
Opportunities and challenges in deriving metric impacts from refactoring
postconditions.

Bart Du Bois
Lab On ReEngineering
Universiteit Antwerpen

Middelheimlaan 1, B-2020 Antwerpen, Belgium
bart.dubois@ua.ac.be

Abstract

Refactoring – transforming the source-code of an object-oriented program without changing its external observable be-
haviour – is a restructuring process aimed at resolving evolution obstacles. Currently however, the efficiency of the refactor
process in terms of quality improvements remains unclear. Such quality improvement can be expressed in terms of an impact
on OO metrics. The formalization of these metrics is based on the same constructs as refactoring postconditions. Therefore,
in this position paper, we elaborate on a research approach to derive Object-Oriented metric impacts from refactoring post-
conditions, in order to provide qualitative guidelines on the application of specific refactorings to resolve quality deficiencies.

1 Introduction

Current knowledge about the refactoring process can be divided into analysis and resolution. The building blocks of
resolution by refactoring consists of a set of refactoring operations (Fowler, 1999) with pre- and postconditions (Opdyke,
1992; Roberts, 1999; Tichelaar, 2001; Ó Cinnéide, 2001). These conditions express properties of the object model either
before or after the refactoring has been applied. Research on the use of these building blocks has been targeted mostly
towards the introduction of design patterns (Tokuda and Batory, 2001; Ó Cinnéide, 2001; Kerievesky, 2004). Contributions
on analysis of software systems in the context of the refactoring process include descriptions of anti-patterns characterising
potential refactoring opportunities (Brown et al., 1998) and metric descriptions of design flaws (Marinescu, 2001; Muraki
and Saeki, 2002; Ratiu et al., 2004).

Little research has been performed on binding the analysis and resolution results together. (Sahraoui et al., 2000) analyzed
the impact on inheritance and coupling metrics of composite transformations. (Tahvildari et al., 2003) evaluated design
patterns from the perspective of non-functional requirements and modeled this in a soft-goal interdependency graph for
maintainability. While both works provide practical guidelines on how to improve certain quality indicators, the level of
information feedback is very coarse grained.

We propose to evaluate the contribution of smaller refactorings on model properties that can be composed in Object
Oriented metrics. Our main hypothesis is that refactorings can be evaluated by their impact on those internal software
properties which are highly related with external properties. More specific, we argue that the application of a refactoring
should be based on it’s improvement regarding specific aspects of complexity, coupling and cohesion.

Therefore, we need a single language in which to specify both internal software metrics and refactorings in order to clarify
how the application of the latter can improve the value of the former.

This paper is organized as follows. Section 2.1 provides an overview of the information available in refactoring postcon-
ditions. Section 2.2 elaborates on the composition of this information into Object Oriented metrics. Section 2.3 describes
how the impact of a refactoring on model properties can be derived (2.3.1), and how these impacts can be combined in an
impact on Object-Oriented metrics (2.3.2).



2 Research approach

We elaborate on the derivation of metric impacts from refactoring postconditions by first describing the results of past
research on which our approach is based.

2.1 Refactoring postconditions

In describing postconditions of composite refactorings, postconditions of primitive restructurings are combined using
techniques such as chaining and set iteration (Ó Cinnéide, 2001). The postcondition of a primitive restructuring itself is
described as a set of updates to analysis functions, and the postcondition is computed by concatenating these function updates.

Analysis functions are functions and predicates in the first-order predicate calculus on top of a metamodel that extracts
information from an object model. They are used in the pre- and postcondition to express properties of the object model
respectively before and after the refactoring has been applied. As we will discuss in section 2.2, these analysis functions form
the main vocabulary of the language used to describe both refactorings and metrics.

Cinnéide worked out an example to illustrate the rules of chaining and set iteration, in which he composed pre- and
post condition of the EncapsulateConstruction composite refactoring according to specific guidelines. The resulting post-
condition has been included in Table 1. Composing such postconditions is non-trivial and requires a lot of effort, yet this
only needs to be done once.

∀e : ObjectCreationExprn, classCreated(e) = product, containingClass(e) = creator • ∃m : Method such that
createsSameObject′ = createsSameObject[(constructorInvoked(e),m)/true]
nameOf ′ = nameOf [m/createP ]
defines′ = defines[(creator,m)/true]
∀e : ObjectCreationExprn, classCreated(e) = product, containingClass(e) = creator,
nameOf(containingMethod(e)) 6= createP•
containingMethod′ = containingMethod[e/m]

Table 1. Postcondition of the EncapsulateConstruction(Class creator, Class product, String createP)
refactoring. function[a/b] can be read as function(a) = b. The distinction between the state of an
analysis function before and after a refactoring is indicated with an accent.

While these composition guidelines pave the way for formalizing other composite refactorings, we strongly believe that
doing so for even the most widely known refactorings described by (Fowler, 1999) will not be limited to chaining the already
formalized primitive refactorings, but will also include formalizing additional primitive refactorings to fill in the gaps.

Therefore, one major challenge is to identify a set of primitive refactorings that minimizes the need for patching the
postconditions of composite refactorings with other information than the chaining or set iteration of the postconditions of
primitive refactorings. Possible pathways to identify such a set are analysing the informal descriptions provided by Fowler, or
alternatively, applying reverse engineering techniques on existing refactoring tools, in order to detect similarities or duplicates
between the implementations of multiple refactorings.

Secondly, for each written postcondition, it is possible to write an equivalent one. Much in the same way as mathematical
equations can be simplified, postconditions also can be rewritten to make it easier to interpret specific aspects. Therefore,
another challenge lies in finding criteria on which to evaluate the suitability of refactoring postconditions to derive useful
information from the context of Object-Oriented metrics. Further issues regarding this challenge will be discussed in section
2.3.1.

2.2 Composing metrics

The concept of analysis functions is introduced in other works with synonims like auxilary definitions (Muraki and Saeki,
2002) or library functions (Baroni, 2002). The concepts used in these works are very similar, and can be summarized as
consisting of set operators (∈,

⋃
,
⋂

, /, #), logical operators (∀, ∃, ¬, ∨, ∧) and some variant of set notation ({x ∈ A|P (x)}
to denote the set of elements X in A satisfying P (x)). Equivalent notations are used in other measurement formalizations
such as (Abreu and Carapuca, 1994; Moore, 1996; Briand et al., 1999; Reißing, 2001).



Evidently, the metamodel used in these analysis functions is crucial for their expressiveness. Ultimately, the analysis
functions dictate which information can be used in order to compose higher level metrics. For example, if the metamodel
used does not hold any information about conditionals, it is impossible to compose metrics such as Cyclomatic Complexity
on top of the model. In this context however, we are only interested in those metrics which are affected by refactorings, and
therefore, are constructed upon the same metamodel elements as the refactoring postconditions. Therefore, we argue that
the choice of metamodel should depend on the ease and completeness by which refactoring postconditions can be expressed
using its model elements.

Analysis functions are used to extract information about a software system, f.e. classOf(Constructor/Method/F ield
a), which returns the class to which the given constructor/method/field belongs. Shorthand notations for such predicates
make it easier to read expressions, as for example a ∈ c instead of classOf(a) = c. Based on these analysis functions and
a set of mathematical operators (+,-,*,/,

∑
etc.), Object-Oriented metrics can be defined as higher order functions. As an

example, Table 2 depicts the formalization of the Information Flow based Coupling as defined by (Y. S. Lee et al., 1995) and
formalized in (Briand et al., 1999).

ICP c(m) =
∑

m′∈PIM(m)/

(
MNEW (c)

S
MOV R(c)

) (
1 + #Par(m′)

)
∗NPI(m,m′)

ICP (c) =
∑

m∈MI(c) ICP c(m)

Table 2. Composition of the Information Flow based Coupling (IFC) metric for a class from the lower
level IFC of a method, where the latter is composed of analysis functions.

Not only does such a formalization unambiguously define the calculation of the metric value, it also indirectly identifies
the model elements on which the calculation of the metric value is dependent. In the case of the ICP metric, the related model
elements are methods with their parameters, and polymorphic method invocations between them.

This formal specification of the model elements which the metric uses form the targets towards which we will derive
refactoring postconditions. This is the key to the research approach described in this position paper.

2.3 Deriving impacts

The impact of a refactoring on a metric is dependent on the scope of calculation of the metric value. For example, the IFC
metric (Table 2) can be calculated for the class on which EncapsulateConstruction is applied (Table 1), or on the clients of
this class. While the derivation of the particular impact is the same for all scopes, its result is not. The difference lies in the
focus on the specific instances of model element associated with the scope. In the PullUpMethod refactoring for example,
it is possible to distinguish between the subclass and the superclass roles, and each represents a particular scope. Therefore,
the number of different scopes in a refactoring affect the complexity of deriving the impact on a metric.

As the analysis functions in which the IFC metric is expressed are different from those used in the EncapsulateConstruc-
tion refactoring postcondition, we have to map these equivalent functions in this illustration. For more information on the
semantics of these analysis functions, we direct the reader to the origins of the metric formalization (Briand et al., 1999) and
the postcondition specification (Ó Cinnéide, 2001).

Deriving the impact of a refactoring postcondition on a particular metric therefore consists of (a) translating the refactoring
postcondition in terms of the analysis functions used in the metric formalization (2.3.1); and (b) composing the impacts on
the analysis functions into an impact on the metric (2.3.2).

2.3.1 Translation into metric analysis functions

As not to overwhelm the reader with irrelevant details, we adhere to the guidelines of Cinnéide and specify the impact of a
refactoring only on those analysis functions which are affected by the refactoring. Table 3 illustrates the translation of the
postcondition of the EncapsulateConstructor refactoring into a specification that incorporates the specific analysis functions
used in the formalization of the IFC metric.

The table formally specifies that all polymorphic method invocations to the constructor will be replaced with invocations
to the creation method. The parameters of this factory method are equal to the parameters of the constructor.

To key to this translation is the specification of the relationships between the analysis functions used in the postcondition,
and those used in the metric formalization.



∀meth : Method, PIM [(meth, constr)/true] • PIM ′ = PIM [(meth, constr)/false], P IM [(meth, crMeth)/true]
M ′

NEW = MNEW [(creator, crMeth)/true]
Par′ = Par[createMeth/Par(constr)]
In which crMeth : Method ∧ nameOf [crMeth/createP ] and constr : Constructor ∧ classOf(constr) = creator

Table 3. Derivation of impact on analysis functions for IFC metric of EncapsulateConstruction(Class
creator, Class product, String createP) refactoring.

To extend the postcondition with specific information (the analysis functions used in the metric formalization), we had
to enrich the metamodel used by Cinnéide in order to express the changes on the parameter-level. This again points out the
need for a metamodel which is sufficiently expressive for both refactoring postconditions and Object-Oriented metrics.

2.3.2 Composing the impacts

Once the impact of a refactoring on the analysis functions used in a metric formalization is expressed in terms of more
specific postconditions (Table 3), we can combine these specific postconditions to derive the impact of the refactoring on
the composite metric. We use the ∆metric notation to express the difference between the metric value after applying the
refactoring and before applying the refactoring.

Table 4 demonstrates the composition of analysis function impacts into a metric impact on all classes but the creator class.
The same derivation can be used for the scope of the creator class, with the same result (coincidentally).

∀c : Class, nameOf(c) 6= creator,∀m ∈ MI(c), P IM [(meth, constr)/true]•
PIM ′(m)/

(
M ′

NEW (c)
⋃

M ′
OV R(c)

)
=

(
(PIM(m)/{constr})

⋃
{createP}

)
/
(
MNEW (c)

⋃
MOV R(c)

)
⇒ ∆ICP c(m) = −

(
1 + #Par′(constructor)

)
∗NPI(m, constructor) +

(
1 + #Par′(createP )

)
∗NPI(m, createP )

And since Par′(createP ) = Par(constructor)
⇒ ∆ICP c(m) = 0
⇒ ∆ICP (c) = 0

Table 4. Composition of the impacts on the IFC metric of EncapsulateConstructor(Class creator,
Class product, String createP) refactoring for all classes but the creator class.

The result of this derivation is that for all classes excluding the creator class the EncapsulateConstructor refactoring does
not affect the Information Flow based Coupling (analogue derivation for the creator class leads to the same result). This
corresponds to our intuition, as all information flow based coupling to the constructor is replaced with coupling to the create
method.

More generally, this derivation approach will be able to derive the following conclusions about the impact of a refactoring
on a metric:

• 0: the refactoring will never affect the metric value for the specific scope. I.o.w., ∆metric ∈ [0, 0]

• +: the refactoring potentially increases the metric value for the specific scope. I.o.w., ∆metric ∈ [0,+ inf]

• -: the refactoring potentially decreases the metric value for the specific scope. I.o.w., ∆metric ∈ [−inf, 0]

• ?: in the general case, it is undecidable how the refactoring will impact the metric value for the specific scope. I.o.w.,
∆metric ∈ [−inf, +inf ]. However, it is always possible to express a conditional impact

The reason that sometimes it is undecidable how the refactoring will impact the metric, is that there is unsufficient infor-
mation to pin down in which direction the metric will be affected. This challenge can be tackled by introducing assumptions
on the context in which the refactoring will be applied. Such assumptions can be specified under the form of conditional ex-
pressions. For example, when deriving the impact of the ExtractMethod(Set(Statements) stmts, Set(Method) fromMethods,



String newMethod) on the Weighted Methods per Class metric (WMC), the following conditional can formalize assumptions
about the specific context: if(#fromMethods > 1)then∆(WMC) ∈ [−inf, 0]else∆(WMC) ∈ [0,+inf ].

In other words, deriving the impact of a refactoring on a metric depends on (a) the scope in which the metric is to be
calculated; and (b) sometimes also on the specific context in which the refactoring is applied. Currently, it is unclear to which
extent these conditions will be necessary. Ideally, we would like to express the impact as generally as possible, that is, for as
many contexts as possible.

However, conditional impact descriptions provide more detailed qualitative feedback on specific applications of the refac-
toring. Therefore, they specify in which situations to apply a refactoring in order to optimize its improvement regarding a
specific quality attribute.

3 Related work

(Casais, 1992) formalized an algorithm to restructure class hierarchies in terms of changes to a formal object model. While
Casais clearly described the specific object model change for each step of the algorithm, unlike in the work of (Ó Cinnéide,
2001), we were not able to find a postcondition for the complete algorithm. That is why we based our examples on Cinnéide’s
work.

(Sahraoui et al., 2000) uses Object-Oriented metric thresholds in rules for restructuring software systems. To prescribe
refactorings to design flaws, they provide the impact of a number of transformations on these metrics. However, the paper
provides no clues as to how this impact was calculated. Therefore, the main difference with their work is that we explicitly
focus on an open and traceable derivation of these metric impacts. The derivation is open, as it allows to derive impacts
of refactorings on other metrics by reusing derived impacts on lower level analysis functions. The derivation is traceable,
as the cause and effect relationship between specific aspects of a refactoring postcondition and specific parts of a metric
formalization are made explicit in our approach.

4 Conclusions and future work

In this position paper, we proposed to derive metric-specific refactoring postconditions in order to provide qualitative
feedback on the application of refactorings. We presented both the opportunities and the challenges of our approach. Sum-
marizing, while the major challenges of this approach are (a) to identify a sound set of primitive refactorings and rewriting
postconditions; and (b) to extend them to incorporate specific information needed for metrics.

This research targets the impact of refactoring on internal quality attributes. In parallel, we experimentally test hypothesis
regarding the impact of refactoring on external quality indicators in the context of maintainability (i.e. maintenance task
duration and correctness). By linking the results of both branches together, in the future we will have better insights which
specific internal quality indicators tend to strongly correlate with external quality indicators.
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