
Restructuring

Tudor Gîrba
www.tudorgirba.com

restructuring

re
ve

rs
e 

en
gin

ee
rin

g

forward engineering

}

{

}

{

}

{

}

{
}

{

}

{

}

{
}

{

}

{

Reengineering life cycle

restructuring }

{

}

{

}

{

}

{
}

{

}

{

}

{
}

{

}

{

What?

Reengineering ... is the examination and alteration of a subject system to reconstitute it 
in a new form and the subsequent implementation of the new form.

Elliot Chikofsky and James Cross II, “Reverse Engineering and Design Recovery: A 
Taxonomy,” IEEE Software, vol. 7, no. 1, January 1990, pp. 13—17.

What is restructuring?



Restructuring is often taken 
as a synonym of refactoring

Refactoring is a disciplined 
technique for restructuring an 
existing body of code, altering its 
internal structure without 
changing its external behavior

Refactoring is
behavior-preserving
transformation



Restructuring is transforming
a program to fit current needs

restructuring }

{

}

{

}

{

}

{
}

{

}

{

}

{
}

{

}

{

What?
Why?

Software should be
habitable

Why do we need restructuring?

Richard Gabriel introduced the term of software “habitability” to denote the idea that 
software is a “place” that needs being tidy and clean so that we can leave in it.



Markus Denker

The secret to tidiness is to find the right
place for every thing

Grandma Beck

If it stinks, change it

CodeCity takes the idea of habitability and gives software a landscape.



restructuring }

{

}

{

}

{

}

{
}

{

}

{

}

{
}

{

}

{

What?
Why?
How?

Take a critical look at design

How to restructure?

There is significant literature in describing techniques for restructuring software systems. 
Here, we show four books:
- Martin Fowler, Kent Beck, John Brant, William Opdyke and Don Roberts, Refactoring: 
Improving the Design of Existing Code, Addison Wesley, 1999
- Serge Demeyer, Stéphane Ducasse and Oscar Nierstrasz, “Object-Oriented 
Reengineering: Patterns and Techniques,” 2005, tutorial
- Michele Lanza and Radu Marinescu, Object-Oriented Metrics in Practice, Springer-
Verlag, 2006
- Joshua Kerievsky, “Refactoring to Patterns”, Addison Wesley, 2004

Poems need to rhyme, music needs to sound good, software design needs to feel good.



Lanza, Marinescu 2006

A God Class centralizes too much intelligence

ATFD > FEW

Class uses directly more than a 

few attributes of other classes

WMC ! VERY HIGH

Functional complexity of the 

class is very high

TCC < ONE THIRD

Class cohesion is low

AND GodClass

ModelFacade
from ArgoUML

Demeyer etal 2002

Split up God Class

Demeyer etal 2002

Easier said than done

An example of a design problem is the God Class, that is a class that is too complex, 
uses data from other classes and has low cohesion. How to manually detect such a 
problem:
- Huge, monolithic class with no clear and simple responsibilities
- One single class contains all the logic and control flow
- Other classes only serve as passive data holders
- Names like “Manager”, “System”, “Root”, “*Controller*” 
- Changes to the system always entail changes to the same class

How to eradicate such a problem?

One pattern is Split up God Class that talks about Incrementally distributing 
responsibilities into slave classes.

 Difficult because God Class is a usually a huge blob
 Identify cohesive set of attributes and methods

Create classes for these sets
 Identify all classes used as data holder and analyze how the god class uses them

Iteratively Move Behavior close to the Data
Use accessors to hide the transformation 
Use method delegation from the God Class to the providers
Use Façade to minimize change in clients



Demeyer etal 2002

You can also wrap it

Ratiu etal, 2004

AND

isGodClass(last)

God Class

in the last version

Stability > 90%

Stable throughout

the history

Harmless God Class

Maybe you do not

need to touch it at all

 

Client

getProvider()

Intermediary

service()

Provider

this.intermediary.provider.service();

this.intermediary.provider2.service2();

this.intermediary.provider3.service3();

service2()

Provider2

service3()

Provider3

The Law of Demeter: Don’t talk to strangers

Another solution is to wrap the class and stop the spread of the contamination.

No matter what the choice is, try to always have a running system before decomposing 
the God Class.

However, before going for eradicating the GodClass, make sure you actually have to do 
it. For example, if the GodClass was stable for a long period of time, it might not need 
touching, and an effort invested into it would not pay off.

Nevertheless, the eradicating a GodClass problem is a complex one and it is too large 
to be tackled all at once. It is better to split it up into smaller problems.

One part of the problem is related to the communication between classes. The Law of 
Demeter reveal the problem of navigational code which leads to tight coupling in the 
system.



Demeyer etal 2002

 

Client

fullService()

Intermediary

service()

Provider

this.intermediary.fullService();

service2()

Provider2

service3()

Provider3

Eliminate Navigation Code

Demeyer etal 2002

 

Client

fullService()

Intermediary

service()

Provider

this.intermediary.fullService();

service2()

Provider2

service3()

Provider3

Caveat: This can lead to huge interfaces

Fowler 1999

 

Client

service()

Provider

this.provider.service();

this.provider2.service2();

this.provider3.service3();

service2()

Provider2

service3()

Provider3

Remove Middle Man

One solution to eliminate navigational code is to provide the service from the 
intermediary.

You should not talk to strangers, but you can get introduced to strangers, though. One 
refactoring that can be used is Remove Middle Man (p 160) so that the client can talk 
directly with the providers.



Lanza, Marinescu 2006

An Envious Method is more interested
in data from a handful of other classes

ATFD > FEW

Method uses directly more than 

a few attributes of other classes

LAA < ONE THIRD

Method uses far more attributes 

of other classes than its own

FDP ! FEW

The used "foreign" attributes 

belong to very few other classes

AND Feature Envy

Move Behavior Closer to Data

Lanza, Marinescu 2006

Lanza, Marinescu 2006

Data Classes are dumb data holders

WOC < ONE THIRD

Interface of class reveals data 

rather than offering services

AND Data Class

Class reveals many attributes and is 

not complex

Feature Envy - Martin Fowler, Kent Beck, John Brant, William Opdyke and Don Roberts, 
Refactoring: Improving the Design of Existing Code, Addison Wesley, 1999.

Test methods (and in particular the setUp methods) are typically detected as being 
envious. Of course, in this case itʼs not necessarily a design problem.

WOC: weight of class



Move Behavior Closer to Data

Lanza, Marinescu 2006

Lanza, Marinescu 2006

Significant Duplication

Lanza, Marinescu 2006

m2

m1

m1'

m2'

m3

AA



Lanza, Marinescu 2006

m1

B C

m2

A

m1

B C

m2

A

m3

Restructuring can also improve performance

 

Client

 

BusinessObject

 

BusinessSessionBean

 

BusinessEntityBean

Problem:
 • Tight coupling, which leads to direct dependence between clients and business 

objects; 
 • Too many method invocations between client and server, leading to network 

performance problems; 
 • Lack of a uniform client access strategy, exposing business objects to misuse.



java.sun.com

 

Client

 

BusinessObject

 

BusinessSessionBean

 

BusinessEntityBean

 

SessionFacade

Not all Facades are good,

some are God :)

ModelFacade
from ArgoUML

Anonymous

Trouble never comes alone



Eliminate
Navigation Code

Split up
God Class

Move Behavior
Closer to Data

Redistribute
responsibilities

Transform conditionals
to Polymorphism

Transform Client
Type Checks

Introduce Null Object

...

inCode correlates problems http://www.intooitus.com/inCode.html

inCode correlates problems and offers advices of how to tackle these problems in 
concert. Furthermore, when possible it actually offers automatic refactoring options.



restructuring }

{

}

{

}

{

}

{
}

{

}

{

}

{
}

{

}

{

What?
Why?
How?
When?

Restructure all the time

… hmm, is this feasible?

When should we restructure?



It is feasible

Development Maintenance

Software evolution

In the “classical” view on software, development is about not legacy code, and 
maintenance is about legacy code.
http://users.jyu.fi/~koskinen/smcosts.htm

Most of our effort should be concentrated on dealing with legacy code. Thus, instead of 
making a distinction between development and maintenance, we better just consider the 
entire effort as a continuous evolution.



Tudor Gîrba
www.tudorgirba.com

creativecommons.org/licenses/by/3.0/


