
Tudor Gîrba
www.tudorgirba.com

Software Evolution

Lecturers: Dr. Tudor Gîrba
Prof. Oscar Nierstrasz

(girba@iam.unibe.ch)
(oscar@iam.unibe.ch)

Assistant: Jorge Ressia

Lecture: Thursdays, 15:15 - 17:00

Lab: Thursdays, 17:15 - 18:00

Web:
http://scg.unibe.ch/Teaching/EVO
http://scglectures.unibe.ch/evo

Mailing list: evo-vorlesung@iam.unibe.ch

Software EvolutionBut, software does not rot

So, why is this a problem?

http://scglectures.unibe.ch/evo will be online in a few days.

The course is called Software Evolution. Why is this a problem?

1946

?
1951 2008

1968

This is a picture of ENIAC I (1946).
(http://en.wikipedia.org/wiki/ENIAC)

The interesting thing about it is that you can see the complexity of the program in how intricate the cables are. Another
interesting thing is that you see who is working on what.

UNIVAC is the first “mass produced” computer. They built 40 pieces, each costing 1 million dollars.
http://en.wikipedia.org/wiki/UNIVAC
http://www.city-net.com/~ched/help/general/tech_history.html

From UNIVAC on, the program became hidden. When people needed to name the building, they said itʼs the hardware
because it was a heavy thing, hard to build and manipulate. As opposite to that, the program was “softer”, just a bunch
of cards.

The machine was 25 feet by 50 feet in length, contained 5,600 tubes, 18,000 crystal diodes, and 300 relays. It utilized
serial circuitry, 2.25 MHz bit rate, and had an internal storage capacity 1,000 words or 12,000 characters.

Because it was hard and heavy (13 tons), we wanted to make it smaller and more manageable. So, after 50 years we
can carry the computer with us. But what happened with the “soft” thing?

NATO Software Engineering Conferences (1968, 1969)
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF
http://en.wikipedia.org/wiki/History_of_software_engineering
http://en.wikipedia.org/wiki/Software_crisis
http://www.princeton.edu/~hos/mike/articles/sweroots.pdf

NATO, 1968

[On software crisis] There is a widening gap between
ambitions and achievements in software engineering.

Edsger Dijkstra, 1972

As long as there were no machines, programming was
no problem at all; when we had a few weak computers,
programming became a mild problem, and now when
we have gigantic computers, programming has become
an equally gigantic problem.

Some of the sessions were very intense.

The consensus of the conference was that there is a software crisis, even if not everyone liked the term crisis:
- Kolence: “There are many areas where there is no such thing as a crisis — sort routines, payroll applications, for
example. It is large systems that are encountering great difficulties.”
- Kolence: “I do not like the use of the word ʻcrisisʼ. Itʼs a very emotional word. The basic problem is that certain
classes of systems are placing demands on us which are beyond our capabilities and our theories and methods of
design and production at this time.”

http://en.wikipedia.org/wiki/Software_crisis
http://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html

1970 1980 1990 2000 2010

Object-orientation

Model-driven engineering

Methodologies

Components

Structured programming

No silver bullet

The Standish Group, 2004

53% Challenged

18% Failed

29% Succeeded

Software is still hard to manage.

Dijkstra, 1969

1. We may not change our thinking habits.
2. We may not change our programming tools.
3. We may not change our hardware.
4. We may not change our tasks.
5. We may not change the organizational set-up in which

the work has to be done.

Now under these five immutable boundary conditions, we
have to try to improve matters. This is utterly ridiculous.
Thank you.

Software crisis was tackled in several ways over the past 40 years. Yet, no solution provided a silver bullet.

Related article:
http://www.virtualschool.edu/mon/SoftwareEngineering/BrooksNoSilverBullet.html

Yet, after 50 years, software is not “soft” anymore. It is heavy and difficult to manage.

The Standish Group defined a project to be successful if it is both on time and in budget. The challenged projects were
at least significantly over time or over budget. The failed projects were cancelled altogether.

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF

Letʼs start from what Dijkstra said in 1969 during the NATO 1969 conference, in a discussion related to software crisis.

1. We may not change our thinking habits.
2. We may not change our programming tools.
3. We may not change our hardware.
4. We may not change our tasks.
5. We may not change the organizational set-up in which

the work has to be done.

Now under these five immutable boundary conditions, we
have to try to improve matters. This is utterly ridiculous.
Thank you.

Lehman’s Evolution Law 1, 1980

A program that is used in a real-world environment
must change, or become progressively less useful in
that environment.

Zelkowitz, 1979,

Lientz, Swanson (1981)

Development Maintenance

In this lecture, we will focus on just three of the five points: a new way of looking at development, a new set of tasks
and a new set of tools that help us accomplish these tasks.

Manny Lehman and Les Belady, Program Evolution: Processes of Software Change, London Academic Press,
London, 1985. (ftp://ftp.umh.ac.be/pub/ftp_infofs/1985/ProgramEvolution.pdf)
M.M. Lehman. "Programs, life cycles, and laws of software evolution", Proceedings of IEEE, pages 1060–1076,
September 1980
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.4491

The following website contains a list of useful pointers related to software maintenance costs:
http://users.jyu.fi/~koskinen/smcosts.htm

Moad, 1990

Elrich, 2000

Development Maintenance

Lientz, Swanson 1980

60.3% Perfective

18.2% Adaptive

17.4% Corrective

Maintenance is hardly predictable.

legacy |ˈlegəsē|

an amount of money or property left to someone in a will.
a thing handed down by a predecessor.

The following website contains a list of useful pointers related to software maintenance costs:
http://users.jyu.fi/~koskinen/smcosts.htm

Bennett Lientz and Burton Swanson, Software Maintenance Management, Addison Wesley, Boston, MA, 1980.

Keith H. Bennett and Vaclav T. Rajlich, “Software maintenance and evolution: a roadmap,” ICSE '00: Proceedings of
the Conference on The Future of Software Engineering, ACM Press, New York, NY, USA, 2000, pp. 73—87.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.8225

Maintenance is about legacy.

legacy system |ˈlegəsē ˈsistəm|

an inherited software system that is valuable.

Not legacy Legacy

Software evolution

Legacy

In particular it is about legacy systems.

In the “classical” view on software, development is about not legacy code, and maintenance is about legacy code.
http://users.jyu.fi/~koskinen/smcosts.htm

Most of our effort should be concentrated on dealing with legacy code. Thus, instead of making a distinction between
development and maintenance, we better just consider the entire effort as a continuous evolution.

Lehman’s Evolution Law 2, 1980

As a program evolves, it becomes more complex, and
extraresources are needed to preserve and simplify its
structure.

forward engineering

}

{

}

{

}

{

}

{

forward engineering

actual development }

{

}

{

}

{

}

{
}

{

}

{

}

{
}

{

}

{

Manny Lehman and Les Belady, Program Evolution: Processes of Software Change, London Academic Press,
London, 1985. (ftp://ftp.umh.ac.be/pub/ftp_infofs/1985/ProgramEvolution.pdf)

M.M. Lehman. "Programs, life cycles, and laws of software evolution", Proceedings of IEEE, pages 1060–1076,
September 1980
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.4491

How do these legacy systems look like?

All projects start with great intensions. The idea is clear, the plans are neat and the implementation is tidy.

The problem is that in most projects, the actual development happens only at the code level, with only little
documentation, and several years later the system is not tidy anymore.

re
ve

rs
e

en
gin

ee
rin

g

forward engineering

}

{

}

{

}

{

}

{
}

{

}

{

}

{
}

{

}

{

actual development

program transformation

re
ve

rs
e

en
gin

ee
rin

g

forward engineering

}

{

}

{

}

{

}

{
}

{

}

{

}

{
}

{

}

{

Reengineering life cycle

02 Reverse engineering

03

04

05 Metrics and problem detection

06 Software visualization

07 Building reverse engineering tools

08 Dynamic analysis

09 History analysis

10 Software understanding in the large

11 Restructuring

12 Testing and Migration

13 TBA

14

Forward Engineering is the traditional process of moving from high- level abstractions and logical, implementation-
independent designs to the physical implementation of a system.

Reverse Engineering is the process of analyzing a subject system to identify the systemʼs components and their
interrelationships and create representations of the system in another form or at a higher level of abstraction.

Elliot Chikofsky and James Cross II, “Reverse Engineering and Design Recovery: A Taxonomy,” IEEE Software, vol. 7,
no. 1, January 1990, pp. 13—17.

Reengineering ... is the examination and alteration of a subject system to reconstitute it in a new form and the
subsequent implementation of the new form.

Elliot Chikofsky and James Cross II, “Reverse Engineering and Design Recovery: A Taxonomy,” IEEE Software, vol. 7,
no. 1, January 1990, pp. 13—17.

What we will do.

02 Reverse engineering Understanding a legacy system

03 Understanding a legacy system

04 Results presentations

05 Metrics and problem detection Using Moose

06 Software visualization Using Moose

07 Building reverse engineering tools Using Moose. New case studies

08 Dynamic analysis Results presentations

09 History analysis Building an analysis tool

10 Software understanding in the large Building an analysis tool

11 Restructuring Results presentations. Surprise project

12 Testing and Migration Surprise project

13 TBA Results presentations

14 Final exam

http://moose.unibe.ch

What you will do.

This book is used as inspiration for the course. The book is now open source and can be found at:
http://www.iam.unibe.ch/~scg/OORP/

Moose is a platform for software analysis. It was started at Software Composition Group, University of Bern, and it is
now used in several universities. More details can be found at:
http://moose.unibe.ch

http://www.inf.unisi.ch/phd/wettel/codecity.html

http://loose.upt.ro/incode

!The lab assignments are
mandatory to get in the exam

Code City shows software using a city metaphor. Code City is built by Richard Wettel and is based on Moose. More
details at:
http://www.inf.unisi.ch/phd/wettel/codecity.html

inCode is an Eclipse plugin dedicated to quality assurance. It developed at the LOOSE Research Group, Politehnica
University of Timisoara. More details can be found at:
http://loose.upt.ro/incode

Please subscribe to the mailing list:

http://www.iam.unibe.ch/mailman/listinfo/evo-vorlesung

Please form teams and send them by email to:

girba@iam.unibe.ch

