
Oscar Nierstrasz

8. Condition Objects

Selected material © 2005 Bowbeer,
Goetz, Holmes, Lea and Peierls

BoundedCounterNMBAD

dec()

SimpleCondition
Object

Client 1 Client 2

await()

inc() wait()

Counter is
still locked

So condition is
never signalled

Roadmap

2

> Condition Objects
—Simple Condition Objects
—The “Nested Monitor Problem”
—Permits and Semaphores

Roadmap

3

> Condition Objects
—Simple Condition Objects
—The “Nested Monitor Problem”
—Permits and Semaphores

Pattern: Condition Objects

Intent: Condition objects encapsulate the waits and
notifications used in guarded methods.

Applicability
> To simplify class design by off-loading waiting and

notification mechanics.
—Because of the limitations surrounding the use of condition objects

in Java, in some cases the use of condition objects will increase
rather than decrease design complexity!

> …

4

A “lock” object is an example of a condition object. Since Java
supports monitors, making use of condition objects is in a sense a
step backwards. On the other hand, in certain situations dedicated
condition objects can nicely encapsulate specialized
synchronization policies.

Pattern: Condition Objects

Applicability
…
> As an efficiency manoeuvre.

—By isolating conditions, you can often avoid notifying waiting
threads that could not possibly proceed given a particular state
change.

> As a means of encapsulating special scheduling policies
surrounding notifications, for example to impose fairness
or prioritization policies.

> In the particular cases where conditions take the form of
“permits” or “latches”.

5

One drawback of Java monitors is that there is only a single
notify method to wake up waiting threads, even if they are
waiting for very different conditions. By encapsulating condition
objects, we can offer the possibility for different threads to wait
and by notified on distinct conditions.
Dedicated condition objects can also be used to selectively notify
threads according to some fairness criterion (such as first-in, first-
out).
Finally, some conditions have additional properties not captured
by Java's object locks. A “permit” can be used by whatever object
currently holds it. A “latch” has the property that once it is opened
(or closed), it stays that way.

Condition Objects

6

public interface Condition {
public void await (); // wait for some condition
public void signal (); // signal that condition

} Counter

A client that awaits a condition blocks until another
object signals that the condition now may hold.

Cf. java.util.concurrent.locks.Condition

A Simple Condition Object

7

public class SimpleConditionObject implements Condition
{

public synchronized void await () {
try { wait(); }
catch (InterruptedException ex) {}

}
public synchronized void signal () {

notifyAll ();
}

}

We can encapsulate guard conditions with this class:

NB: Careless use can lead to
the “Nested Monitor Problem”

Roadmap

8

> Condition Objects
—Simple Condition Objects
—The “Nested Monitor Problem”
—Permits and Semaphores

The Nested Monitor problem

9

public class BoundedCounterNestedMonitorBAD
 extends BoundedCounterAbstract {

protected Condition notMin = new SimpleConditionObject();
protected Condition notMax = new SimpleConditionObject();
public synchronized long value() { return count; }

... Counter

We want to avoid waking up the wrong threads by
separately notifying the conditions notMin and notMax:

In this example we use condition objects to encapsulate the
conditions that the BoundedCounter object is not currently at
its minimum, respectively maximum value. The advantage of this
design is that we can separately signal threads waiting for one
condition or the other. With the classical monitor-based design,
all threads are woken up by a notifyAll invocation, regardless
of what condition they are actually waiting for.

public synchronized void dec() {
while (count == MIN)

notMin.await(); // wait till count not MIN
if (count-- == MAX)

notMax.signal();
}
public synchronized void inc() { // can’t get in!

while (count == MAX)
notMax.await();

if (count++ == MIN)
notMin.signal(); // we never get here!

}
}

Unfortunately our design suffers from the nested monitor
problem: the decrement and increment methods are synchronized
as before, and they in turn make use of our synchronized
condition objects. In other words, we have a monitor
(Condition) nested inside another
(BoundedCounterNestedMonitorBAD). Such nested
monitors can quickly lead to a deadlock.
The problem is that if the condition notMin fails within the dec
method, then the synchronization lock on the bounded counter
continues to be held, since we wait on the Condition, not on
the bounded counter. At this point no other thread can enter the
monitor, and in particular no thread that would increment the
counter and make the awaited condition true!

BoundedCounterNMBAD

dec()

SimpleCondition
Object

Client 1 Client 2

await()

inc() wait()

Counter is
still locked

So condition is
never signalled

11

The Nested Monitor problem ...

Nested monitor lockouts occur whenever a blocked thread
holds the lock for an object containing the method that
would otherwise provide a notification to unblock the wait.

Note that a nested monitor lockout is not a classical deadlock, as
we do not have a waits-for cycle of processes holding resources
wanted by other processes. Instead one process (C1) is holding
the BC resource and is waiting for condition to come true. The
other process (C2) wants in but it cannot get in (starvation).
Nevertheless this is commonly thought of as a form of deadlock
as each process is waiting for the other to make progress.

12

2nd example — Nested Monitors in FSP

Nested Monitors typically arise when one synchronized object is
implemented using another.

Recall our one Slot buffer in FSP:

Suppose we try to implement a call/reply protocol using a private
instance of Slot:

const N = 2
Slot = (put[v:0..N] -> get[v] -> Slot).

ReplySlot = (put[v:0..N] -> my.put[v] -> ack -> ReplySlot
| get -> my.get[v:0..N] -> ret[v] -> ReplySlot).

The idea here is to reuse the simple Slot process to implement a
ReplySlot process supporting a more complex protocol. The
problem is that the Slot process is synchronized, and requires put
and get actions to strictly alternate. This will lead to a nested
monitor problem.

Nested Monitors in FSP ...

13

Producer = (put[0] -> ack
-> put[1] -> ack
-> put[2] -> ack -> Producer).

Consumer = (get-> ret[x:0..N]->Consumer).

||Chain = (Producer||ReplySlot||my:Slot||Consumer).

Our producer/consumer chain obeys the new protocol:

The Producer and Consumer follow the new protocol of
ReplySlot (put is followed by ack and get by ret). We compose all
three with a hidden Slot for the internal implementation of
ReplySlot. It all looks very nice, but ...

Nested Monitors in FSP ...

14

Progress violation for actions:
{{ack, get}, my.{get, put}[0..2], {put, ret}[0..2]}

Trace to terminal set of states:
get

Actions in terminal set:
{}

But now the chain may deadlock:

0 1

1-slotNM.lts

If we compose the processes and we see that there are several
deadlocked states!
Notice that ReplySlot allows an initial get action. This then leads
it to a state in which it wants to perform a get in its internal Slot,
but this is not possible. We thereby reach a terminal set, i.e., a
deadlocked state.

15

Solving the Nested Monitors problem

You must ensure that:
> Waits do not occur while synchronization is held on the host

object.
—Leads to a guard loop that reverses the faulty synchronization

> Notifications are never missed.
—The entire guard wait loop should be enclosed within synchronized blocks on

the condition object.
> Notifications do not deadlock.

—All notifications should be performed only upon release of all synchronization
(except for the notified condition object).

> Helper and host state must be consistent.
—If the helper object maintains any state, it must always be consistent with that

of the host
—If it shares any state with the host, access must be synchronized.

The first point is the most important one: ensure that you do not
hold the synchronization lock on the outer monitor while waiting
for notification on the inner one. To fix this, you must reverse the
guard loop so that you only wait on the inner monitor outside any
synchronized method or block of the outer one.

16

Example solution

public class BoundedCounterCondition extends BoundedCounterAbstract {
public void dec() { // not synched!

boolean wasMax = false; // record notification condition
synchronized(notMin) { // synch on condition object

while (true) { // new guard loop
synchronized(this) {

if (count > MIN) { // check and act
wasMax = (count == MAX);
count--;
break;

}
}
notMin.await(); // release host synch before wait

}
}
if (wasMax) notMax.signal(); // release all syncs!

} ...
}

Why must we sync on notMin?

This example is a bit convoluted, but it shows clearly how we
avoid waiting on the condition objects within code that is
synchronized on the outer monitor.
Note that we need to synchronize on notMin, otherwise we
could lose signals, since we only do notMin.await() after
checking the condition. (This is a race condition.)

Other solutions …

> Be sure to lock just a single object
— i.e., either the host or the condition object

> Remove host synchronization (if safe or immutable)

17

It is better to avoid such convoluted designs by instead using only
conditions objects for all synchronization.

2nd example — removing synchronization

18

||ReplySlot = (Putter||Getter).
Putter = (put[v:0..N] -> my.put[v] -> ack -> Putter).
Getter = (get -> my.get[v:0..N] -> ret[v] -> Getter).

This version of ReplySlot has no state of its own,
so we can simply remove the synchronization!

Progress Check...
-- States: 54 Transitions: 90 Memory used: 6612K
No progress violations detected.
Progress Check in: 1ms

Our mistake was to make a choice between putting and getting. In
this design we build the ReplySlot from independent Putter and
Getter processes that share the hidden Slot (i.e., we remove the
unneeded synchronization).
This eliminates the nested monitor problem and eliminates the
deadlocked states.

Roadmap

19

> Condition Objects
—Simple Condition Objects
—The “Nested Monitor Problem”
—Permits and Semaphores

20

Pattern: Permits and Semaphores

Intent: Bundle synchronization in a condition object when
synchronization depends on the value of a counter.

Applicability
> When any given await may proceed only if there have been more

signals than awaits.
—I.e., when await decrements and signal increments the number of available

“permits”.
> You need to guarantee the absence of missed signals.

—Unlike simple condition objects, semaphores work even if one thread enters its
await after another thread has signalled that it may proceed (!)

> The host classes can arrange to invoke Condition methods outside
of synchronized code.

Unlike a simple lock, a permit or a semaphore counts the number
of threads or processes that may enter a critical section.

Permits and Semaphores — design steps

> Define a class implementing Condition that maintains a
permit count, and immediately releases await if there are
already enough permits.
—e.g., BoundedCounter

21

Note that our BoundedCounter class is already a form of
permit! It offers a fixed number of “slots” to clients, and then
blocks when all are occupied.

Example

22

public class Permit implements Condition {
private int count;
Permit(int init) { count = init; }
public synchronized void await() {

while (count == 0) {
try { wait(); }
catch(InterruptedException ex) { };

}
count --;

}
public synchronized void signal() {

count ++;
notifyAll();

}
} Counter

The Permit class manages a fixed number (init) of “permits”.
Each await attempts to grab a permit, and each signal
releases one. When all permits are taken, await causes the
invoking process to wait. This is useful in situations where some
maximum number of processes are allowed to simultaneously
access a shared resource.

Design steps ...

23

class Host {
Condition aCondition; ...
public method m1() {

aCondition.await(); // not synced
doM1(); // synced
for each Condition c enabled by m1()

c.signal(); // not synced
}
protected synchronized doM1() { ... }

}

> As with all kinds of condition objects, clients must
avoid invoking await inside of synchronized code.
—You can use a before/after design of the form:

Here you must ensure that there is no race condition between
aCondition.await() and doM1(), i.e., it is not possible
for the condition to change in between.

Using permits

24

public class Building{
Permit permit;
Building(int n) {

permit = new Permit(n);
}
void enter(String person) { // NB: unsynchronized

permit.await();
System.out.println(person + " has entered the building");

}
void leave(String person) {

System.out.println(person + " has left the building");
permit.signal();

}
} Counter

Here we only use permits to synchronize access to the
Building, so there can be no nested monitor problem.
Note the resemblance of the design of this class to
BoundedCounterBasic.

Using permits

25

public static void main(String[] args) {
Building building = new Building(3);
enterAndLeave(building, "bob");
enterAndLeave(building, "carol");
...

}

private static void enterAndLeave(final Building building,
final String person) {

new Thread() {
public void run() {

building.enter(person);
pause();
building.leave(person);

}
}.start();

}

bob has entered the building
carol has entered the building
ted has entered the building
bob has left the building
alice has entered the building
ted has left the building
carol has left the building
elvis has entered the building
alice has left the building
elvis has left the building

This Building can only hold three people. Anyone attempting to
enter when the building is full must wait.

26

Variants

Permit Counters: (Counting Semaphores)
> Just keep track of the number of “permits”
> Can use notify instead of notifyAll if class is final

Fair Semaphores:
> Maintain FIFO queue of threads waiting on a SimpleCondition

Locks and Latches:
> Locks can be acquired and released in separate methods
> Keep track of thread holding the lock so locks can be reentrant!
> A latch is set to true by signal, and always stays true (e.g. a future)

27

Semaphores in Java

public class Semaphore { // simple version
private int value;
public Semaphore (int initial) { value = initial; }
synchronized public void up() { // AKA V

++value;
notify(); // wake up just one thread!

}
synchronized public void down() { // AKA P

while (value== 0) {
try { wait(); }
catch(InterruptedException ex) { };

}
--value;

}
}

Counter

See also. java.util.concurrent.Semaphore

Why is it safe here to invoke notify instead of notifyAll?

Using Semaphores
public class BoundedCounterSem extends BoundedCounterAbstract { …
protected Semaphore mutex, full, empty;
BoundedCounterVSem() {
mutex = new Semaphore(1);
full = new Semaphore(0); // number of counters
empty = new Semaphore(MAX-MIN); // number of empty slots

}
public long value() {
mutex.down(); // grab the resource
long val = count;
mutex.up(); // release it
return val;

}
public void inc() {
empty.down(); // grab a slot
mutex.down();
count ++;
mutex.up();
full.up(); // release a counter

}
…

Counter 28

In this version of the BoundedCounter class, we only use
semaphores for synchronization. We do not have any
synchronized methods in the counter itself, but use a mutex
semaphore to model the lock on the counter.
Note that in the increment method we first check the condition
and then grab the mutex lock, rather than the other way around!

Using Semaphores ...

29

...
public void BADinc() {

mutex.down(); empty.down(); // locks out BADdec!
count ++;
full.up(); mutex.up();

}
public void BADdec() {

mutex.down(); full.down(); // locks out BADinc!
count --;
empty.up(); mutex.up();

}
}

This would cause a nested monitor problem!

Reversing the order of usage of the semaphores would cause a
nested monitor problem since we would hold the mutex lock on
the counter while waiting for the condition to change.

The JUC version

30

import java.util.concurrent.Semaphore;
public class BoundedCounterJUCSem extends BoundedCounterAbstract {
protected Semaphore mutex;
protected Semaphore full;
protected Semaphore empty;

BoundedCounterJUCSem() {
mutex = new Semaphore(1); // one permit for critical section
full = new Semaphore(0); // number of counters
empty = new Semaphore((int)(MAX-MIN)); // number of empty slots

}
...
public void inc() {
try {
empty.acquire(); // grab a slot
mutex.acquire();

} catch (InterruptedException e) { }
count ++;
mutex.release();
full.release(); // release a counter
checkInvariant();

}
...
}

The JUC version is very similar, except P and V are called
acquire and release, and acquire might throw an
InterruptedException.

31

What you should know!

> What are “condition objects”? How can they make your
life easier? Harder?

> What is the “nested monitor problem”?
> How can you avoid nested monitor problems?
> What are “permits” and “latches”? When is it natural to

use them?
> How does a semaphore differ from a simple condition

object?
> Why (when) can semaphores use notify() instead of

notifyAll()?

32

Can you answer these questions?

> Why doesn’t SimpleConditionObject need any instance
variables?

> What is the easiest way to avoid the nested monitor
problem?

> What assumptions do nested monitors violate?
> How can the obvious implementation of semaphores (in

Java) violate fairness?
> How would you implement fair semaphores?

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/

