
History analysis

Tudor Gîrba
www.tudorgirba.com

Herodotus

Herodotus … displays his enquiry, so that human
achievements may not become forgotten … and great and
marvelous deeds … may not be without their glory …
especially to show why the two peoples fought with each
other.

http://en.wikipedia.org/wiki/Herodotus
History comes from the Greek word ἱστορίαι meaning inquiry.

re
ve

rs
e

en
gin

ee
rin

g

forward engineering

}

{

}

{

}

{

}

{
}

{

}

{

}

{
}

{

}

{

actual development

re
ve

rs
e

en
gin

ee
rin

g

forward engineering

}

{

}

{

}

{

}

{
}

{

}

{

}

{
}

{

}

{

actual development

re
ve

rs
e

en
gi

ne
er

in
g

History holds useful information

Reverse engineering is needed to re-synchronize the original idea with the reality of the
implementation.

The way the system got in the current shape is also relevant for understanding the
current situation.

History holds useful information
When did it change?

Lehman etal, 2001

Wu etal, 2004

Spectographs show change activity

commit

time

A classic approach to take a look at evolution is to use a line chart showing how one
variable changed over time. The graph presented here contributed to the formulation of
the Lehmanʼs Laws of Evolution.

Jingwei Wu, Richard Holt and Ahmed Hassan, “Exploring Software Evolution Using
Spectrographs,” Proceedings of 11th Working Conference on Reverse Engineering
(WCRE 2004), IEEE Computer Society Press, Los Alamitos CA, November 2004, pp.
80-89.

Spectographs show the history of files or modules, ordered by life span: the newest is
on top.
Red marks the change activity (i.e., commits in CVS). Red transforms into yellow to
show the age of activity, and eventually turns into green to show no recent activity.

History holds useful information
When did it change?
How did it change?

Lanza, Ducasse, 2002

Evolution Matrix shows changes in classes

Idle class

Pulsar class

Supernova class

White dwarf class

Michele Lanza and Stéphane Ducasse, “Understanding Software Evolution Using a
Combination of Software Visualization and Software Metrics,” Proceedings of Langages
et Modèles à Objets (LMO 2002), Lavoisier, Paris, 2002, pp. 135-149. http://
www.iam.unibe.ch/~scg/cgi-bin/scgbib.cgi/abstract=yes?Lanz02a

The Evolution Matrix shows classes as boxes (width = NOA, height = NOM). By
arranging the classes in rows, patterns of evolution can be spotted.

Taking a global view on the system, we can also spot when classes were introduced and
how long they lived.

History holds useful information
When did it change?
How did it change?
What changed?

2 4 3 5 7

2 2 3 4 9

2 2 1 2 3

2 2 2 2 2

1 5 3 4 4

1 5 3 4 4

4 2 1 0+++ = 7=

 LENOM(C) = ∑ |NOMi(C)-NOMi-1(C)| 2i-nEvolution of
Number of Methods

LENOM(C)

Suppose we have 5 classes and their respective number of methods throughout 5
versions. Which one changed the most?

Evolution of a Property counts the sum of the absolute changes of a Property in
subsequent versions.

1 5 3 4 4

 LENOM(C) = ∑ |NOMi(C)-NOMi-1(C)| 2i-n

LENOM(C) 4 2-3 2 2-2 1 2-1 0 20+++ = 1.5=

 EENOM(C) = ∑ |NOMi(C)-NOMi-1(C)| 22-i

Latest Evolution of
Number of Methods

Earliest Evolution of
Number of Methods

EENOM(C) 4 20 2 2-1 1 2-2 0 2-3+++ = 5.25=

ENOM LENOM EENOM

7 3.5 3.25

7 5.75 1.37

3 1 2

0 0 0

7 1.25 5.25

2 4 3 5 7

2 2 3 4 9

2 2 1 2 3

2 2 2 2 2

1 5 3 4 4

ENOM LENOM EENOM

7 3.5 3.25

7 5.75 1.37

3 1 2

0 0 0

7 1.25 5.25

balanced changer

late changer

dead stable

early changer

Latest and Earliest Evolution of a Property put emphasis on the latest or earliest period.

Historical measurements summarize the evolution details.

Evolution

Stability

Historical Max

Growth Trend

...

Number of Methods

Number of Lines of Code

Cyclomatic Complexity

Number of Modules

...

of

History can be measured in many ways

History holds useful information
When did it change?
How did it change?
What changed?
What will change?

Common wisdom

The recently changed parts are likely to change in the
near future

Are they really?

History can be measured in many ways. Still, a metric is just a tool that should be used
to answer a question. Starting from the question makes it clearer on what metrics make
sense.

“Those who cannot learn from history are doomed to repeat it.” said George Santayana.
In our case, we study history exactly to see what will get repeated and what not.

One common wisdom says to start the reverse engineering efforts from the parts that
were changed the most lately. But, is it really the case in all systems?

30% 90%

present

past future

prediction hit

Girba etal, 2004

Yesterday’s Weather shows the locality of changes

hit hit hit

YW = 3 / 8 = 37%

hit hit hit hit hit hit hit

YW = 7 / 8 = 87%

In many places, a good heuristic for predicting todayʼs weather is to say that it is similar
to yesterdayʼs weather. However, in other places, the weather changes more often, and
the heuristic would fail. Thus, this heuristic is place specific.

Having the history of the software system at hand, we can choose any version to be the
present one and thus to check the validity of the Yesterdayʼs Weather heuristic on the
current system. If at least one of the entities that changed the most lately is among
those that will change the most in the near future, the heuristic produces a hit for that
respective version.

We can then apply on all versions and compute an average to identity the relevance of
the heuristic. If it is high enough, we should use it on the system. Otherwise it is not
relevant to use it.

Gall etal 1998

Co-change analysis recovers hidden dependencies

Zimmermann etal 2005

eRose suggests files to co-change

History holds useful information
When did it change?
How did it change?
What changed?
What will change?
Who did what?

Harald Gall, Karin Hajek and Mehdi Jazayeri, “Detection of Logical Coupling Based on
Product Release History,” Proceedings International Conference on Software
Maintenance (ICSM '98), IEEE Computer Society Press, Los Alamitos CA, 1998, pp.
190—198.

Co-changes are relationships that can be observed only in time, as they appear when
two entities are committed repeatedly in the same time.

Thomas Zimmermann, Peter Weißgerber, Stephan Diehl, Andreas Zeller. Mining Version
Histories to Guide Software Changes. In IEEE Transactions on Software
Engineering(31): 429-445 (2005), June 2005, pp. 429-445.

eRose is a tool that reveals files that have been co-changed with the current file, thus
offering recommendations related to what else should be changed in the system.

Software is developed by people. History holds information of who did what. To get
answers, we need to know who to ask a certain question.

Eick etal 2002

Voinea etal 2005

CVSscan shows fine grained changes

Junker 2008

Kumpel offers a different view on how files change

Stephen Eick, Todd Graves, Alan Karr, Audris Mockus and Paul Schuster, “Visualizing
Software Changes,” IEEE Transactions on Software Engineering, vol. 28, no. 4, 2002,
pp. 396—412.

This visualization displays the correlation of authors (on the rows) and modules (on the
columns). Each cell shows the impact of an author on the module.

Lucian Voinea, Alex Telea and Jarke J. van Wijk, “CVSscan: visualization of code
evolution,” Proceedings of 2005 ACM Symposium on Software Visualization (Softviz
2005), St. Louis, Missouri, USA, May 2005, pp. 47—56.

CVSscan shows fine grained information about how a file evolved.

http://moose.unibe.ch/tools/yellowsubmarine

Kumpel is an interactive visualization for browsing the history of files.

CVS shows activity

Who is responsible for this?

Who is responsible for this?

Letʼs take a look at the process of creating two visualizations. The first one is to learn
from CVS who worked where, when and with whom.

The picture shows files as lines, and commits as circles on the lines.

The files are split into two parts: the upper part shows the Java files, and the lower part
shows the JSP files.
Inside each part the files are ordered alphabetically.

But, who did what and when?

We color each file by the developer that wrote the most lines of code in a certain period.

Alphabetical order is no order

Ownership Map reveals development patterns

Girba etal, 2006

JEdit

The files are ordered alphabetically, but in this case pure alphabetical order is not a
significant order when patterns of activity are the target. Even so, it can be seen that red
is mainly in charge with Java (upper part), and blue and green with JSP (lower part).

Tudor Gîrba, Adrian Kuhn, Mauricio Seeberger and Stéphane Ducasse, “How
Developers Drive Software Evolution,” Proceedings of International Workshop on
Principles of Software Evolution (IWPSE 2005), IEEE Computer Society Press, 2005,
pp. 113—122. http://www.iam.unibe.ch/~scg/cgi-bin/scgbib.cgi/abstract=yes?Girb05c

The lines are ordered according to their commit signatures: those that have similar
commit patterns are placed near each other.
The picture reveals:
- the JSP part was mainly developed by green in the beginning. Afterwards, green left
and blue entered the project and started to familiarize himself with the project and then
extended it.
- green eventually came back in the project and took over from blue.

JEdit is mainly developed by one author.

Ant

(john 23.06.03) public boolean stillValid (ToDoItem I, Designer dsgr) {
(bill 09.01.05) if (!isActive()) {
(bill 09.01.05) return false
(bill 09.01.05) }
(steve 16.02.05) List offs = i.getOffenders();
(john 23.06.03) Object dm = offs.firstElement();
(steve 16.02.05) ListSet newOffs = computeOffenders(dm);
(john 23.06.03) boolean res = offs.equals(newOffs);
(john 23.06.03) return res;

(george 13.02.05) public boolean stillValid (ToDoItem I, Designer dsgr) {
(bill 11.13.05) if (!isActive()) {
(bill 11.13.05) return false
(bill 11.13.05) }
(steve 16.02.05) List offs = i.getOffenders();
(george 13.02.05) Object dm = offs.firstElement();
(steve 16.02.05) ListSet newOffs = computeOffenders(dm);
(george 13.02.05) boolean res = offs.equals(newOffs);
(george 13.02.05) return res;

Who copied from whom?

(john 23.06.03) public boolean stillValid (ToDoItem I, Designer dsgr) {
(bill 09.01.05) if (!isActive()) {
(bill 09.01.05) return false
(bill 09.01.05) }
(steve 16.02.05) List offs = i.getOffenders();
(john 23.06.03) Object dm = offs.firstElement();
(steve 16.02.05) ListSet newOffs = computeOffenders(dm);
(john 23.06.03) boolean res = offs.equals(newOffs);
(john 23.06.03) return res;

(george 13.02.05) public boolean stillValid (ToDoItem I, Designer dsgr) {
(bill 11.13.05) if (!isActive()) {
(bill 11.13.05) return false
(bill 11.13.05) }
(steve 16.02.05) List offs = i.getOffenders();
(george 13.02.05) Object dm = offs.firstElement();
(steve 16.02.05) ListSet newOffs = computeOffenders(dm);
(george 13.02.05) boolean res = offs.equals(newOffs);
(george 13.02.05) return res;

Who copied from whom?

The blue part was developed mainly by one author and at some point it was removed
from Ant and became a project of its own.

The “cvs annotate” command annotates each line of a file with author that perform the
last change and date of the change.
We can use this information to identify who copies from whom.

We color the lines by the author.

13.02.05 public boolean stillValid (ToDoItem I, Designer dsgr) {
11.13.05 if (!isActive()) {
11.13.05 return false
11.13.05 }
16.02.05 List offs = i.getOffenders();
13.02.05 Object dm = offs.firstElement();
16.02.05 ListSet newOffs = computeOffenders(dm);
13.02.05 boolean res = offs.equals(newOffs);
13.02.05 return res;

23.06.03 public boolean stillValid (ToDoItem I, Designer dsgr) {
09.01.05 if (!isActive()) {
09.01.05 return false
09.01.05 }
16.02.05 List offs = i.getOffenders();
23.06.03 Object dm = offs.firstElement();
16.02.05 ListSet newOffs = computeOffenders(dm);
23.06.03 boolean res = offs.equals(newOffs);
23.06.03 return res;

When did changes happen?

Clone Evolution shows how developers copy

Balint etal, 2006

History holds useful information
When did it change?
How did it change?
What changed?
What will change?
Who did what?

How to model history?

We remove the author name, because we have the information in the color.

Mihai Balint, Tudor Gîrba and Radu Marinescu, “How Developers Copy,” Proceedings of
International Conference on Program Comprehension (ICPC 2006), 2006, pp. 56—65.
http://www.iam.unibe.ch/~scg/cgi-bin/scgbib.cgi/abstract=yes?Bali06a

The left hand side shows the changes placed in the overall context of the project time
span. To emphasize the order and to show the date of the change, a vertical line is
drawn for each date and the date is written below. This is especially useful when we
need to distinguish between close changes. The fragments are also ordered so that the
original is on top. The name of the containing file is also shown.

The picture reveals that red wrote the original code and blue changed/added 3 lines,
pink duplicated the code. orange changed consistently in all three fragments.

History holds useful information
When did it change?
How did it change?
What changed?
What will change?
Who did what?

How to model history?
How to model structure changes?

}

{

}

{

}

{
}

{

}

{

A large system contains lots of details

}

{

}

{

}

{
}

{

}

{

}

{

}

{

}

{
}

{

}

{

}

{

}

{

}

{
}

{

}

{

Its history contains even more details

}

{

}

{

}

{
}

{

}

{

}

{

}

{

}

{
}

{

}

{

First, why do we need to know how to model history?

Yes, and?

}

{

}

{

}

{
}

{

}

{

}

{

}

{

}

{
}

{

}

{

}

{

}

{

}

{
}

{

}

{

And lots of details are difficult to analyze

}

{

}

{

}

{
}

{

}

{

}

{

}

{

}

{
}

{

}

{

e.g., Evolution Matrix

Idle
class

Pulsar
class

Supernova
class

White dwarf
class Class

attributes

methods

e.g., Evolution Matrix

Idle
class

Pulsar
class

Supernova
class

White dwarf
class Class

NOA

NOM

Many details pose two problems. First, they pose a computational problem. Luckily this
is solved by Mooreʼs Law. Second, itʼs an analysis problem because we need to find and
interpret the right details for the problem at hand. Thus, we need to know how to tackle
these details.

Letʼs take a closer look at the Evolution Matrix.

Michele Lanza and Stéphane Ducasse, “Understanding Software Evolution Using a
Combination of Software Visualization and Software Metrics,” Proceedings of Langages
et Modèles à Objets (LMO 2002), Lavoisier, Paris, 2002, pp. 135-149. http://
www.iam.unibe.ch/~scg/cgi-bin/scgbib.cgi/abstract=yes?Lanz02a

The Evolution Matrix reveals class evolution patterns like supernova or pulsar.

e.g., Evolution Matrix

Idle
class

Pulsar
class

Supernova
class

White dwarf
class Class

NOA

NOM

e.g., Evolution Matrix

Idle
class history

Pulsar
class history

Supernova
class history

White dwarf
class history

ClassHistory

isPulsar
isIdle
...

Class
Version

System
Version

The question is if the “class” from the legend represents the same concept as the one
described on the left. The answer is no.

We introduce history as first class entity to encapsulate the evolution of entities (in this
case classes).

To the left we have actual classes spanning over 4 versions. To the right we have the
meta-model. Structurally, we can say that in a SystemVersion there are several
ClassVersions.

Class
Version

Class
History

System
Version

Class
Version

Class
History

System
Version

System
History

Class
Version

Class
History

System
Version

System
History

A ClassHistory is formed by several ClassVersions.

The entire picture forms the SystemHistory.

Graphically, inside the large red rectangle (representing the SystemHistory) we have
several large blue rectangles (representing ClassHistories). Thus, we can say that in a
SystemHistory we have several ClassHistories.

Class
Version

Class
History

System
Version

System
History

Hismo models history as
 first c

lass
entity

Girba, 2005

2 4 3 5 7

2 2 3 4 9

2 2 1 2 3

2 2 2 2 2

1 5 3 4 4

1 5 3 4 4

4 2 1 0+++ = 7=

 LENOM(C) = ∑ |NOMi(C)-NOMi-1(C)| 2i-nEvolution of
Number of Methods

LENOM(C)

Tudor Gîrba, “Modeling History to Understand Software Evolution,” Ph.D. thesis,
University of Bern, Bern, November 2005.

Tudor Gîrba and Stéphane Ducasse, “Modeling History to Analyze Software Evolution,”
Journal of Software Maintenance: Research and Practice (JSME), vol. 18, 2006, pp. 207
—236.

Hismo stands for History Meta-model.

History can be measured.

Evolution of a Property is a historical measurement.

1 5 3 4 4

 LENOM(C) = ∑ |NOMi(C)-NOMi-1(C)| 2i-n

LENOM(C) 4 2-3 2 2-2 1 2-1 0 20+++ = 1.5=

 EENOM(C) = ∑ |NOMi(C)-NOMi-1(C)| 22-i

Latest Evolution of
Number of Methods

Earliest Evolution of
Number of Methods

EENOM(C) 4 20 2 2-1 1 2-2 0 2-3+++ = 5.25=

present

past future

YesterdayWeatherHit(present):

prediction hit

 past:=histories.topLENOM(start, present)

 future:=histories.topEENOM(present, end)

 past.intersectWith(future).notEmpty()

History holds useful information
When did it change?
How did it change?
What changed?
What will change?
Who did what?

How to model history?
How to model structure changes?
How to combine time with structure?

The same for Latest Evolution and Earliest Evolution.

Having these measurements characterizing the history, the code for Yesterdayʼs
Weather becomes trivial.

Detection Strategies are metric-based queries to
detect design flaws

METRIC 1 > Threshold 1

Rule 1

METRIC 2 < Threshold 2

Rule 2

AND Quality problem

e.g., a God Class centralizes too much intelligence

ATFD > FEW

Class uses directly more than a

few attributes of other classes

WMC ! VERY HIGH

Functional complexity of the

class is very high

TCC < ONE THIRD

Class cohesion is low

AND GodClass

But, what if
it is

stable?

Ratiu etal, 2004

AND

isGodClass(last)

God Class

in the last version

Stability > 90%

Stable throughout

the history

Harmless God Class

Michele Lanza and Radu Marinescu, Object-Oriented Metrics in Practice, Springer-
Verlag, 2006.

Intuition tells us to eradicate GodClasses because they centralize are too complex and
centralize too much intelligence making it expensive to change them. But, what if we did
not need to change them in the past?

History-based detection strategies take the evolution into account. The interesting part
here is that time and structure are treated the same in the query. In Hismo, history
encapsulate time and is in relation with structure. Thus, time and structure can be
treated the same. This is rather philosophical :).

History holds useful information
When did it change?
How did it change?
What changed?
What will change?
Who did what?

How to model history?
How to model structure changes?
How to combine time with structure?
How to model changes in relationships?

What happens with inheritance?

ver .1 ver. 2 ver. 3 ver. 4 ver. 5

A A A A A

B B B B BC C C

D D D E

A is persistent, B is stable, C was removed, E is newborn ...

History contains too much data

ver .1 ver. 2 ver. 3 ver. 4 ver. 5

A A A A A

B B B B BC C C

D D D E

ver .1 ver. 2 ver. 3 ver. 4 ver. 5

A A A A A

B B B B BC C C

D D D E

ver .1 ver. 2 ver. 3 ver. 4 ver. 5

A A A A A

B B B B BC C C

D D D E

ver .1 ver. 2 ver. 3 ver. 4 ver. 5

A A A A A

B B B B BC C C

D D D E

ver .1 ver. 2 ver. 3 ver. 4 ver. 5

A A A A A

B B B B BC C C

D D D E

ver .1 ver. 2 ver. 3 ver. 4 ver. 5

A A A A A

B B B B BC C C

D D D E

ver .1 ver. 2 ver. 3 ver. 4 ver. 5

A A A A A

B B B B BC C C

D D D E

ver .1 ver. 2 ver. 3 ver. 4 ver. 5

A A A A A

B B B B BC C C

D D D E

ver .1 ver. 2 ver. 3 ver. 4 ver. 5

A A A A A

B B B B BC C C

D D D E

ver .1 ver. 2 ver. 3 ver. 4 ver. 5

A A A A A

B B B B BC C C

D D D E

ver .1 ver. 2 ver. 3 ver. 4 ver. 5

A A A A A

B B B B BC C C

D D D E

ver .1 ver. 2 ver. 3 ver. 4 ver. 5

A A A A A

B B B B BC C C

D D D E

ver .1 ver. 2 ver. 3 ver. 4 ver. 5

A A A A A

B B B B BC C C

D D D E

ver .1 ver. 2 ver. 3 ver. 4 ver. 5

A A A A A

B B B B BC C C

D D D E

ver .1 ver. 2 ver. 3 ver. 4 ver. 5

A A A A A

B B B B BC C C

D D D E

ver .1 ver. 2 ver. 3 ver. 4 ver. 5

A A A A A

B B B B BC C C

D D D E

Evolution Matrix shows classes over time.
In the above picture we try to use the same approach to also show inheritance
relationships.

N versions means N times more data.
For several hierarchies, the approach produces unreadable pictures.

Class
Version

Class
History

System
Version

System
History

Class
Version

Class
History

System
Version

System
History

Inheritance
Version

Inheritance
History

Class
Version

Class
History

System
Version

System
History

Inheritance
Version

What happens if we introduce relationships? How should we model them?

Just the same as the structure. In this case, an InheritanceHistory is going to represent
the historical relationship between two ClassHistories.

What happens with inheritance?

ver .1 ver. 2 ver. 3 ver. 4 ver. 5

A A A A A

B B B B BC C C

D D D E

A is persistent, B is stable, C was removed, E is newborn ...

A

B

D

C

E

age

changed
methods

changed
lines

Removed

Removed

A is persistent, B is stable, C was removed, E is newborn ...

Girba etal, 2005

Hierarchy Evolution reveals patterns

So, what can we do about this problem?

Tudor Gîrba, Michele Lanza and Stéphane Ducasse, “Characterizing the Evolution of
Class Hierarchies,” Proceedings IEEE European Conference on Software Maintenance
and Reengineering (CSMR 2005), IEEE Computer Society, Los Alamitos CA, 2005, pp.
2—11. http://www.iam.unibe.ch/~scg/cgi-bin/scgbib.cgi/abstract=yes?Girb05a

Node = history of a class
Edge = history of the inheritance relationship between two classes
Node width = number of methods added or removed
Node height = number of statements added or removed
Node color = age (old = black, new = white)

Hierarchy Evolution View characterizes the overall activity on an entire hierarchy,

History holds useful information
When did it change?
How did it change?
What changed?
What will change?
Who did what?

How to model history?
How to model structure changes?
How to combine time with structure?
How to model changes in relationships?
How to model co-changes?

A

B

C

D

E

1 2 3 4 5 6

B E

C D

A

Co-changes are n-ary relationships

A

B

C

D

E

1 2 3 4 5 6

Version

Co-changes are n-ary relationships.

As A has a strong relationship to B, B to C and A to C, the question is if all of these are
coupled due to the same reason.

How to model change?

A

B

C

D

E

1 2 3 4 5 6

 changed

Version

changed(i)

HistoryA

B

C

D

E

1 2 3 4 5 6

 changed

Version

What is Formal Concept Analysis?

Given a Version we want to know if it changed.

We can detect changes from a version to another, because history holds the order of
versions. Thus, a History will know if it was changed in Version i.

We use Formal Concept Analysis to detect co-change patterns. First, let see what FCA
is in a nutshell.

A

B

C

D

E

1 2 3 4 5 6

{A, B, C, D, E}

Ø

{D, E}
{2, 4}

{A, D}
{2, 6}

{A, B, C}
{5, 6}

{A, D, E}
{2}

{A, B, C, D}
{6}

{D}
{2, 4, 6}

{A}
{2, 5, 6}

{C}
{3, 5, 6}

Ø
{1, 2, 3, 4, 5, 6}

FCA

A

B

C

D

E

1 2 3 4 5 6

{A, B, C, D, E}

Ø

{D, E}
{2, 4}

{A, D}
{2, 6}

{A, B, C}
{5, 6}

{A, D, E}
{2}

{A, B, C, D}
{6}

{D}
{2, 4, 6}

{A}
{2, 5, 6}

{C}
{3, 5, 6}

Ø
{1, 2, 3, 4, 5, 6}

FCA

A

B

C

D

E

1 2 3 4 5 6

Girba etal 2007

FCA takes as input a matrix of Elements (A-E) having properties (1-6).

… and offers as a result a lattice in which each node represents a concept consisting of
Elements that have Properties in common. For example, A and D have 2 and 6 in
common.

Coming back to our problem of detecting co-change patterns, how to we apply this
technique?

Simple. Elements are given be Histories and Properties are given by “changed in
version i”. The resulting lattice shows which Histories were changed together in which
versions. For example, A,B and C have changed together in 2 versions.

Parallel Inheritance
add simultaneously children to several classes

Shotgun Surgery
change several classes simultaneously, but do not add methods

Inheritance
History

Class
Version

Class
History

System
Version

System
History

Inheritance
Version

Inheritance
History

Class
Version

Class
History

System
Version

System
History

Inheritance
Version

This technique can reveal different kinds of patterns depending on what Histories and
what changes we take into account. For example, to detect Parallel Inheritance, we
would consider ClassHistories that changed the number of children.

Hismo models history as first class entity.

Hismo models history as first class entity.

History

VersionHistory

VersionHistory

Version

History holds useful information
When did it change?
How did it change?
What changed?
What will change?
Who did what?

How to model history?
How to model structure changes?
How to combine time with structure?
How to model changes in relationships?
How to model co-changes?

Issues
How to sample history?
What to capture?
How to represent it?

re
ve

rs
e

en
gin

ee
rin

g

forward engineering

}

{

}

{

}

{

}

{
}

{

}

{

}

{
}

{

}

{

actual development

re
ve

rs
e

en
gi

ne
er

in
g

Hismo is generic. Given a structural meta-model, we can infer the historical meta-model.

Tudor Gîrba
www.tudorgirba.com

creativecommons.org/licenses/by/3.0/

