ORACLE

Truffle

A language implementation framework

Boris Spasojevic
Senior Researcher

VM Research Group, Oracle Labs

Slides based on previous talks given by Christian Wimmer, Christian Humer and Matthias Grimmer.

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The following is intended to provide some insight into a line of research in Oracle Labs. It
is intended for information purposes only, and may not be incorporated into any contract.
It is not a commitment to deliver any material, code, or functionality, and should not be
relied upon in making purchasing decisions. The development, release, and timing of any
features or functionality described in connection with any Oracle product or service
remains at the sole discretion of Oracle. Any views expressed in this presentation are my
own and do not necessarily reflect the views of Oracle.

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

E» Motivation and Background

E» Truffle + Graal

) Polyglot development (demo)

E» Tools
IB) Conclusion

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Confidential — Oracle Internal/Restricted/Highly Restricted 4

One Language to Rule Them All?

Let’s ask Stack Overflow...

A\
|=I stackoverflow

Stack Overflow is a question and answer site for professional and enthusiast programmers. It's 100% free, no
registration required.

Why can’t there be an “ultimate” programming language?

closed as not constructive by Tim, Bo Persson, Devon_C_Miller, Mark,
Graviton Jan 17 at 5:58

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

“Write Your Own Language”

Current situation How it should be

Prototype a new language Prototype a new language in Java

Parser and language work to build syntax tree (AST),
AST Interpreter

Parser and language work to build syntax tree (AST)
Execute using AST interpreter

Write a “real” VM People start using it
In C/C+4, still using AST interpreter, spend a lot of time And it is already fast
implementing runtime system, GC, ... And it integrates with other languages

Andith I , e.8.,
Seepla s i i nd it has tool support, e.g., a debugger

]
People complain about performance

- Define a bytecode format and write bytecode interpreter

Performance is still bad

' Write a JIT compiler, improve the garbage collector

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 6

Background: AST Interpreter
1. Source code -> Abstract Syntax Tree
eg:

1+2+3+4

Copyright © 2016, Oracle and/or its affiliates. All rights reserve

ORACLE

Background: AST Interpreter

2. Implement “execute” for each node
eg:
class AddNode extends Node {

Node left;

Node right;

int execute {

return left.execute ()
+ right.execute () ;

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Background: AST Interpreter
3. Execute the AST root node

eg:
Int result = root.executel();
assert (result == 10);

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Background: JIT Compiler

Compile once hot and profiled
eg:
while (root.execute () ==

eventually :

mov eax, 10

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

10

Lets talk about JavaScript...

function negate(a) { > negate(42)
return -a "2
} > negate(-"42")
Il_42ll

> negate({})
NaN

> negate([])
0

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Overall System Structure

Interpreter for every
language

Common API separates
language implementation,
optimization system,

and tools (debugger)

Integrate with Java
applications

ORACLE

Language agnostic
dynamic compiler

Low-footprint VM, also
suitable for embedding

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

12

Truffle

(a+b) *c Object execute(virtualFrame frame) {

Object a = left.execute(frame);
Object b = right.execute(frame);
return add(a, b);

}

Object add(Object a, Object b) {

if(a instanceof Integer &% b instanceof Integer) {
return (int)a + (int)b;
} else if (a instanceof String & b instanceof String) {

return (String)a + (String)b;
} else {
return genericAdd(a, b);

}

— Abstract syntax tree IS the interpreter
— Every node has an execute method

— Running Java program that interprets JavaScript (or any other language)

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Speculate and Optimize ...

Node Specialization
for Profiling Feedback

| >

(Node Transitions

AST Interpreter @ @

Uninitialized Nodes String @(Double
Generic

Integer

@ Uninitialized

-
-
-
.

AST Interpreter
Specialized Nodes

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Compilation using
Partial Evaluation

>

Compiled Code

14

... and Transfer to Interpreter and Reoptimize!

Transfer back
to AST Interpreter

| >

Node Specialization to
Update Profiling Feedback

| >

Recompilation using
Partial Evaluation

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 15

The Truffle Idea

’__._...——__~~
- —

.’ Optimize using partial ~ ~~_
evaluation assuming stable |

profiling feedback

’_——-\

Collect

profiling
feedback

Deoptimize if profiling
feedback is invalid and ’
®_ reprofile .7

i .

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Stability

ORACLE

100%

{
40% /f

80% / /
60%

—3— JavaScript

20% J//)Z
0%

=— Ruby

+R

Functions with stable specializations

O ~— AN M T IO O M~ 0 0 O «— AN M <+
™ T ™ T <

15-19
20-29
30-39

Number of function invocations

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

17

More Details on Truffle Approach

https://wiki.openjdk.java.net/display/Graal/Publications+and+Presentations
https://github.com/graalvm/simplelanguage
Oracle Labs VM Research YouTube channel

ORACLE

One VM to Rule Them All

Thomas Wiirthinger* Christian Wimmer® Andreas WoBT Lukas Stadler!
Gilles Dubosccﬂt Christian Humer' Gregor Richards® Doug Simon® Mario Wolczko*

*Oracle Labs 1Instilute for System Software, Johannes Kepler University Linz, Austria §S3 Lab, Purdue University

{thomas.wuerthinger, christian.wimmer, doug.simon, marie.wolczko}@oracle.com
{woess, stadler, duboscq, christian.humer}@ssw.jku.at gr@purdue.edu

Abstract as Microsoft’s Common Language Runtime, the VM of the
NET framework [43]. These implementations can be char-

Building high-performance virtual machines is a complex] .]
acterized in the following way:

and expensive undertaking: many popular languages still

have low—perfc.)rmance im_p]ememalions. We t.]escribe anew ® Their performance on typical applications is within a
approach to virtual machine (VM) construction that amor- small integer multiple (1-3x) of the best statically com-
tizes much of the effort in initial construction by allowing piled code for most equivalent programs written in an
new languages to be implemented with modest additional unsafe language such as C

o .

effort. The approach relies on abstract syntax tree (AST) in-
terpretation where a node can rewrite itself to a more special-
ized or more general node, together with an optimizing com-

® They are usually written in an unsafe, systems program-
ming language (C or C++).

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

18

Performance Disclaimers

* All Truffle numbers reflect a development snapshot

— Subject to change at any time (hopefully improve)
— You have to know a benchmark to understand why it is slow or fast

* We are not claiming to have complete language implementations

— JavaScript: passes 100% of ECMAscript standard tests
* Working on full compatibility with V8 for Node.JS

— Ruby: passing 100% of RubySpec language tests
* Passing around 90% of the core library tests

— R: prototype, but already complete enough and fast for a few selected workloads
* Benchmarks that are not shown — may not run at all, or — may not run fast

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

19

Performance: GraalVM Summary

Speedup, higher is better

5

ORACLE

1.02

Java

4.5
4.1 B Graal
Best Specialized Competition
1.2
0.85 0.9

Scala

Ruby R Native JavaScript

Performance relative to:

HotSpot/Server, HotSpot/Server running JRuby, GNU R, LLVM AOT compiled, V8

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

20

Performance: JavaScript

JavaScript performance: similar to V8

Speedup, higher is better

1.4

1.2

0.8
0.6

i

0.4
0.2
box2d Deltablue Crypto EarleyBoyer Gameboy NavierStokes Richards Raytrace Splay Geomean

Performance relative to V8

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 21

Performance: Ruby Compute-Intensive Kernels

Speedup, higher is better Huge speedup because Truffle can optimize

through Ruby metaprogramming

350

300

250
200

150
100

50 IIIIIII
O_ .

o RIS S <& N) S SN N2 IS S & & & NN KL > N
o (5 @ < & @ N @ DY N . NN 5N S
& %B@Q D o8 o7 8 07 5 & & O o (R PEMFCAR IS \\%@ ORGP R S I N I R I S & \,QQ’bA & S &
& 5 <@ O A S PN NG . e N 2 YRR .) N / o N < o) & o) o XK o
PPN\ R NS VS SN > SR S LN SRS PSS N A @ X S & ¥ ¥ o ¢ < NN N A
& ¢ & & Q< & S S L O O 2 ¢ 8 £ & & & X S 0 & ¥ & @ & ¥ ISR
& Q& > SN RS £ Q g & S o Q N\ & Q Q O L & Y RS & ¢ @
2 e S NN o & & N G NS o o < o Q & § & S L & R & &) AR N O @ Q
& & Q 2 & X Q o o Q & 0 < o o NS) 3 Qe R
&~ L & o & < L Q O & <& S & S Q CAEN o o & SN) O 0 R
S 3 X & J o & <& < IS o @ > N
«% & © coé &R WX O S ¢ ¥ Y & & &N $ S g W e L <& (co@ & &Y
A\ \N & o Q Q o X X e
S & & 8 SO A S0 € A EE S
o NS Y X N\ NS R Y C Q «0 A O 4 2 N}
& o S e 2 R\ o &
NG ¢ S & & S T &P
KON ¢ &E 6\6\ & S & Qo?;(‘ &
K } &
\e.*@ 0(\\:\ &@ & sb,\\“ @Qoé(\ A7 \(0%
N & & o <<\°6 S
& &
R
e>;\<“
&

Performance relative to JRuby running with Java HotSpot server compiler

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

22

Performance: R with Scalar Code

Speedup, higher is better

100 Huge speedups on scalar code, GNU R is only 660x
90 optimized for vector operations
80
70
60
50
40
30
20
SR I
© S <2 St 2 S R & G Q < N
& e ‘\Q’b <& K‘?’b Q,O\'\ X ’ (\\00 \b\® e__&\ (,06\ \(‘OK ((\Q:b
<& K 2 L O Q & & &3 Qgp
O (\& 0 \é\ ®® Qﬁ@ QQ/(J
@ < S

Performance relative to GNU R with bytecode interpreter

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Truffle Core Features

* Partial Evaluation (with Explicit Boundaries)

 Speculation with Internal Invalidation (guards)

 Speculation with External Invalidation (assumptions)

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

24

Introduction to Partial Evaluation

abstract class Node {
abstract int execute(int[] args);

}

class AddNode extends Node {
final Node left, right;

AddNode(Node left, Node right) {

this.left = right; this.right
}

int execute(int args[]) {

return left.execute(args) + right.execute(args); | }

}

class Arg extends Node {
final int index;
Arg(int i) {this.index = 1i;}

int execute(int[] args) {
return args[index];

}
right;

int interpret(Node node, int[] args) {
return node.execute(args);

// Sample program (arg[@] + arg[l]) + arg[2]
sample = new Add(new Add(new Arg(®), new Arg(l)), new Arg(2));

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

25

Introduction to Partial Evaluation

// Sample program (arg[@] + arg[1]) + arg[2]
sample = new Add(new Add(new Arg(©), new Arg(l)), new Arg(2));

int interpret(Node node, int[] args) {
return node.execute(args);

} \

1
: partiallyEvaluate(interpret, sample)
I

int interpretSample(int[] args) { !
return sample.execute(args); 4’
}

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

26

Introduction to Partial Evaluation

// Sample program (arg[@] + arg[1]) + arg[2]

sample = new Add(new Add(new Arg(9), new Arg(l)), new Arg(2));

int interpretSample(int[] args) {
- return sample.execute(args);
/
: } o
I ° . ° //
\\ int interpretSample(int[] args) { ;
u return sample.left.execute(args) I/ ’
+ sample.right.execute(args); f /
I I
- } : ‘
/ \
I . . . b
I int interpretSample(int[] args) {
\ return sample.left.left.execute(args)
\ + sample.left.right.execute(args)
+ args[sample.right.index];
}

ORACLE

int interpretSample(int[] args) {
return args[sample.left.left.index]
+ args[sample.left.right.index]
+ args[sample.right.index];

int interpretSample(int[] args) {
return args[0]
+ args[1]
+ args[2];

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

27

Explicit Boundaries for Partial Evaluation

Object parselSON(Object value) {
String s = objectToString(value);

return parselJSONString(s);
}

@TruffleBoundary
Object parselSONString(String value) {
// complex JSON parsing code

}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

ORACLE

28

Explicit Boundariea%k Partial Evaluation

[
I —
— e o]
I = -
b
—
P e

_— E
. =

=
=

=

// no boundary, but partially'evaiuated-ﬁ

void printLn() { T
System.out.println() —_ —

¥

=> Partially evaluated version can
be significantly slower than Java if

not handled with care! -

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

29

Initiate Partial Evaluation

class Function extends RootNode {
@Child Node child;

Object execute(VirtualFrame frame) {
return child.execute(frame)

}

public static void main(String[] args) {
CallTarget target = Truffle.getRuntime().createCallTarget(new Function());

for (int 1 = 0; 1 < 10000; i++) {
// after a few calls partially evaluates on a background thread

// installs partially evaluated code when ready
target.call();
}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

30

Speculation with Internal Invalidation

class NegateNode extends Node {

@CompilationFinal boolean objectSeen = false;
Object execute(Object v) {
if (v instanceof Double) {
return -((double) v);
} else {
if (lobjectSeen) { It
transferToInterpreter()4; Pl -

objectSeen = true;

}
// slow-case handling of all

// other types
return objectNegate(v);

}

Compiler sees: objectSeen = false

if (v instanceof Double) {
return -((double) v);
} else {
) deoptimize;

3

/

true

Compiler sees: objectSeen

if (v instanceof Double) {
return -((double) v);
} else {

return objectNegate(v);

}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Speculation with External Invalidation

@CompilationFinal static Assumption addNotDefined = new Assumption();

class AddNode extends Node {

int execute(int left, int right) {
if (addNotDefined.isValid()) {
return left + right;

}

. // complicated code to call user-defined add

}

static void defineFunction(String name, Function f) {
if (name.equals("+")) {
addNotDefined.invalidate();
... // register user-defined add

¥

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

32

ORACLE

Polyglot Demo.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

S5

High-Performance Language Interoperability (1)

objis a
C struct

o

Map JS access
to a message

JS-specific
object access

ORACLE

var a = obj.value;

Message Resolution Dynamic Compilation

———— >

@)

Map message
to a C access

Language-independent C-specific Machine Code
object access object access

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 34

High-Performance Language Interoperability (2)

var a = obj.value;

obj is a

Ruby object Dynamic Compilation

@0 =

@ C?
® 1@=® ® &
—
@ @ Map message @ @ @ @

to Rb access

C-specific C-specific and Rb-specific Machine Code
object access object accesses

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

More Details on Language Integration
http://dx.doi.org/10.1145/2816707.2816714

ORACLE

High-Performance Cross-Language
Interoperability in a Multi-language Runtime

Matthias Grimmer Chris Seaton Roland Schatz

Johannes Kepler University Linz,

matthias.grimmer@jku.at

Thomas Wiirthinger

Oracle Labs, Switzerland
thomas.wuerthinger@oracle.com

Abstract

Programmers combine different programming languages be-
cause it allows them to use the most suitable language for a
given problem, to gradually migrate existing projects from
one language to another, or to reuse existing source code.

Oracle Labs, United Kingdom
Austria chris.seaton®@oracle.com

Oracle Labs, Austria
roland.schatz@oracle.com

Hanspeter Mossenbock

Johannes Kepler University Linz, Austria
hanspeter.moessenboeck@jku.at

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Run-time environments, Code
generation, Interpreters, Compilers, Optimization

Keywords cross-language; language interoperability; vir-
tual machine: optimization: laneuage implementation

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

36

Tools

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

37

Tools: We Don’t Have It All
(Especially for Debuggers)

* Difficult to build
— Platform specific
— Violate system abstractions
— Limited access to execution state

* Productivity tradeoffs for programmers
— Performance — disabled optimizations
— Functionality — inhibited language features
— Complexity — language implementation requirements
— Inconvenience — nonstandard context (debug flags)

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserve

d.

38

Tools: We Can Have It All

* Build tool support into the Truffle API

— High-performance implementation

— Many languages: any Truffle language can be tool-ready with minimal effort
— Reduced implementation effort

* Generalized instrumentation support

1. Access to execution state & events
2. Minimal runtime overhead
3. Reduced implementation effort (for languages and tools)

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

39

Implementation Effort: Language Implementors

* Treat AST syntax nodes specially
— Precise source attribution
— Enable probing
— Ensure stability

* Add default tags, e.g., Statement, Call, ...

— Sufficient for many tools
— Can be extended, adjusted, or replaced dynamically by other tools

* Implement debugging support methods, e.g.
— Eval a string in context of any stack frame
— Display language-specific values, method names, ...

* More to be added to support new tools & services

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

40

“Mark Up” Important AST Nodes for Instrumentation

Probe: A program location (AST

node) prepared to give tools
access to execution state.

Tag: Statement Tag: An annotation for
configuring tool behavior at a

° e Probe. Multiple tags, possibly

tool-specific, are allowed.

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

41

Access to Execution Events

Instrument: A receiver of

program execution events
Event: AST execution flow installed for the benefit of
entering or returning from an external tool

a node.

Instr. 1 ‘ Instr. 2 ‘ Instr. 3

\ Tag: Statement

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

ORACLE

42

Implementation: Nodes

WrapperNode

Inserted before any execution
Intercepts Events
Language-specific Type

ORACLE

ProbeNode

« Manages “instrument chain” dynamically
 Propagates Events

* Instrumentation Type

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

43

43

More Details on Instrumentation and Debugging
http://dx.doi.org/10.1145/2843915.2843917

ORACLE

Building Debuggers and Other Tools: We Can ‘“Have it All”
Position Paper ICOOOLPS ‘15

Michael L. Van De Vanter

Oracle Labs
michael.van.de.vanter@oracle.com

Abstract

Software development tools that “instrument” running programs,
notably debuggers, are presumed to demand difficult tradeoffs
among performance, functionality, implementation complexity, and
user convenience. A fundamental change in our thinking about such
tools makes that presumption obsolete.

By building instrumentation directly into the core of a high-
performance language implementation framework, tool-support
can be always on, with confidence that optimization will apply uni-
formly to instrumentation and result in near zero overhead. Tools
can be always available (and fast), not only for end user program-
mers, but also for language implementors throughout development.

2. Roadblocks

Why is it so difficult to have tools that are as good and timely as
our programming languages? Why can’t we “have it all”?

2.1 Tribes

One perspective is historical and cultural. Concerns about program
execution speed (utilization of expensive machines) came long be-
fore concerns about software development rate and correctness (uti-
lization of expensive peaple).

Our legacy is that people who write compilers and people who
build developer tools essentially belong to different fribes, each
with its own technologies and priorities'. More significantly, each

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

44

Overall System Structure

Interpreter for every
language

Common API separates
language implementation,
optimization system,

and tools (debugger)

Integrate with Java
applications

ORACLE

Language agnostic
dynamic compiler

Low-footprint VM, also
suitable for embedding

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

45

Internships at Oracle

We're hiring!

.Tégf WHAT YOU WILL WORK WITH:

*® QOracle Labs is the sole organization at
Oracle that is devoted exclusively to
research.

* QOracle’s commitment to R&D is a driving
factor in the development of technologies
that have kept Oracle at the forefront of
the computer industry.

* You'll be working in an international team
of computer researchers.

* You will use your research skills and apply
them in an industry research
environment.

ORACLE’

Internship: Database and Analytics
Join Oracle Labs as an Intern

: (o8

’17’"@ YOUR CHALLENGES: ‘, WHAT WE REQUIRE:

* Design and prototype scalable distributed * Enrollment in a master or a PhD
systems algorithms for large scale data program in Computer Science.
processing.

* Database query processing or big data
® Implement and integrate algorithms in experience will be advantage.
the existing cloud based systems.
* Programming skills: C, C++, Python,
Java

* Language requirement: English
* Location: Zurich (Switzerland), Bangalore

(India), Redwood Shores
(US Headquarters)

For more details, please contact Nitin Kunal, Oracle Labs Switzerland (nitin.kunal@oracle.com)

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

46

Safe Harbor Statement

The preceding is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Confidential — Oracle Internal/Restricted/Highly Restricted 47

Integrated Cloud

Applications & Platform Services

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Confidential — Oracle Internal/Restricted/Highly Restricted 48

ORACLE

