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Software Visudlization is the use of
typography, graphic design, animation, and
cinematography with human-computer
interaction and computer graphics to facilitate
both the human understanding and effective
use of software.

Why visualization?

Blaine A. Price, Ronald M. Baecker and lan S. Small, “A Principled Taxonomy of
Software Visualization,” Journal of Visual Languages and Computing, vol. 4, no. 3,
1993, pp. 211-266.

Complete definition: Software Visualization is the use of the crafts of typography,
graphic design, animation, and cinematography with modern human-computer
interaction and computer graphics technology to facilitate both the human understanding
and effective use of software.



A picture is worth a thousand words.
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Edward R. Tufte, Visual Explanations, Graphics Press, 1997.

It was not known how cholera was transmitted.

Dr. John Snow had the hypothesis that it gets transmitted via water.
To check this, he plotted on the map of the city:

- the deaths of a new epidemic (dots)

- the water pumps (Xs).

The result was that high number of deaths were detected near infected water pump on
Broad Street.

This is a picture of ENIAC | (1946).
(http://en.wikipedia.org/wiki’/ENIAC)

In 1946 we used to see the programs. In the picture we can see the complexity of the
program in how intricate the cables are. And we see who is working on what. This is no
longer the case with modern software systems.



A picture is worth a thousand words.
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How many groups do you see!?
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The picture is taken from: Stéphane Ducasse, Tudor Girba and Adrian Kuhn,
“Distribution Map,” Proceedings of 22nd IEEE International Conference on Software
Maintenance (ICSM '06), IEEE Computer Society, Los Alamitos CA, 2006, pp. 203-212.

Some see 3 groups and some see 4 groups. Those that see 3, see the circle in the
center as belonging to the group formed by the two circles at the bottom.
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Enclosing clarifies the situation.

Again, no problem in identifying 3 groups when circles are connected with edges.

The same happens when the circles share the same visual shape.



Stephen Few, Show me the numbers: Designing Tables and Graphs to Enlighten,
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http://en.wikipedia.org/wiki/Gestalt_psychology

These are some examples of so called Gestalt principles. According to these, we
perceive the world as a whole rather than as a sum of parts.

continuity

Our brain is a computer with 3 types of memory:
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If eyes are computers, visualizations are programs.

These attributes of form are the primitive instructions we can use for building these

Orientation Line Length Line Width Size programs.

Shape Curvature = Added Marks Enclosure

Exemplifying Preattentive Processing
Colin Ware, Information Visualisation, Elsevier, Sansome Street, San Fransico, 2004.
p150

How many times does 5 appear?

Colin Ware, Information Visualisation, Elsevier, Sansome Street, San Fransico, 2004.
p150

How many times does 5 appear?
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A picture is worth a thousand words.
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To see is often used a synonym for to understand. Do you see my point?

This picture shows approximately 350 words for a tiny system.
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Let’s see what else can we do with 1000 words.

If we display all of them equally, we cannot identify much.

Increasing the font size leads to a tag cloud visualization. The small text is hardly
readable, but it still competes for attention.



If we decrease the visual importance of the small text, we still know it’s there but the

| important words stand out more. Still, alphabetical order is not necessarily the most
CIaSS (jasses

relevant.
import
metamodel
ethod model moose named
number
reference
CIaSS named number import model reference version classes Orderlng the WordS eases Our taSk
method moose metamodel entity group

An example of what can be done with 1000 words.

What to visualize?
How to visualize?




What to visualize?

What to visualize?

Software structure

UML is a nice visual language for expressing ideas, but it is hardly useful as a
visualization.

In this example, we show a small fragment of the model hierarchy in Moose. Still even at
this level of zoom, we cannot see the details.




System Complexity shows class hierarchies
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Polymetric views show up to 5 metrics

Width metric

-

Height metric

Position metrics l
—

Color
metric

If we zoom out, all we see is the shape of hierarchies, and the shape of classes.

Michele Lanza and Stéphane Ducasse, “Polymetric Views—A Lightweight Visual
Approach to Reverse Engineering,” IEEE Transactions on Software Engineering, vol.
29, no. 9, September 2003, pp. 782-795. http://www.iam.unibe.ch/~scg/cgi-bin/
scgbib.cgi/abstract=yes?Lanz03d

System complexity is a polymetric view that does a better job at showing the shape of
hierarchies and of individual classes.

Michele Lanza, “Object-Oriented Reverse Engineering — Coarse-grained, Fine-grained,
and Evolutionary Software Visualization,” Ph.D. thesis, University of Berne, May 2003.
http://www.iam.unibe.ch/~scg/cgi-bin/scgbib.cgi/abstract=yes?Lanz03b

Polymetric views are graphs enriched with metric information.



Distribution Map shows properties over structure

Package Map shows who owns what classes

System complexity of ArgoUML.

Node = class

Edge = inheritance

Node width = number of attributes (NOA)
Node height = number of methods (NOM)
Node color = number of lines of code (LOC)

Stéphane Ducasse, Tudor Girba and Adrian Kuhn, “Distribution Map,” Proceedings
International Conference on Software Maintainance (ICSM 2006), IEEE Computer
Society, Los Alamitos CA, 2006, pp. 203-212.

This picture shows classes (small squares) grouped in packages (large rectangles). The
color of the classes is given by the predominant concept. The labels show the package
name, but they are cropped when longer that the package width. The classes in the
package are arranged to get a ration between width and height as close as possible to
the golden ratio (1.61803399).

31 packages, 394 classes and 9 concepts of JEdit.

Orla Greevy, Tudor Girba and Stéphane Ducasse, “How Developers Develop Features,”
Proceedings of 11th European Conference on Software Maintenance and
Reengineering (CSMR 2007), IEEE Computer Society, Los Alamitos CA, 2007, pp. 256
—274.



What to visualize?

Software structure
Software relationships

Class Blueprint shows class internals
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http://www.cs.umd.edu/hcil/treemap-history/index.shtml
Treemaps show the hierarchical structure by filling completely the given space.

The picture shows the files colored by type of ArgoUML 0.26 and it was generated with
Disk Inventory (http://www.derlien.com/).
Blue are Documents, Red are Jars, Cyan are Pictures, Cyan are Java

Stéphane Ducasse and Michele Lanza, “The Class Blueprint: Visually Supporting the
Understanding of Classes,” IEEE Transactions on Software Engineering, vol. 31, no. 1,
January 2005, pp. 75-90. http://www.iam.unibe.ch/~scg/cgi-bin/scgbib.cgi/abstract=yes?
Duca0O5b

The class is split into 5 layers:

- The initialize layer contains constructor methods,

- The Interface layer contains methods called from outside the class,

- The Internal implementation layer contains methods called from within the class,

- The Accessor layer contains setters and getters,

- The Attribute layer contains the attributes :).

Blue edges represent method invocations. Cyan edges represent attribute access.



Class Blueprint has a rich vocabulary
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The blueprint has a rich vocabulary.

On both dimensions of methods and attributes are mapped metrics. On the color of the
methods are mapped different attributes of the method.

The picture on the left shows the blueprint of one superclass and 3 of its subclasses.
The subclasses have the same shape and color (given by overriding methods). Hence
the name Siamese twins.

The picture on the right shows a class that has two distinct interests, because the
methods on top do not have a direct relationship with the methods on the bottom (we
see that because there is no blue edge in between).

Danny Holten, “Hierarchical Edge Bundles: Visualization of Adjacency Relations in
Hierarchical Data”, IEEE Transactions on Visualization and Computer Graphics (TVCG;
Proceedings of Vis/InfoVis 2006), Vol. 12, No. 5, Pages 741 - 748, 2006.

One straightforward way of representing relationships is to display entities in a circle and
draw edges between them. The picture shows classes organized in a module structure
and the arrows are dependencies (red=called, green=caller). We know that Units 16 and

18 are called many times, but we do not know exactly where from. The picture is too
noisy.



Hierarchical edge bundles clarify dependencies

Correlation Matrix reveals correlations

A‘

Danny Holten, “Hierarchical Edge Bundles: Visualization of Adjacency Relations in
Hierarchical Data”, IEEE Transactions on Visualization and Computer Graphics (TVCG;
Proceedings of Vis/InfoVis 2006), Vol. 12, No. 5, Pages 741 - 748, 2006.

Hierarchical edge bundles make use of the hierarchical structure of entities to make
relationships between larger parts clearer.

Visual Comparison of Hierarchically Organized Data" (PDF available through
EUROGRAPHICS / Blackwell Publishing), Danny Holten and Jarke J. van Wijk, 10th
Eurographics/IEEE-VGTC Symposium on Visualization (Computer Graphics Forum;
Proceedings of EuroVis'08), 2008.

This visualization uses hierarchical edge bundles to show the relationships between two
hierarchies of data.

A correlation matrix displays the same entities both on the rows and on the columns.
Each cell in the matrix is colored based on the strength of the correlation. This notation
is useful for identifying similarities (e.g., code duplication).

In this picture, the matrix displays the similarity of vocabulary used in the classes of
JEdit. Furthermore, the classes are grouped to reveal clusters of classes that use similar
vocabulary.

Adrian Kuhn, Stéphane Ducasse and Tudor Girba, “Semantic Clustering: Identifying
Topics in Source Code,” Information and Software Technology, vol. 49, no. 3, March
2007, pp. 230—243.



Arc diagrams show duplications

Metaphors

Software Map reveals software geography
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Martin Wattenberg, Arc diagrams: visualizing structure in strings, In Proceedings of
IEEE Symposium on Information Visualization, 2002 (INFOVIS 2002), 110-116

It took thousands of years to build the first abstract representation of the real world using
x and y axis. Software on the other hand, has no physical shape and one challenge is to
lay it out so that the distance between entities has a meaning.

This visualization proposes a cartography metaphor to represent software. The entities
are distributed based on the vocabulary used.

Adrian Kuhn, Peter Loretan and Oscar Nierstrasz, “Consistent Layout for Thematic
Software Maps,” Proceedings of 15th Working Conference on Reverse Engineering
(WCRE'08), IEEE Computer Society Press, Los Alamitos CA, October 2008, pp. 209—
218.



Richard Wettel and Michele Lanza, “Visualizing Software Systems as Cities,”
Proceedings of VISSOFT 2007 (4th IEEE International Workshop on Visualizing
Software For Understanding and Analysis), 2007, pp. 92—99.

CodeCity reveals where software lives

CodeCity represents the system structure as a city. The packages generate quarters,
while the classes are buildings.

http://www.inf.unisi.ch/phd/wettel/codecity.html

Wett el 2007

Richard Wettel, Michele Lanza “Visually Localizing Design Problems with Disharmony
Maps” In Proceedings of Softvis 2008 (4th International ACM Symposium on Software
Visualization), pp. 155 - 164, ACM Press, 2008.

In this work, design flaw suspects are highlighted with different colors.

http://www.inf.unisi.ch/phd/wettel/codecity.html
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What to visualize?

Software structure
Software relationships
Metaphors

Interaction




Softwarenaut discovers architecture Mircc_aa Lungu, Michele Lanza an_d Tudor Girba, “Package Patterns for Visual
Architecture Recovery,” Proceedings of CSMR 2006 (10th European Conference on

Software Maintenance and Reengineering), IEEE Computer Society Press, Los
Alamitos CA, 2006, pp. 185—196.

What to visualize?
How to visualize?

Visualization does not guarantee understanding

Not any picture tells a thousand words.




Edward R. Tufte, The Visual Display of Quantitative Information (2nd edition), Graphics
Press, 2001.

Colin Ware, Information Visualisation, Elsevier, Sansome Street, San Fransico, 2004.

INFORMATION

VISUALIZATION Stephen Few, Show me the numbers: Designing Tables and Graphs to Enlighten,
Analytics Press, 2004.

The Visual Display

of Quantitative Information

Edward R. Tufte, The Visual Display of Quantitative Information (2nd edition), Graphics
Press, 2001.

Minimize non-data ink

Tuftes 1990

sssssss The 6 actions are:

1. Remove background.

Excel 2004 | wf— 2. Remove legend.

default ;g; 3. Add better graph description.

4. Make the series line black for better contrast.
— 5. Make the grid lines light gray to be less intrusive.

6. Make the dates to start from the origin to avoid confusions.

Excel 2004
default
+

6 actions
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Maximize data ink

Tufte, 1990
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Stéphane Ducasse, Tudor Girba and Adrian Kuhn, “Distribution Map,” Proceedings
International Conference on Software Maintainance (ICSM 2006), IEEE Computer
Society, Los Alamitos CA, 2006, pp. 203-212.

The only element debatable to be chart junk is the black border which could be perhaps
made gray.

Edward R. Tufte, The Visual Display of Quantitative Information (2nd edition), Graphics
Press, 2001.
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InfoBug is cute and condensed
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\anguage

Eac\\ V\sua\\zauon P‘ OV\deS a
t\ at \'\eeds to be \ear nt

Mei C. Chuah and Stephen G. Eick, “Information Rich Glyphs for Software Management
Data,” IEEE Computer Graphics and Applications, vol. 18, no. 4, July 1998, pp. 24—29.

Interesting about this visualization is that each part of the bug bears information, and the
result is a pleasant glyph:

- the wings show two time series of lines of code (left) and errors detected (right)

- the antenas show different types of code. For example the orange line shows the
amount of C code.

- The eye shows the amount of inheritance relationships.

- With red and green are shown lines added to correct errors (red) or for new
functionality (green).



System Complexity
| node type

| edge type

3 metrics

Class Blueprint -

3 node types
2 edge types
3 metrics

8 properties
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A small experiment

I, 13,27,4,96




What were the numbers?

Easy!

What's the last advertisement you saw?




Not so easy!
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Just at the beginning of 20th century artists sought means of expression that would
match the industrial age, now, as we step into the information age we seek new artistic
means of expression.



Visualization is art, too.

The picture on the top right: http://acg.media.mit.edu/people/fry/revisionist/
The other two pictures were created with Mondrian.

i

lem um Two nice collections of visualizations are:
[
[ 1

http://infosthetics.com/
http://www.visualcomplexity.com/vc/

This picture was created by Michele Lanza

The zeppelin!

The picture shows C grammar dependencies and it was created by Magiel Bruntink,
Jurgen Vinju and CWI




Michael Balzer, Oliver Deussen and Claus Lewerentz, “Voronoi treemaps for the
visualization of software metrics,” SoftVis '05: Proceedings of the 2005 ACM symposium
on Software visualization, ACM, New York, NY, USA, 2005, pp. 165—172.

The picture shows a novel way of drawing treemaps.

http://lip.sourceforge.net/ctreemap.html
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