
Executable rules of encoding

John P. T. Moore
The University of West London

St. Mary’s Road, London W5 5RF, UK
moorejo@uwl.ac.uk

ABSTRACT
Encoding rules can be found in telecommunications stan-
dards documents. These documents try to explain in an
unambiguous manner how a developer might transform a
protocol described in an abstract language into a more con-
crete binary form by following a set of rules. They are often
difficult to read and difficult to understand.

In this paper we show how a dynamic language can be used
to help describe and understand a formal process such as
applying a set of encoding rules to some data. We achieve
this by taking the homoiconic approach of describing the
encoding process in the abstract language used to describe
protocols and then execute our result in a Scheme REPL.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions Applicative (functional) languages

General Terms
Design, Languages

Keywords
Lisp, Scheme, Packedobjects

1. INTRODUCTION
In this paper we describe the encoding process of the Packe-
dobjects tool [6] by specifying the process in its own abstract
language and experimenting with the result in a Scheme
REPL. This approach provides a more dynamic and in-
teractive way of formalising the process compared to the
traditional approach of reading and interpreting standards
documents such as ITU-T X.691 [3]. Before illustrating an
example we will provide some background to the work.

1.1 Background
Packedobjects is heavily influenced by Abstract Syntax No-
tation One (ASN.1) [2] and as such uses an abstract lan-
guage to describe network protocols. Data that is described
according to this abstract language must be transformed
into something more suitable for communication across a
network by applying a set of rules such as Packed Encoding
Rules (PER) [3]. Packedobjects is designed to encode data
as concisely as possible and therefore is based on the un-
aligned variant of PER. The main difference between Packe-
dobjects and tools based on ASN.1/PER is that Packedob-
jects adopts a more dynamic approach. Instead of having

to parse an abstract language and generate high-level code,
Packedobjects uses s-expressions to describe protocols. Sim-
ple list manipulation takes place to transform a protocol into
something suitable for passing to a low-level C based en-
coder. This approach lets us script network communication
and allows us to easily make changes to deployed applica-
tions - a key feature in embedded computing. Using Scheme
we can embed this functionality into more traditional C ap-
plications. We will illustrate a simple example of encoding
a UK postcode and then show how the data is encoded.

1.2 Packedobjects
Postcodes in the UK are alphanumeric and consist of an out-
ward and inward part separated by a space. The following
code will define their structure using Packedobjects.

(define 1letter ’(1letter string (size 1)))
(define 2letters ’(2letters string (size 2)))
(define 1digit ’(1digit integer (range 0 9)))
(define 2digits ’(2digits integer (range 0 99)))

;; to preserve unique namespace of A9A sequence
(define anotherletter

(cons ’anotherletter (cdr 1letter )))

(define proto
‘(postcode sequence

(outward choice
(A9 sequence ,1letter ,1digit)
(A99 sequence ,1letter ,2digits)
(AA9 sequence ,2letters ,1digit)
(AA99 sequence ,2letters ,2digits)
(A9A sequence ,1letter ,1digit ,anotherletter)
(AA9A sequence ,2letters ,1digit ,1letter ))

(inward sequence ,1digit ,2letters )))

The first section of code defines some string and integer data
types with suitable constraints on their size and range re-
spectively. We reuse these definitions in our protocol by us-
ing simple in-built mechanisms available in Scheme, in this
case unquote. The protocol shows the outward and inward
compound data types. The outward data type consists of an-
other compound data type representing a choice of postcode
formats. To encode the postcode “HA9 0WS” we supply the
following data.

(define data
’(postcode

(outward
(AA9
(2 letters "HA")
(1digit 9)))

(inward
(1digit 0)
(2 letters "WS"))))



Encoding the data produces a string.

guile > (string- >list (encode proto data))
(#\R #\space #\310 #\W #\246)

To understand how we arrived at this string we need to de-
scribe our rules of encoding. There are a number of ways
to do this including using a textual description of the pro-
cess or by using a more concise mathematical approach, for
example Z notation [1]. However, we already have an ab-
stract language which is flexible enough to apply to a range
of scenarios including something as obscure as shopping at a
supermarket to more practical problems such as representing
system time [4]. Moreover, the result of what we describe
in our abstract language is executable within the REPL al-
lowing us to experiment and confirm our understanding of
the process. We will first describe how various data types
are encoded and then show how this applies to our postcode
example.

2. DEFINITION OF RULES
Describing our rules of encoding should allow others to im-
plement corresponding encoding software. The Packedob-
jects Reference manual [6] provides examples of this process
for all data types. The manual also formally describes the
abstract language used. In the following subsections we will
now use this abstract language as the language to describe
the encoding process.

2.1 Integers
We will start by defining how integers are represented. This
forms the basis of how all other types are encoded. Integers
are mapped to a low-level encoder [5] based on the range of
values they represent. They can be represented with three
functions corresponding to three categories of integer as fol-
lows:

(define (semi-constrained-integer lb)
‘(n integer (range ,lb max)))

(define (constrained-integer lb ub)
‘(n integer (range ,lb ,ub)))

(define (unconstrained-integer)
’(n integer (range min max)))

The Packedobjects manual provides further details of how
these integer forms are transformed into a core form suitable
for the low-level encoder.

2.2 Strings
Using our integer definitions we can describe how a string is
encoded:

(define (string)
‘(s sequence-of

,(constrained-integer 0 127)))

We show how the abstract language of Packedobjects is eas-
ily employed to describe how a string consists of a sequence
of characters whose values must be encoded within a spec-
ified range. From this definition we can show how three
categories of string are described:

(define (semi-constrained-string)
‘(semi-constrained-string sequence

,(semi-constrained-integer)
,(string )))

(define (constrained-string)
‘(constrained-string sequence

,(constrained-integer)
,(string )))

(define (fixed-length-string)
(string ))

The above shows that all strings which are not fixed in length
require a length to be encoded and this length is repre-
sented as either a semi-constrained integer or constrained
integer accordingly. Packedobjects has five types of string
which includes string, octet-string, bit-string, hex-string,
and numeric-string. In terms of encoding they only differ
by the range of values they can represent. For example a
bit-string is expressed as follows:

(define (bit-string)
‘(bit-string sequence-of

,(constrained-integer 0 1)))

This time we can see that the string is constrained to be an
integer with either the value zero or one. As with any string
type there are three categories representing semi-constrained,
constrained and fixed length strings.

2.3 Atomic types
Both strings and integers are atomic types. Packedobjects
has other atomic types which includes enumerated, boolean
and null. An enumerated type can be defined as follows:

(define (enumerated len)
(constrained-integer 0 len))

The above represents how Packedobjects allows a single choice
to be made from a list or enumeration of values and that this
choice is encoded from zero. Encoding a boolean is equally
straight forward:

(define (boolean)
(constrained-integer 0 1))

This time we know both bounds for the constrained integer
as opposed to just knowing the lower bound in the enumer-
ation example. A null type does not require any value to be
encoded.

2.4 Compound types
Compound types must contain other types and provide a
mechanism for representing choice and repetition. In ad-
dition, they allow the creation of complex nested protocol
definitions. There are various sequence types which include
sequence, sequence-optional and sequence-of. No encoding
is required to represent a sequence. A sequence-optional re-
quires a bitmap to indicate which values of a sequence are
present. It can be described as follows:

(define (sequence-optional)
(bit-string ))

Here we see that this bitmap can be represented as a se-
quence of characters which in this case is simply a bit-string.
For example this definition is expanded into:



(bit-string sequence-of (n integer (range 0 1)))

A sequence-of type requires a value to be encoded to rep-
resent how many times the sequence repeats. This can be
defined as follows:

(define (sequence-of)
‘(semi-constrained-integer 0))

A sequence-of is unbounded in size therefore we represent
the value as a semi-constrained integer which has a lower
bound of zero. In addition to the different types of sequence
the other compound data type is choice. The encoding of a
choice is very similar to an enumeration apart from the first
item in a list of choices is encoded from one. A choice can
be defined as follows:

(define (choice len)
(constrained-integer 1 len))

As we can see a choice uses a constrained integer that begins
at one.

3. EXECUTION OF RULES
Now that we have defined some rules for encoding we can try
and describe the encoding of our postcode example and then
reinforce our understanding of this description by supplying
values in the REPL. We can describe our encoding as a
sequence as follows:

(define proto
‘(encoding sequence

,(contains ,(choice 6))
,(contains ,(fixed-length-string ))
,(contains ,(constrained-integer 0 9))
,(contains ,(constrained-integer 0 9))
,(contains ,(fixed-length-string ))))

To preserve a unique namespace within the sequence we
wrap each entry in its own sequence. This can be achieved
by a simple macro such as:

(define-syntax contains
(syntax-rules ()

((_ thing)
‘(,(gensym "s") sequence thing ))))

It is important to note, we have concisely described the me-
chanics behind the encoding process which is suitable infor-
mation for someone implementing an encoder but not what
a protocol designer would do. They would be focusing on
how data is structured at a higher-level rather than how it
is encoded.

Now that we have defined our encoding using our high-level
definitions we will pretty-print the result to obtain the ex-
panded protocol and use this version instead:

(define proto
’(encoding

sequence
(s151 sequence (n integer (range 1 6)))
(s150 sequence

(s sequence-of (n integer (range 0 127))))
(s149 sequence (n integer (range 0 9)))
(s148 sequence (n integer (range 0 9)))
(s147 sequence

(s sequence-of (n integer (range 0 127))))))

In this version we can see how we wrapped each part of
the encoding sequence in its own sequence with a unique
identifier generated by a call to the gensym function. From
this fully expanded version we can now specify some values:

(define data
’(encoding

(s151 (n 3))
(s150 (s ((n 72)) ((n 65))))
(s149 (n 9))
(s148 (n 0))
(s147 (s ((n 87)) ((n 83))))))

Now that we have defined both the protocol and values we
can encode the values and also decode the result to confirm
correctness:

guile > (pretty-print (decode proto (encode proto data )))
(encoding

(s151 (n 3))
(s150 (s ((n 72)) ((n 65))))
(s149 (n 9))
(s148 (n 0))
(s147 (s ((n 87)) ((n 83)))))

4. CONCLUSIONS
In this paper we have described a dynamic way of describ-
ing a set of encoding rules which allows experimentation
within the Scheme REPL. This approach not only allows us
to concisely specify the mechanics of the encoding but also
allows us to reinforce our understanding by executing the
result. The language used to describe our encoding rules is
the same language we used to describe network protocols.
This demonstrates the flexible nature of the abstract lan-
guage and allows us to work with a syntax we are already
familiar with. We introduced our own high-level functions
to allow concise descriptions to be written. These functions
are eventually expanded into the correct abstract language
required for use by the Packedobjects tool. The outcome
is we are able to offer an alternative approach to the tra-
ditional method of formally describing encoding rules using
standards documents.

5. REFERENCES
[1] A.˜Cerone. Representing ASN. 1 in Z. In Proceedings of

the Australasian information security workshop
conference on ACSW frontiers 2003-Volume 21, pages
9–16. Australian Computer Society, Inc., 2003.

[2] International Telecommunication Union. Specification
of Abstract Syntax Notation One (ASN.1). ITU-T
Recommendation X.208, 1988.

[3] International Telecommunication Union. Abstract
Syntax Notation One (ASN.1): Specification of Packed
Encoding Rules (PER). ITU-T Recommendation
X.691, July 2002.

[4] J.˜Moore. Get stuffed: Tightly packed abstract
protocols in Scheme. The 10th Scheme and Functional
Programming Workshop, 2009.

[5] J.˜Moore. Everything counts in small amounts.
International Workshop on Dynamic languages for
Robotic and Sensor systems (DYROS), November 2010.

[6] J.˜Moore. Packedobjects Reference Manual.
http://zedstar.org/packedobjects/, Aug. 2010.


	Introduction
	Background
	Packedobjects

	Definition of rules
	Integers
	Strings
	Atomic types
	Compound types

	Execution of rules
	Conclusions
	References

