
Mircea Lungu
Oscar Nierstrasz

5. Semantic Analysis

Thanks to Jens Palsberg and Tony Hosking for their kind permission to
reuse and adapt the CS132 and CS502 lecture notes.
http://www.cs.ucla.edu/~palsberg/
http://www.cs.purdue.edu/homes/hosking/

http://www.cs.ucla.edu/~palsberg/
http://www.cs.purdue.edu/homes/hosking/

William Tell is a folk hero of Switzerland;
she was an exceptional marksman.

Conference in Vienna in 1964 best
summarized by T. B. Steel:

“I don’t fully know myself how to describe the
semantics of a language. I daresay nobody
does or we wouldn’t be here”

The Genesis of Atribute Grammars
Donald E. Knuth

http://scg.unibe.ch/scgbib?&query=knut90a

Roadmap

> Context-sensitive analysis
> Strategies for semantic analysis
> Attribute grammars
> Symbol tables and type-checking

4

See, Modern compiler implementation in
Java (Second edition), Chapter 5.

Roadmap

> Context-sensitive analysis
> Strategies for semantic analysis
> Attribute grammars
> Symbol tables and type-checking

5

{
...
 x := y [1];
 z := x + y;
...
}

On error, compilation should stop and no code must be generated.

Semantic Analysis

Compilation is driven by the syntactic structure of
the program as discovered by the parser

Semantic routines:
—interpret meaning of the program based on its syntactic

structure
—two purposes:

– finish analysis by deriving context-sensitive information
– begin synthesis by generating the IR or target code

—associated with individual productions of a context free
grammar or sub-trees of a syntax tree

7

One of the main goals is to find errors early. If the instructions are ambiguous, or wrong, you don’t want to follow them.

Context-sensitive analysis

What context-sensitive questions might the compiler ask?
1. Is x scalar, an array, or a function?
2. Is x declared before it is used?
3. Are any names declared but not used?
4. Which declaration of x is being referenced?
5. Is an expression type-consistent?
6. Does the dimension of a reference match the declaration?
7. Where can x be stored? (heap, stack, ...)
8. Does *p reference the result of a malloc()?
9. Is x defined before it is used?
10.Is an array reference in bounds?
11.Does function foo produce a constant value?
12.Can p be implemented as a memo-function?

8These questions cannot be answered with a context-free grammar

Context-sensitive analysis

> What are the challenges?
—questions and answers involve non-local information
—answers depend on values, not syntax
—answers may involve computation

> Several approaches:
—symbol tables: central store for facts; express checking code
—attribute grammars: specify non-local computations; automatic

evaluators
— language design: simplify language; avoid problems

9

Roadmap

> Context-sensitive analysis
> Strategies for semantic analysis
> Attribute grammars
> Symbol tables and type-checking

10

Alternatives for semantic processing

11

• One-pass compiler and synthesis
• Two-pass

 compiler + peephole
 compiler & IR synthesis + code generation pass

• Multi-pass
 analysis
 synthesis

One-pass compilers

> Interleave scanning, parsing and translation
—no explicit IR
—generate target code directly

– emit short sequences of instructions on each parser action
– little or no optimization possible (minimal context)

> Can add peephole optimization pass
—extra pass over generated code through small window (“peephole”)

of instructions
—smooths out “rough edges” between code emitted by subsequent

calls to code generator

12

Two-pass: analysis & IR synthesis  
 + code generation

> Generate explicit IR as interface to code generator
— linear (e.g., tuples)
—can emit multiple tuples at a time for better code context

> Advantages
—easier retargeting (IR must be expressive enough for different

machines!)
—can add optimization pass later (multi-pass synthesis)

13

Keyword here is explicit IR.
IR can be: structural (AST) or linear (pseudo-code for abstract machine).

Multi-pass analysis

> Several passes, read/write intermediate files
1. scan source file, generate tokens

– place identifiers and constants in symbol table
2. parse token file

– generate semantic actions or linearized parse tree
3. process declarations to symbol table
4. semantic checking with IR synthesis

> Motivations:
— Historical: constrained address spaces
— Language: e.g., declaration after use
— Multiple analyses over IR tree

14

Multi-pass synthesis

> Passes operate on linear or tree-structured IR
> Options:

—code generation and peephole optimization
—multi-pass IR transformation

– machine-independent then dependent optimizations
—high-level to low-level IR transformation before code generation

– e.g., in gcc high-level trees drive generation of low-level Register Transfer
Language for machine-independent optimization

— language-independent front ends
—retargetable back ends

15

Roadmap

> Context-sensitive analysis
> Strategies for semantic analysis
> Attribute grammars
> Symbol tables and type-checking

16

Attribute grammars

> Add attributes to the syntax tree or PEG:
—can add attributes (fields) to each node
—specify equations to define values
—propagate values up (synthesis) or down (inheritance)

> Example: ensuring that constants are immutable
—add type and class attributes to expression nodes
—add rules to production for :=

1. check that LHS.class is variable (not constant)
2. check that LHS.type and RHS.type are compatible

17

Synthesized Attributes
- derives values from constants and children
- when only Synthesized => S-attributed grammar
Inherited Attributeds
- derived from constants, siblings, and parents
- used for context checking

Attribute grammar actions

18

> tree attributes specified by grammar
> productions associated with attribute assignments
> each attribute defined uniquely and locally
> identical terms are labeled uniquely

Example: evaluating signed binary numbers

19

• val and neg are synthetic attributes
• pos is an inherited attribute

Attributed parse tree for -101

Note that the val attributes propagate upwards while the pos attributes propagate downward.
The production rule List -> List1 Bit must be left recursive; otherwise the algorithm won’t work.

Attribute dependency graph

20

• nodes represent attributes
• edges represent flow of values
• graph must be acyclic
• topologically sort to order attributes

—use this order to evaluate rules
—order depends on both grammar and

input string!

Evaluating in this order yields NUM.val = -5

Evaluation strategies

> Parse-tree methods
1. build the parse tree
2. build the dependency graph
3. topologically sort the graph
4. evaluate it

> Rule-based methods
1. analyse semantic rules at compiler-construction time
2. determine static ordering for each production’s attributes
3. evaluate its attributes in that order at compile time

> Oblivious methods
1. ignore the parse tree and the grammar
2. choose a convenient order (e.g., left-to-right traversal) and use it
3. repeat traversal until no more attribute values can be generated

21

Attribute grammars in practice

22

> Advantages
—clean formalism
—automatic generation of evaluator
—high-level specification

> Disadvantages
—evaluation strategy determines efficiency
— increase space requirements
—parse tree evaluators need dependency graph
—results distributed over tree
—circularity testing

Historically, attribute grammars have been judged too
large and expensive for industrial-strength compilers.

Haskell’s lazy evaluation makes it an ideal platform for evaluating attribute grammars.
See, for example, UUAGC, the Utrecht University Attribute Grammar Compiler

Roadmap

> Context-sensitive analysis
> Strategies for semantic analysis
> Attribute grammars
> Symbol tables and type-checking

23

Symbol tables

> For compile-time efficiency, compilers often use a symbol table:
—associates lexical names (symbols) with their attributes

> What items should be entered?
— variable names
— constants
—procedure and function names
— literal constants and strings
— compiler-generated temporaries (we’ll get there)

> Separate table of structure layouts for types (field offsets and
lengths)

24A symbol table is a compile-time structure

Symbol table information

> What kind of information might the compiler need?
—textual name
—data type
—dimension information (for aggregates)
—declaring procedure
—lexical level of declaration
—storage class (heap, stack, text …)
—offset in storage
— if record, pointer to structure table
— if parameter, by-reference or by-value?
—can it be aliased? to what other names?
—number and type of arguments to functions

25

Lexical Scoping

26

class C {
int x;
void m(int y) {
int z;
if (y>x) {
int w=z+y;
return w;

}
return y;

}
}

With lexical scoping the
definition of a name is
determined by its static
scope. A stack suffices
to track the current
definitions.

scope of x

scope of y and z

scope of w

Some older languages provided dynamic scoping, but it is much harder to reason about.
Nowadays only exception handlers are dynamically scoped.

Nested scopes: block-structured symbol tables

> What information is needed?
—when we ask about a name, we want the most recent declaration
— the declaration may be from the current scope or some enclosing scope
— innermost scope overrides declarations from outer scopes

> Key point: new declarations (usually) occur only in current
scope

> What operations do we need?
—void put(Symbol key, Object value) — bind key to value
—Object get(Symbol key) — return value bound to key
—void beginScope() — remember current state of table
—void endScope() — restore table to state at most recent scope that

has not been ended
27May need to preserve list of locals for the debugger

Checking variable declarations in a hierarchical
symbol table

28

int x=1;
{
int y = x;
x = x+y;

}
{
y = x – y;

}

x : int

y : int -

Efficient Implementation of Symbol Tables

29

Implementation options
1. functional
2. imperative

How to ensure efficiency, with thousands
of distinct identifiers in a large program?

Efficient data structures
Symbols instead of strings: comparing & hashing are fast.

Efficient Implementation of Symbol Tables

30

Hash tables support an imperative
(destructive) implementation

int foo, bar;
foo = ++bar;
if (bar>10) then
{
 boolean baz;
 baz = true;
}

// and assume
hash(foo)=hash(bar)
hash(baz)=hash(quux)

If we have multiple symbols in the new environment we must have a stack to keep track of the symbols in each environment.
With red we are trying to copy the array. That is not efficient!

Efficient Implementation of Symbol Tables (2)

31

(Balanced) binary trees support a
functional (non-destructive) implementation.

A persistence data structure.

Question: How fast is the copying of the needed nodes to create an entry point for a new environment?
To insert a node at depth n I have to add a maximum of n nodes. Thus insertion, and search can all happen in log(n) time.

Attribute information

> Attributes are internal representations of declarations
> Symbol table associates names with attributes

> Names may have different attributes depending on their
meaning:
—variables: type, procedure level, frame offset
—types: type descriptor, data size/alignment
—constants: type, value
—procedures: formals (names/types), result type, block information

(local decls.), frame size

32

33

Static and Dynamic Typing

A language is statically typed if it is always possible to determine the
(static) type of an expression based on the program text alone.

A language is dynamically typed if only values have fixed type. Variables
and parameters may take on different types at run-time, and must be
checked immediately before they are used.

A language is “strongly typed” if it is impossible to perform an operation
on the wrong kind of object.

Type consistency may be assured by
I. compile-time type-checking,
II. type inference, or
III.dynamic type-checking. See: Programming

Languages course

Type expressions

Type expressions are a textual representation for types:
1. basic types: boolean, char, integer, real, etc.
2. type names
3. constructed types (constructors applied to type expressions):

a)array(I,T) denotes array of elements type T, index type I  
e.g., array (1...10,integer)

b)T1 × T2 denotes Cartesian product of type expressions T1 and
T2

c) record(…) denotes record with named fields  
e.g., record((a × integer), (b × real))

d)pointer(T) denotes the type “pointer to object of type T”
e)D → R denotes type of function mapping domain D to range R  

e.g., integer × integer → integer
34

Type descriptors

35

Type descriptors are compile-time structures
representing type expressions

e.g., char × char → pointer(integer)

Type compatibility

Type checking needs to determine type equivalence

Two approaches:
> Name equivalence: each type name is a distinct type
> Structural equivalence: two types are equivalent iff

they have the same structure (after substituting type
expressions for type names)
—s ≡ t iff s and t are the same basic types
—array(s1,s2) ≡ array(t1,t2) iff s1 ≡ t1 and s2 ≡ t2
—s1 × s2 ≡ t1 × t2 iff s1 ≡ t1 and s2 ≡ t2
—pointer(s) ≡ pointer (t) iff s ≡ t
—s1 → s2 ≡ t1 → t2 iff s1 ≡ t1 and s2 ≡ t2 36

Java uses nominal (i.e., named), not structural types. Structural typing could lead to accidental equivalence of types that should be considered different (e.g.,
polar and Cartesian points).

Type compatibility: example

Consider:
type link = ^cell
var next : link;
var last : link;
var p : ^cell;
var q, r : ^cell;

Under name equivalence:
—next and last have the same type
—p, q and r have the same type
—p and next have different type

Under structural equivalence all variables have the same type
Ada/Pascal/Modula-2 are somewhat confusing: they treat

distinct type definitions as distinct types, so
—p has different type from q and r (!)

37

Type compatibility: Pascal-style name
equivalence

38

Build compile-time structure called a type graph:
• each constructor or basic type creates a node
• each name creates a leaf (associated with the type’s descriptor)

Type expressions are equivalent if they are
represented by the same node in the graph

Type compatibility: recursive types

39

Consider:
type link = ^cell
var cell = record

info : integer;
next : link;

end

Expanding link in the type graph yields:

Type compatibility: recursive types

40

Allowing cycles in the type graph eliminates cell:

Type rules

41

If f is a function from A to B, and x is of
type A, then f(x) is a value of type B.

f : A → B, x : A

f(x) : B

Type-checking rules can be
formalized to prove
soundness and correctness.

42

Example: Featherweight Java

Igarashi, Pierce and Wadler, 
“Featherweight Java: a minimal
core calculus for Java and GJ”, 
OOPSLA ’99
doi.acm.org/10.1145/320384.320395

Used to prove
that generics
could be added
to Java without
breaking the type
system.

43

Can you answer these questions?

✎Why can semantic analysis be performed by the parser?
✎What are the pros and cons of introducing an IR?
✎Why must an attribute dependency graph be acyclic?
✎Why would be the use of a symbol table at run-time?
✎Why does Java adopt nominal (name-based) rather than

structural type rules?

44

What you should know!

✎ Why is semantic analysis mostly context-sensitive?
✎ What is “peephole optimization”?
✎ Why was multi-pass semantic analysis introduced?
✎ What is an attribute grammar? How can it be used to

support semantic analysis?
✎ What kind of information is stored in a symbol table?
✎ How is type-checking performed?

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

