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William Tell is a folk hero of Switzerland; 
she was an exceptional marksman.



Conference in Vienna in 1964 best 
summarized by T. B. Steel: 

“I don’t fully know myself how to describe the 
semantics of a language. I daresay nobody 
does or we wouldn’t be here”

The Genesis of Atribute Grammars
Donald E. Knuth

http://scg.unibe.ch/scgbib?&query=knut90a


Roadmap

> Context-sensitive analysis
> Strategies for semantic analysis
> Attribute grammars
> Symbol tables and type-checking
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See, Modern compiler implementation in 
Java (Second edition), Chapter 5.
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{
...
  x := y [1];
  z := x + y;
...
}

On error, compilation should stop and no code must be generated.



Semantic Analysis 

Compilation is driven by the syntactic structure of 
the program as discovered by the parser 

Semantic routines: 
—interpret meaning of the program based on its syntactic 

structure 
—two purposes: 

– finish analysis by deriving context-sensitive information 
– begin synthesis by generating the IR or target code 

—associated with individual productions of a context free 
grammar or sub-trees of a syntax tree 
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One of the main goals is to find errors early. If the instructions are ambiguous, or wrong, you don’t want to follow them.



Context-sensitive analysis

What context-sensitive questions might the compiler ask? 
1. Is x scalar, an array, or a function? 
2. Is x declared before it is used? 
3. Are any names declared but not used? 
4. Which declaration of x is being referenced? 
5. Is an expression type-consistent?
6. Does the dimension of a reference match the declaration? 
7. Where can x be stored? (heap, stack, ...) 
8. Does *p reference the result of a malloc()? 
9. Is x defined before it is used? 
10.Is an array reference in bounds? 
11.Does function foo produce a constant value? 
12.Can p be implemented as a memo-function?

8These questions cannot be answered with a context-free grammar 



Context-sensitive analysis

> What are the challenges?
—questions and answers involve non-local information 
—answers depend on values, not syntax 
—answers may involve computation 

> Several approaches:
—symbol tables: central store for facts; express checking code 
—attribute grammars:  specify non-local computations; automatic 

evaluators 
— language design: simplify language; avoid problems 
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Alternatives for semantic processing
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•  One-pass compiler and synthesis
• Two-pass

 compiler + peephole
 compiler & IR synthesis + code generation pass

• Multi-pass 
 analysis
 synthesis



One-pass compilers

> Interleave scanning, parsing and translation
—no explicit IR
—generate target code directly

– emit short sequences of instructions on each parser action
– little or no optimization possible (minimal context)

> Can add peephole optimization pass
—extra pass over generated code through small window (“peephole”) 

of instructions
—smooths out “rough edges” between code emitted by subsequent 

calls to code generator
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Two-pass: analysis & IR synthesis  
 + code generation

> Generate explicit IR as interface to code generator
— linear (e.g., tuples)
—can emit multiple tuples at a time for better code context

> Advantages
—easier retargeting (IR must be expressive enough for different 

machines!)
—can add optimization pass later (multi-pass synthesis)
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Keyword here is explicit IR. 
IR can be: structural (AST) or linear (pseudo-code for abstract machine).



Multi-pass analysis

> Several passes, read/write intermediate files
1. scan source file, generate tokens

– place identifiers and constants in symbol table
2. parse token file

– generate semantic actions or linearized parse tree
3. process declarations to symbol table
4. semantic checking with IR synthesis

> Motivations:
— Historical: constrained address spaces
— Language: e.g., declaration after use
— Multiple analyses over IR tree
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Multi-pass synthesis

> Passes operate on linear or tree-structured IR
> Options:

—code generation and peephole optimization
—multi-pass IR transformation

– machine-independent then dependent optimizations
—high-level to low-level IR transformation before code generation

– e.g., in gcc high-level trees drive generation of low-level Register Transfer 
Language for machine-independent optimization

— language-independent front ends
—retargetable back ends
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Attribute grammars

> Add attributes to the syntax tree or PEG:
—can add attributes (fields) to each node
—specify equations to define values
—propagate values up (synthesis) or down (inheritance)

> Example: ensuring that constants are immutable
—add type and class attributes to expression nodes
—add rules to production for :=

1. check that LHS.class is variable (not constant)
2. check that LHS.type and RHS.type are compatible
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Synthesized Attributes
- derives values from constants and children
- when only Synthesized => S-attributed grammar
Inherited Attributeds
- derived from constants, siblings, and parents
- used for context checking



Attribute grammar actions
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> tree attributes specified by grammar
> productions associated with attribute assignments
> each attribute defined uniquely and locally
> identical terms are labeled uniquely



Example: evaluating signed binary numbers
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• val and neg are synthetic attributes
• pos is an inherited attribute

Attributed parse tree for -101

Note that the val attributes propagate upwards while the pos attributes propagate downward.
The production rule List -> List1 Bit must be left recursive; otherwise the algorithm won’t work.



Attribute dependency graph
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• nodes represent attributes
• edges represent flow of values
• graph must be acyclic
• topologically sort to order attributes

—use this order to evaluate rules
—order depends on both grammar and 

input string!

Evaluating in this order yields NUM.val = -5



Evaluation strategies

> Parse-tree methods
1. build the parse tree
2. build the dependency graph
3. topologically sort the graph
4. evaluate it

> Rule-based methods
1. analyse semantic rules at compiler-construction time
2. determine static ordering for each production’s attributes
3. evaluate its attributes in that order at compile time

> Oblivious methods
1. ignore the parse tree and the grammar
2. choose a convenient order (e.g., left-to-right traversal) and use it
3. repeat traversal until no more attribute values can be generated

21



Attribute grammars in practice
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> Advantages
—clean formalism
—automatic generation of evaluator
—high-level specification

> Disadvantages
—evaluation strategy determines efficiency
— increase space requirements
—parse tree evaluators need dependency graph
—results distributed over tree
—circularity testing

Historically, attribute grammars have been judged too 
large and expensive for industrial-strength compilers.

Haskell’s lazy evaluation makes it an ideal platform for evaluating attribute grammars.
See, for example, UUAGC, the Utrecht University Attribute Grammar Compiler



Roadmap

> Context-sensitive analysis
> Strategies for semantic analysis
> Attribute grammars
> Symbol tables and type-checking
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Symbol tables

> For compile-time efficiency, compilers often use a symbol table: 
—associates lexical names (symbols) with their attributes 

> What items should be entered? 
— variable names 
— constants 
—procedure and function names 
— literal constants and strings 
— compiler-generated temporaries (we’ll get there) 

> Separate table of structure layouts for types (field offsets and 
lengths) 

24A symbol table is a compile-time structure 



Symbol table information

> What kind of information might the compiler need? 
—textual name 
—data type 
—dimension information (for aggregates) 
—declaring procedure 
—lexical level of declaration 
—storage class (heap, stack, text …) 
—offset in storage 
— if record, pointer to structure table 
— if parameter, by-reference or by-value? 
—can it be aliased? to what other names? 
—number and type of arguments to functions 

25



Lexical Scoping
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class C {
int x;
void m(int y) {
int z;
if (y>x) {
int w=z+y;
return w;

}
return y;

}
}

With lexical scoping the 
definition of a name is 
determined by its static 
scope. A stack suffices 
to track the current 
definitions.

scope of x

scope of y and z

scope of w

Some older languages provided dynamic scoping, but it is much harder to reason about.
Nowadays only exception handlers are dynamically scoped.



Nested scopes: block-structured symbol tables

> What information is needed? 
—when we ask about a name, we want the most recent declaration 
— the declaration may be from the current scope or some enclosing scope 
— innermost scope overrides declarations from outer scopes 

> Key point: new declarations (usually) occur only in current 
scope 

> What operations do we need? 
—void put(Symbol key, Object value) — bind key to value 
—Object get(Symbol key) — return value bound to key 
—void beginScope() — remember current state of table 
—void endScope() — restore table to state at most recent scope that 

has not been ended 
27May need to preserve list of locals for the debugger 



Checking variable declarations in a hierarchical 
symbol table

28

int x=1;
{
int y = x;
x = x+y;

}
{
y = x – y;

}

x : int

y : int -



Efficient Implementation of Symbol Tables
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Implementation options
1. functional
2. imperative

How to ensure efficiency, with thousands 
of distinct identifiers in a large program?

Efficient data structures
Symbols instead of strings: comparing & hashing are fast. 



Efficient Implementation of Symbol Tables
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Hash tables support an imperative
(destructive) implementation

int foo, bar; 
foo = ++bar;
if (bar>10) then 
{
   boolean baz;
   baz = true;
}

// and assume 
hash(foo)=hash(bar)
hash(baz)=hash(quux)

If we have multiple symbols in the new environment we must have a stack to keep track of the symbols in each environment.
With red we are trying to copy the array. That is not efficient!



Efficient Implementation of Symbol Tables (2)
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(Balanced) binary trees support a 
functional (non-destructive) implementation.

A persistence data structure.

Question: How fast is the copying of the needed nodes to create an entry point for a new environment?
To insert a node at depth n I have to add a maximum of n nodes. Thus insertion, and search can all happen in log(n) time.



Attribute information 

> Attributes are internal representations of declarations 
> Symbol table associates names with attributes 

> Names may have different attributes depending on their 
meaning: 
—variables: type, procedure level, frame offset 
—types: type descriptor, data size/alignment 
—constants: type, value 
—procedures: formals (names/types), result type, block information 

(local decls.), frame size 

32
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Static and Dynamic Typing

A language is statically typed if it is always possible to determine the 
(static) type of an expression based on the program text alone.

A language is dynamically typed if only values have fixed type. Variables 
and parameters may take on different types at run-time, and must be 
checked immediately before they are used.

A language is “strongly typed” if it is impossible to perform an operation 
on the wrong kind of object. 

Type consistency may be assured by
I. compile-time type-checking,
II. type inference, or
III.dynamic type-checking. See: Programming 

Languages course



Type expressions 

Type expressions are a textual representation for types: 
1. basic types: boolean, char, integer, real, etc. 
2. type names
3. constructed types (constructors applied to type expressions): 

a)array(I,T) denotes array of elements type T, index type I  
e.g., array (1...10,integer)

b)T1 × T2 denotes Cartesian product of type expressions T1 and 
T2

c) record(…) denotes record with named fields  
e.g., record((a × integer), (b × real))

d)pointer(T) denotes the type “pointer to object of type T”
e)D → R denotes type of function mapping domain D to range R  

e.g., integer × integer → integer
34



Type descriptors
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Type descriptors  are compile-time structures 
representing type expressions

e.g., char × char → pointer(integer)



Type compatibility

Type checking needs to determine type equivalence

Two approaches: 
> Name equivalence: each type name is a distinct type 
> Structural equivalence: two types are equivalent iff 

they have the same structure (after substituting type 
expressions for type names) 
—s ≡ t iff s and t are the same basic types 
—array(s1,s2) ≡ array(t1,t2) iff s1 ≡ t1 and s2 ≡ t2
—s1 × s2 ≡ t1 × t2 iff s1 ≡ t1 and s2 ≡ t2
—pointer(s) ≡ pointer (t) iff s ≡ t
—s1 → s2 ≡ t1 → t2 iff s1 ≡ t1 and s2 ≡ t2 36

Java uses nominal (i.e., named), not structural types. Structural typing could lead to accidental equivalence of types that should be considered different (e.g., 
polar and Cartesian points).



Type compatibility: example

Consider:
type link = ^cell
var next : link;
var last : link;
var p : ^cell;
var q, r : ^cell;

Under name equivalence: 
—next and last have the same type 
—p, q and r have the same type 
—p and next have different type 

Under structural equivalence all variables have the same type 
Ada/Pascal/Modula-2 are somewhat confusing: they treat 

distinct type definitions as distinct types, so 
—p has different type from q and r (!)

37



Type compatibility: Pascal-style name 
equivalence

38

Build compile-time structure called a type graph:
• each constructor or basic type creates a node 
• each name creates a leaf (associated with the type’s descriptor)

Type expressions are equivalent if they are 
represented by the same node in the graph 



Type compatibility: recursive types
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Consider:
type link = ^cell
var cell = record

info : integer;
next : link;

end

Expanding link in the type graph yields: 



Type compatibility: recursive types
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Allowing cycles in the type graph eliminates cell: 



Type rules
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If f is a function from A to B, and x is of 
type A, then f(x) is a value of type B.

f : A → B, x : A

f(x) : B

Type-checking rules can be 
formalized to prove 
soundness and correctness.
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Example: Featherweight Java

Igarashi, Pierce and Wadler, 
“Featherweight Java: a minimal 
core calculus for Java and GJ”, 
OOPSLA ’99
doi.acm.org/10.1145/320384.320395

Used to prove 
that generics 
could be added 
to Java without 
breaking the type 
system.
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Can you answer these questions?

✎Why can semantic analysis be performed by the parser?
✎What are the pros and cons of introducing an IR?
✎Why must an attribute dependency graph be acyclic?
✎Why would be the use of a symbol table at run-time?
✎Why does Java adopt nominal (name-based) rather than 

structural type rules?
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What you should know!

✎ Why is semantic analysis mostly context-sensitive?
✎ What is “peephole optimization”?
✎ Why was multi-pass semantic analysis introduced?
✎ What is an attribute grammar? How can it be used to 

support semantic analysis?
✎ What kind of information is stored in a symbol table?
✎ How is type-checking performed?
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