
1

EggShell
a workbench for the assessment of modeling

pipelines for scientific communities

Dominik Seliner
selinerdominik@gmail.com

05.07.2016

2

Motivation (1)

3

Motivation (2)

Pipeline ModelPapers

4

Motivation (3)
Aspectual Mixin Layers: Aspects and Features in Concert

Sven Apel
University of Magdeburg

P.O. Box 4120
39016, Magdeburg, Germany

apel@iti.cs.uni-
magdeburg.de

Thomas Leich
University of Magdeburg

P.O. Box 4120
39016, Magdeburg, Germany

leich@iti.cs.uni-
magdeburg.de

Gunter Saake
University of Magdeburg

P.O. Box 4120
39016, Magdeburg, Germany

saake@iti.cs.uni-
magdeburg.de

ABSTRACT
Feature-Oriented Programming (FOP) decomposes complex
software into features. Features are main abstractions in
design and implementation. They reflect user requirements
and incrementally refine one another. Although, features
crosscut object-oriented architectures they fail to express
all kinds of crosscutting concerns. This weakness is exactly
the strength of aspects, the main abstraction mechanism
of Aspect-Oriented Programming (AOP). In this article we
contribute a systematic evaluation and comparison of both
paradigms, AOP and FOP, with focus on incremental soft-
ware development. It reveals that aspects and features are
not competing concepts. In fact AOP has several strengths
to improve FOP in order to implement crosscutting features.
Symmetrically, the development model of FOP can aid AOP
in implementing incremental designs. Consequently, we pro-
pose the architectural integration of aspects and features in
order to profit from both paradigms. We introduce aspec-
tual mixin layers (AMLs) , an implementation approach that
realizes this symbiosis. A subsequent evaluation and a case
study reveal that AMLs improve the crosscutting modular-
ity of features as well as aspects become well integrated into
incremental development style.

Categories and Subject Descriptors: D.3.3 [Software]:
Programming Languages— Language Constructs and Featu-
res ; D.2.11 [Software]: Software Engineering— Software Ar-
chitectures

General Terms: Design, Languages

Keywords: Feature-Oriented Programing, Aspect-Orien-
ted Programming, Component Techniques, Collaborations

1. INTRODUCTION
Program families [30] and incremental software develop-

ment [35] have a long tradition and are still subjects of cur-
rent research. A main objective of research in this field is
to simplify the maintenance, reuse, customization, and evo-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’06, May 20–28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

lution of software. Two programming paradigms heavily
discussed in this context are Feature-Oriented Programming
(FOP) [7] and Aspect-Oriented Programming (AOP) [15].

FOP was developed to implement software incrementally
in a step-wise manner. Features reflect requirements and
program characteristics that are of interest to stakeholders.
The main idea is that features are mapped one-to-one to
modular implementation units (feature modules). Since it
has emerged that traditional abstractions as classes and ob-
jects are too small units of modularity, features contain a set
of classes that contribute to the features in collaborations [7,
32, 28, 20]. Therefore, refinement of features means refine-
ment of their structural elements.

AOP addresses similar issues but with a different focus:
AOP focuses mainly on separating and modularizing cross-
cutting concerns. It introduces aspects which encapsulate
code that would be otherwise tangled with other concerns
and scattered over the base program. Thereby, separation
of concerns is achieved that is important to implement com-
plex software, i.e. product lines. Although the initial focus
does not lie on incremental software development several
research efforts go into this direction [23, 28, 10, 24, 20],
however, with numerous problems that are discussed here.

Relationship of aspects and features. In this paper we
explore the relationship of AOP and FOP an therewith the
connection between aspects and features. 1 We do not per-
ceive them as competing approaches but rather as approaches
that can profit from each other. The idea of FOP is to
decompose a system architecture into units that are of in-
terest to the stakeholders. Since features encapsulate col-
laborations and refine one another, the underlying object-
oriented architecture becomes organized at a higher level.
It is decomposed along these collaborations. Despite these
advantages, FOP has drawbacks regarding (1) the crosscut-
ting modularity, in particular the ability to localize, sepa-
rate, and modularize certain kinds of crosscutting concerns
as well as (2) the ability to seamlessly integrate structural
independent features [28, 20]. Both are highly related since
an integration of independent features results usually in a
crosscutting interconnection of the corresponding structural
elements. This is where AOP comes into play.

Aspects modularize concerns that otherwise crosscut other
concerns. But they are not adequate to implement all kinds
of features. In many cases aspects cannot implement fea-

1 In the remaining paper we use AOP/FOP and aspects/fea-
tures synonymously, despite the fact that the former are
programming paradigms and the latter their main concepts.

122

Int. J. Ad Hoc and Ubiquitous Computing, Vol. 2, No. 4, 2007 362

Copyright © 2007 Inderscience Enterprises Ltd.

A survey on context-aware systems

Matthias Baldauf
V-Research, Industrial Research and Development,
Stadtstrasse 33, 6850 Dornbirn, Austria
E-mail: matthias.baldauf@v-research.at

Schahram Dustdar* and Florian Rosenberg
Distributed Systems Group, Information Systems Institute,
Vienna University of Technology, Argentinierstrasse 8/184-1, 1040 Vienna, Austria
E-mail: dustdar@infosys.tuwien.ac.at E-mail: rosenberg@infosys.tuwien.ac.at
*Corresponding author

Abstract: Context-aware systems offer entirely new opportunities for application developers and
for end users by gathering context data and adapting systems behaviour accordingly. Especially
in combination with mobile devices these mechanisms are of high value and are used to
increase usability tremendously. In this paper, we present common architecture principles of
context-aware systems and derive a layered conceptual design framework to explain the different
elements common to most context-aware architectures. Based on these design principles, we
introduce various existing context-aware systems focusing on context-aware middleware and
frameworks, which ease the development of context-aware applications. We discuss various
approaches and analyse important aspects in context-aware computing on the basis of the
presented systems.

Keywords: context-awareness; context framework; context middleware; sensors; context model;
context ontology; context-aware services.

Reference to this paper should be made as follows: Baldauf, M., Dustdar, S. and Rosenberg, F.
(2007) ‘A survey on context-aware systems’, Int. J. Ad Hoc and Ubiquitous Computing, Vol. 2,
No. 4, pp.263–277.

Biographical notes: Matthias Baldauf is project manager at V-Research, an Austrian
competence center for industrial research and development. In the Department of Technical
Logistics he develops location-aware systems based on GPS, GSM and RFID technology with a
focus on track and trace solutions. His research interests include modern localisation methods and
efficient, flexible localisation architectures.

Schahram Dustdar is a Full Professor of Computer Science with a focus on Internet Technologies
at the Distributed Systems Group, Information Systems Institute, Vienna University of
Technology (TU Wien). In 1999 he co-founded Caramba Labs Software AG (CarambaLabs.com)
in Vienna, a venture capital co-funded software company focused on software for collaborative
processes in teams. Caramba Labs was nominated for several (international and national) awards.
He has published some 100 scientific papers as conference-, journal-, and book contributions.
He has written three academic books, one professional book, and co-edited six
books/proceedings. More information can be found at: http://www.infosys.tuwien.ac.at/Staff/sd.

Florian Rosenberg is research assistant and PhD student at the Distributed Systems Group,
Information Systems Institute, Vienna University of Technology. His research areas include
context-aware and autonomic services, service-oriented architectures and web service
technologies. More information can be found at: http://www.infosys.tuwien.ac.at/Staff/rosenberg.

1 Introduction

With the appearance and penetration of mobile devices such
as notebooks, PDAs, and smart phones, pervasive
(or ubiquitous) systems are becoming increasingly popular
these days. The term ‘pervasive’ introduced first by Weiser
(1991) refers to the seamless integration of devices into
the users everyday life. Appliances should vanish into the

background to make the user and his tasks the central focus
rather than computing devices and technical issues.
One field in the wide range of pervasive computing are
the so-called context-aware (or sentient) systems.
Context-aware systems are able to adapt their operations to
the current context without explicit user intervention and
thus aim at increasing usability and effectiveness by taking
environmental context into account. Particularly when it

5

Heuristic

A heuristic is an approach to problem solving, lear-
ning, or discovery that employs a practical method

not guaranteed to be optimal or perfect, but varies in
its accuracy depending on the data set at hand.

-Definition adapted from wikipedia

6

EggShell
a workbench for the assessment of modeling

pipelines for scientific communities

7

EggShell

 de�ning pipeline assessment

8

Modeling-Pipeline (1)

XML

TXT

HTML

9

Modeling-Pipeline (2)

Title
TrustNeighbothoods in a Nutshell

Author 1
Niklas Elmqvist

Author 2
Philippas Tsigas

Feature-centric environment David Röthlisberger Orla Greevy ...

...

...

............

XML

10

Modeling-Pipeline (3)

11

Modeling-Pipeline (4)
Title
TrustNeighbothoods in a Nutshell

Author 1
Niklas Elmqvist

Author 2
Philippas Tsigas

Feature-centric environment David Röthlisberger Orla Greevy ...

...

...

............

12

Modeling-Pipeline (5)

XML

13

Questions about the
accuracy of a model

Title
Visualising Software as a Particle System

Author 1
Computer Science

Author 2
Neil Walkinshaw

14

Visualization

Assessment Grid

Popup Document Preview

15

Assessment Grid

16

Element from the Assess-
ment Grid (1)

25%

25%

50%

1 fake author

1 correct author

2 missed authors

17

Element from the Assess-
ment Grid (2)

18

Assessment Grid

19

Popup

20

Popup Shape

21

Popup Top (1)

25%

75%

100%

22

Popup Top (2)

16%

33%

50%

23

Popup Top (3)

50% 16%

24

Popup Bottom

Lower part of the Popup

Performance Evolution Blueprint: Understanding the impact of Software Evolution on Performance
Performance Evolution Blueprint: Understanding the Impact of Software Evolution on Performance

Ducasse, S.
Denker, M.
Alcocer, J.P.S (Juan Pablo Sandoval Alcocer)
Bergel, A.
Sandoval Alcocer, J.P

25

Paper Preview

26

Use Case

27

Conclusion
1. Simultaneously creating pipelines and the
 visualization
2. ~70% accuracy with help from the visualization
3. Visualization can be used to further improve the
heuristics

28

Summary
1. Need for modeling communities
2. Pipeline for creating such models
3. Assessing the output of a pipline with the
 visualization

29

Questions

