Interview 18. October 2010 with Michael Qvortrup

I do some general explications about the project.

General questions:

Scrum experience: 2.5 years

Projects: 2: one duration 2.5 years, other one just started

We discuss the one of 2.5 years duration.

This were 2 parallel projects with 2 Scrum teams. 7-9 people involved in each project (for a short time 10 people). No issues that the team was too big. Roles: 1 Scrum Master for each team, 1.5 product owner for each team (3 people for the 2 teams). Sometimes the role of Scrum Master and Product Owner was not clearly separated (same person). The rest were team members, they did both testing and developement. Testing by another department no, because he says that then it would not be Scrum. Some normal changes of personal during the project, but no particular issues, normal fluaction in 2.5 years project. Everyone of the project was in the same building on the same floor.

Drawing the general process on the flipchart.

Remark: Daily Scrum Meeting not all 24 hours as proposed by theoretical process, because Saturday and Sunday not.

Missing in the process: Backlog grooming. Important part of „getting the backlog ready“, appears in each sprint, parallel to the user stories/ task elaboration. Some time reserved for it in each sprint.

Daily Scrum Meeting: Scrum Master, Team, sometimes (rarely) Product Owner. Stand-up meeting. Timeboxed, but not strictly. Scheduled to 15 minutes, but sometimes duration of 20-25 minutes. There is no reason to interrupt if someone says something important, as long as the meeting is not too long.

Sprint: Before of 6 weeks, now only 3 weeks.

Sprint Planning Meeting: 3 parts: 1) What to implement? (3-4h) 2) How to do? Divide in tasks.(3-4h) 3) Giving Feedback to the Product Owner and to a „User Gemeinschaft“ (representative users) (scheduled 2h, but mostly finished after 1.5)

Review: with „User Gemeinschaft“ and Product Owner. Timeboxed: 2h.

Retrospective Meeting: Both teams together, both Scrum Masters and Product Owner(s). Compare beginning to end: what could be refined in the process: Coordination between the both teams became better, reduction of sprint from 6 weeks to 3 weeks. In the beginning there was a retrospective after each sprint (6 weeks), after when the sprint was reduced to 3 weeks there was only a retrospective each 2 sprint (so each 6 weeks). Longer at the beginning.

Tool support: Product backlog: Access Application (handmade by the product owner), Sprint Backlog: 2 boards on the wall, 60cm x 100cm (more or less). On the wall were the tasks (only there). Excel sheet to enter the information and generate automatically the Sprint Burndown Chart that then was printed, but the tasks were not tracked there, it was just for generation. Usually the Scrum Master entered the data and generated the Sprint Burndown Chart.

There was no resistance from Management etc. because the tasks were only tracked on the wall. If anyone wanted to see, they could come to the office and see the progress. In the review then they did a summary.

It was respected from the whole company that they were doing Scrum, so there was acceptance.
Access Application: cards in the tool, that could be printed, too. Product Owner worked with this tool, then printed the cards and in the sprint planning meeting they worked on the cards. He says that they could have done also without the tool, as they could have written the cards by hand. The product owner developed the tool, parallel to the beginning of the project.

Order was done in the Access DB (not Priority, because has to be a clear defined order!). Then the first ones of the order were printed for the current sprint and estimated by the developers. Then the system was updated by the product owner (somewhat redundant, but cards were just a working object, were then thrown away). If needed again, were printed again, so there was always a good synchronization. Master was the DB. Overhead for the synchronization: Overhead done by the product owner, that wanted the tool. It was therefore no issue that was discussed. In total more disadvantages, but not so much that it needed to be discussed.

Estimation: in story points, on handwritten cards.

Documents (as Design documents etc.) : Subversion for version control. Sometimes design documents in Enterprise Architect (UML Tool with Access DB). Synchronized also in Subversion for backup. Code is in Subversion (90% of subversion content was code).

Development process: Eclipse (quite standard with Subversion plugin, no scrum-specific Plugins were used), TestNG (Framework), Mantis (Bug tracking, standard), Hudson (for continous integration, replaced Continous), Maven

Non functional requirements: always somehow requirements for the product, so always handled as normal user stories in the product backlog. For example security requirements. He says that there should not be this discussion of difference between functional and non functional requirements as there are somewhat functional for the product, they are always doing something.

Knowledge transfer: They were doing pair programming. There were workshops, whiteboard sessions, discussions and trainings when needed, but not in fixed dates. Usually in the team room, not with other people involved.

Long-term management of the team knowledge (project level): code documentation, user documentation, Design documents, test cases.

Tests were automated (continous integration). The building of the release build could have been made easier / automated more, but that was not possible with Maven. They did the release build partially manual. They did not change it to get the process of release build easier, because they were not sure if it would have been worth the effort. Maybe build time per release could have been reduced from 2 hours to 1 hour, but there would have been effort for change.

Also there were no good alternatives to Maven available. He says there are good things in Maven but implemented in a bad way (like e.g. Maven has to be Master to work well, cannot be subordinated to other tools).

Good points about tools: Subversion (better for Scrum than CVS, because easy merging and creating quickly new branches for testing something out), Eclipse (fulfills the needs of the developers)

In the middle of good and bad is TestNG, as it has good features, but sometimes not to good implemented, could be done better.

Negative points about tools: Maven (see above), Access Application that was developed parallel to the project and was not need absolutely (could have done the same things without this tool).

For another project he would see what scrum specific tools are available, but he would need a good reason to use the tool, because as long as it works on the wall, why should there be needed a tool to complicate things. Exception: if there are dislocated teams, a tool were everybody sees the progress is needed.

Open issues were tracked separately (parallel backlog). In the last year the focus moved from the user stories to the open issues. (That means in the sprint planning they chosed from Product Backlog and from seperate).

Personal issues: Very few of developers did not understand in the beginning why they cannot implement things asked by the management during the sprint. But most of them were happy, that they could work without interruption during the sprint. Most people of the team were new to Scrum.

The Scrum process was accepted from the beginning.

Personal opinion about integrated platforms as TFS: Most stupid idea ever. Reason: If you buy it, you get everything, even the things you do not need. He just wants the features he really wants. If maybe one part of the integrated platform does not fulfill the needs he cannot change it with another tool he prefers. Wish: Integration between chosen tools, each tool for the specific needs of the project.

Might be good for Microsoft development, but not for the Java world, as they have much more choice / concurrency of open source products.

It might be interesting to know whether Microsoft Projects are using TFS server because there are poor alternatives, or because it really fulfills their needs. There is poor possibility to integrate other tools to Visual Studio Development Environment.

They used open source tools and did not spend any money. Problem with integrated platform: Once the money is spent and the whole plattform is integrated, it is very costly to change it again (if it does not fulfill the needs), but it is also costly to keep a tool that does not fulfill the needs.

The possibilities of an open source integrated platform are very few, because there are many different tools for many different needs.

Tools should solve a problem, and not create other problems.

A fool with a tool is still a fool.

