Edge width.The width of an edge can render a measure-
ment: the wider the edge, the higher the measure-
ment it is rendering.

Edge color.The color interval between white and black
can display a measurement. Here the convention is
that the higher the measurement the darker the edge
is.

4 Class Hierarchy History Com-
plexity View

In this paper we present a visualization calledClass Hi-
erarchy History Complexity View, whose specs are de-
scribed in Table 1. It uses a simple tree layout to seem-
ingly display classes and inheritance relationships. How-
ever, what it actually visualizes are thehistoriesof classes
and inheritance relationships.

Nodes and edges which have been removed while the
system was evolving (i.e., they are not present anymore)
have a cyan color2. The color of the class history nodes
and the width of the inheritance edges represents their
age: the darker the nodes and the wider the edges, the
moregroundedin time they are,i.e., the longer they have
been present in the system. Thus, lightly colored nodes

2In a gray-scale print of the paper cyan will look like light gray.

3

Class Hierarchy History Complexity ViewDescription

Layout Tree
Nodes Class histories
Edges Inheritance histories
Scope Full system history
Metric Scale Linear

Node Width ENOMof the class history
Node Height ENOS/5 of the class history
Node Color Age, Cyan = Removed

Edge Width Ageof the inheritance history
Edge Color Cyan = Removed, Black = Present

Figure Figure 4

Table 1: Specs of theClass Hierarchy History Complexity
View.

and thin edges representyoungerclasses and inheritance
relationships.

The width of the class history node is given by the
ENOM while the height is given by the tenth part of the
ENOS(i.e., ENOS/5). Thus, the wider a node is, the more
methods were added or removed in subsequent versions
in that class history; the greater the height of a node is,
the more statements were added or removed in subse-
quent versions in that class history. We chose to use to
divideENOSby 5 because in the case study we analyzed,
a method has on average around 5 statements. Therefore,
a node would typically appear square in the view.

Based on the visualization we characterize the evolu-
tion of class hierarchies. We define a vocabulary based on
four characteristics and different labels:

1. The age of the hierarchy:

• Newborn. A newborn hierarchy is a freshly in-
troduced hierarchy. The nodes in such a hierar-
chy will be colored in white.

• Young. A young hierarchy is colored in light
colors.

• Old. As opposed to the young hierarchies, the
old ones are colored in dark colors.

• Persistent. We say a hierarchy is persistent if
all the classes were present in all system ver-
sions. In a persistent hierarchy, the nodes will
be black.

2. The inheritance relationship stability:

• Reliable. We define a hierarchy as being re-
liable when the inheritance relationships be-
tween classes are stable and old. Thus, the
edges of such a hierarchy will appear black and
thick.

• Fragile. A hierarchy is fragile when there are
a lot of inheritance relationships which disap-
pear. Such a hierarchy will appear as having a
lot of cyan colored edges.

3. The size stability:

• Stable. In a stable hierarchy the nodes are
small.

• Unstable. In an unstable hierarchy many meth-
ods are being added and removed during its
evolution: the hierarchy contains large nodes.

4. The development effort concentration balance:

• Balanced. In a balanced hierarchy, the effort is
evenly spent among its classes. The hierarchy
nodes will appear as being of about the same
size.

• Unbalanced. An unbalanced hierarchy is one
in which the development effort is not equally
distributed on the classes. In such a hierarchy,
there will be some nodes which are bigger than
the rest.

5 Classifying Class Hierarchy His-
tories of Jun

As case study we selected 40 versions of Jun3. Jun is a
3D-graphics framework written in Smalltalk. The project
lasted for more than seven years and is still under devel-
opment. As experimental data we took every 5th version
starting from version 5 (the first public version) to version
200. The time distance between version 5 and version
200 is about two years, and the considered versions were
released about 15-20 days apart. In terms of number of
classes, in version 5 of Jun there are 170 classes while in
version 200 there are than 740 classes.

3See http://www.srainc.com/Jun/ for more information.

4

OpenGL3dObjectProbability
Distribution

Vrml

TopologyCode
Browser Topological

Element
Abstract
Operator

Figure 4: AClass Hierarchy History Complexity Viewof the evolution of five hierarchies from the Jun case study. The
cyan nodes and edges denote removed classes and inheritance relationships.

Hierarchy Age Inheritance Relationship Stability Effort Concentration

Topology Old Reliable Unstable Unbalanced
CodeBrowser Newborn - Stable Balanced
OpenGL3dObject Old - Unstable Unstable Root, Unbalanced
Vrml Persistent Fragile Stable Balanced
ProbabilityDistribution Old Reliable Stable Balanced

Table 2: The characterization of five class hierarchies in Jun based on the four proposed characteristics.

Figure 4 shows five of the hierarchies we found when
analyzing Jun: Topology, OpenGL3dObject, Vrml, Prob-
abilityDistribution, and CodeBrowser (we name the hier-
archies according to the names of their root classes). In
Table 2 we show the characterization of each hierarchy
according to the proposed characteristics.

We selected those five because they represent five dif-
ferent types of hierarchies regarding their evolution over
time:

TheTopologyhierarchy is the largest and oldest hierar-
chy in the system. In Figure 4 we marked the two sub
hierarchies:AbstractOperatorand TopologicalEle-
ment. TheTopologicalElementsubhierarchy is com-
posed of classes which were changed a lot during

their life time. Three of the leaf classes were de-
tected as being GodClasses [14]. A large part of the
AbstractOperatorhierarchy has been in the system
from the first version, but there is a young subhierar-
chy which looks different.

TheOpenGL3dObjecthierarchy experienced three times
an insertion of a class in the middle of the hierarchy.

TheVrml hierarchy proved to have undergone heavy re-
naming refactorings. That is the reason why we see
lots of removed nodes and removed inheritance re-
lationships. Note also that the root class has been
removed at a certain point in time, the original hier-
archy has thus been split in two distinct hierarchies.

5

ProbabilityDistributionis an old hierarchy and very sta-
ble from the inheritance relationships point of view.
Also, the classes in the hierarchy was changed very
little during its history.

TheCodeBrowserhierarchy is very thin and very light,
meaning that it has been recently added to the sys-
tem.

6 Related Work

Metrics and visualization are two traditional techniques
used to deal with the problem of analyzing the history of
software systems.

Lehmann used metrics starting from the 1970’s to an-
alyze the evolution of the IBM OS/360 system [11].
Lehmann, Perry and Ramil explored the implication of
the evolution metrics on software maintenance [12] [13].
They used the number of modules to describe the size of
a version and defined evolutionary measurements which
take into account differences between consecutive ver-
sions.

Gall et al. [6] also employed the same kind of metrics
while analyzing the continuous evolution of the software
systems.

Burd and Munro analyzed the influence of changes on
the maintainability of software systems. They define a
set of measurements to quantify the dominance relations
which are used to depict the complexity of the calls [2].

Lanza’s Evolution Matrix [9] visualizes the system’s
history in a matrix in which each row is the history of
a class (see a simplified version in Figure 1). A cell in the
Evolution Matrix represents a class and the dimensions
of the cell are given by evolutionary measurements com-
puted on subsequent versions.

Jazayeri analyzed the stability of the architecture [7] by
using colors to depict the changes.

Our approach differs from the above mentioned ones
because we consider history to be a first class entity and
define history measurements which are applied on the
whole history of an entity and which summarize the evo-
lution of that entity. The drawback of our approach con-
sists in the inherent noise which resides in compressing
large amounts of data into numbers.

Taylor and Munro [15] visualized CVS data with a
technique calledrevision towers. Their approach resides
at a different granularity level,i.e.,files, and thus does not
display source code artifacts as in our approach.

Gall et al. [5] analyzed the history of changes in soft-
ware systems to detect the hidden dependencies between
modules. However, their analysis was at the file level,
rather than dealing with the real code. In contrast, our
analysis is placed at the class and inheritance level mak-
ing the results finer grained. Demeyeret al. [4] propose
practical assumptions to identify where to start a reverse
engineering effort: working on the most buggy part first or
focusing on clients most important requirements. These
approaches, are based on information that is outside the
code, while our analysis is based on code alone.

Another metrics-based approach to detect refactorings
of classes was developed by Demeyeret al. [3]. While
they focused on detecting refactorings, we focus on offer-
ing means to understand where and how the development
effort was spent in a hierarchy.

7 Conclusions and Future Work

History holds useful information, but the analysis is dif-
ficult due to the large amount of data. We approached
this problem by defining the history as a first class entity
and then defined history measurements which summarize
the evolution of an entity. We used the measurements to
display a polymetric view of the evolution of class hier-
archies. We applied our approach on a large open source
project and showed how we could describe the evolution
of class hierarchies.

It is difficult to validate and prove the value of our ap-
proach. We are convinced that the information that one
can extract from an evolutionary polymetric view such as
theClass Hierarchy History Complexity Viewis useful in
different contexts. On the one hand, it reveals information
about the system which would be otherwise difficult to ex-
tract (e.g.,knowing that a hierarchy is stable/unstable in
time is valuable for deciding maintenance effort and do-
ing quality assessment). On the other hand, we have to
stress that polymetric views as we implement them are
intrinsically interactive and that just looking at the visual-
ization is only of limited value. Indeed, the viewer must
interact with the visualization to extract finer-grained and

6

more useful information. For example in Figure 4 one
would like to know what class has been removed from the
Topology hierarchy and also why, since this quite large
hierarchy has been very stable in terms of inheritance re-
lationships. The viewer can do so by pointing and inspect-
ing the cyan class history node. In the case of the Vrml hi-
erarchy one would like to find out why it is so unstable in
terms of inheritance relationships, since one could expect
that such a hierarchy merely implements a standardized
framework like OpenGL3dObject.

In the future, we want to investigate possibilities of
adding more semantic information to the view we pro-
pose. For example, we want to add information like refac-
torings that have been performed.

References

[1] E. Burd and M. Munro. An initial approach towards mea-
suring and characterizing software evolution. InProceed-
ings of the Working Conference on Reverse Engineering,
WCRE ’99, pages 168–174, 1999.

[2] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding refac-
torings via change metrics. InProceedings of OOPSLA
’2000 (International Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications), pages
166–178, 2000.

[3] S. Demeyer, S. Ducasse, and O. Nierstrasz.Object-
Oriented Reengineering Patterns. Morgan Kaufmann,
2002.

[4] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical
coupling based on product release history. InProceedings
of the International Conference on Software Maintenance
1998 (ICSM ’98), pages 190–198, 1998.

[5] H. Gall, M. Jazayeri, R. R. Kl̈osch, and G. Trausmuth.
Software evolution observations based on product release
history. InProceedings of the International Conference on
Software Maintenance 1997 (ICSM ’97), pages 160–166,
1997.

[6] M. Jazayeri. On architectural stability and evolution. In
Reliable Software Technlogies-Ada-Europe 2002, pages
13–23. Springer Verlag, 2002.

[7] M. Lanza. Object-Oriented Reverse Engineering —
Coarse-grained, Fine-grained, and Evolutionary Software
Visualization. PhD thesis, University of Berne, May 2003.

[8] M. Lanza and S. Ducasse. Understanding software evo-
lution using a combination of software visualization and
software metrics. InProceedings of LMO 2002 (Langages
et Mod̀elesà Objets, pages 135–149, 2002.

[9] M. Lanza and S. Ducasse. Polymetric views — a
lightweight visual approach to reverse engineering.IEEE
Transactions on Software Engineering, 29(9):782–795,
Sept. 2003.

[10] M. M. Lehman and L. Belady. Program Evolution —
Processes of Software Change. London Academic Press,
1985.

[11] M. M. Lehman, D. E. Perry, and J. F. Ramil. Implications
of evolution metrics on software maintenance. InICSM,
pages 208–, 1998.

[12] L. MM, R. J. Perry DE, T. WM, and W. PD. Metrics and
laws of software evolution - the nineties view. InMetrics
’97, IEEE, pages 20 – 32, 1997.

[13] D. Ratiu, S. Ducasse, T. Gı̂rba, and R. Marinescu. Using
history information to improve design flaws detection. In
Proceedings of the Conference on Software Maintenance
and Reengineering (CSMR 2004), pages 233–232, 2004.

[14] C. M. B. Taylor and M. Munro. Revision towers. InPro-
ceedings of the 1st International Workshop on Visualizing
Software for Understanding and Analysis, pages 43–50.
IEEE Computer Society, 2002.

7

