
Oscar Nierstrasz

9. Fairness and Optimism

Selected material © Magee and Kramer

Reader 1

write()

Reader 2 Host Writer 1 Writer 2

read()

read()
write()

read()

Roadmap

2

> Concurrently available methods

—Priority, Fairness and Interception

> Readers and Writers

—Readers and Writers policies

> Optimistic methods

Roadmap

3

> Concurrently available methods

—Priority, Fairness and Interception

> Readers and Writers

—Readers and Writers policies

> Optimistic methods

4

Pattern: Concurrently Available Methods

Intent: Non-interfering methods are made concurrently available by
implementing policies to enable and disable methods based on the
current state and running methods.

Applicability
> Host objects are accessed by many different threads.
> Host services are not completely interdependent, so need not be

performed under mutual exclusion.
> You need to improve throughput for some methods by eliminating

nonessential blocking.
> You want to prevent various accidental or malicious starvation due to

some client forever holding its lock.
> Full synchronization would needlessly make host objects prone to

deadlock or other liveness problems.

A classical example is that of objects with many readers and few
writers. Readers may concurrently access the object. Only a
writer should lock out other readers or writers.

Another example is an object with complex state. Finer grained
concurrency control over parts of the object's state can improve
liveness. (Imagine a database where the entire database is locked
for each transaction, rather than individual tables or tuples.)

5

Concurrent Methods — design steps

Layer concurrency control policy over mechanism by:

Policy Definition:
> When may methods run concurrently?
> What happens when a disabled method is invoked?
> What priority is assigned to waiting tasks?

Instrumentation:
> Define state variables to detect and enforce policy.

Interception:
> Have the host object intercept public messages and then relay them under

the appropriate conditions to protected methods that actually perform the
actions.

Roadmap

6

> Concurrently available methods

—Priority, Fairness and Interception

> Readers and Writers

—Readers and Writers policies

> Optimistic methods

7

Priority

Priority may depend on any of:
> Intrinsic attributes of tasks (class & instance variables)
> Representations of task priority, cost, price, or urgency
> The number of tasks waiting for some condition
> The time at which each task is added to a queue
> Fairness guarantees that each waiting task will eventually run
> Expected duration or time to completion of each task
> The desired completion time of each task
> Termination dependencies among tasks
> The number of tasks that have completed
> The current time

8

Fairness

There are subtle differences between definitions of fairness:

> Weak fairness: If a process continuously makes a request, eventually
it will be granted. (Dog begging for food.)

> Strong fairness: If a process makes a request infinitely often,
eventually it will be granted. (Cat checking for food in its bowl.)

> Linear waiting: If a process makes a request, it will be granted before
any other process is granted the request more than once. (Buying
one-per-customer tickets.)

> FIFO (first-in first out): If a process makes a request, it will be granted
before that of any process making a later request. (Stand in queue at
post office.)

Weak fairness may allow a process to starve. Linear waiting and
FIFO are easy to implement, though “later” may not be well-
defined in a distributed environment.

9

Interception

Interception strategies include:

> Pass-Throughs: The host maintains a set of immutable references to
helper objects and simply relays all messages to them within
unsynchronized methods.

> Lock-Splitting: Instead of splitting the class, split the synchronization
locks associated with subsets of the state.

> Before/After methods: Public methods contain before/after
processing surrounding calls to non-public methods in the host that
perform the services.

With a pass-through, the host is immutable, so requires no
synchronization. The helper objects are individually
synchronized, but there may be several of them that are
concurrently available. In this case, the host resembles a Facade
(design pattern).

With lock splitting, the state of the object (a set of instance
variables) is partitioned into several subsets, each with its own
lock. ConcurrentHashMap uses an array of 16 locks, each of
which guards one of the 16 hash buckets.

Before and after methods may contain finer grained
synchronization policies to guard the actual private (or protected)
methods that do the work. We will see examples later of Readers
and Writers that use such a strategy.

Roadmap

10

> Concurrently available methods

—Priority, Fairness and Interception

> Readers and Writers

—Readers and Writers policies

> Optimistic methods

Concurrent Reader and Writers

11

Reader 1

write()

Reader 2 Host Writer 1 Writer 2

read()

read()
write()

read()

“Readers and Writers” is a family of concurrency control designs in
which “Readers” (non-mutating accessors) may concurrently access
resources while “Writers” (mutative, state-changing operations) require
exclusive access.

Many applications make use of some kind of “database” or
persistent store that is frequently accessed by “readers” but only
periodically updated by “writers”. Think of network configuration
tables, or a customer database. Readers do not interfere with each
other, since they treat the data as though they were immutable.
Only writers conflict with readers or other writers. If most
processes only need read access, it is wasteful to impose strict
mutual exclusion on readers.

In the scenario, Readers 1 and 2 can access the Host concurrently.
Only when Writer 1 requests access, it must wait until it can gain
exclusive access. Similarly Writer 2 and Reader 2 must wait to
gain access.

“Readers and Writers” refers to a family of solutions to the
problem of safely (and fairly) enabling concurrent access to
resources shared by reader and writer processes.

https://en.wikipedia.org/wiki/Readers–writers_problem

Readers/Writers Model

12

set Actions = {acquireRead, releaseRead, acquireWrite, releaseWrite}

READER		 =	 (acquireRead -> examine -> releaseRead -> READER)
+Actions \{examine}.

WRITER		 = 	 (acquireWrite -> modify-> releaseWrite -> WRITER)
 					 +Actions \{modify}.

We are interested only in capturing who gets access:

These finite state processes capture the essence of the Readers/
Writers model. Synchronization policies hook into the before and
after events that acquire and release read or write access.
Examine and modify are internal actions. The others are visible,
and may be synchronized.

13

A Simple RW Protocol

const Nread		 = 2				 // Maximum readers
const Nwrite	 = 2				 // Maximum writers

RW_LOCK = RW[0][False],
RW[readers:0..Nread][writing:Bool] =

(when (!writing)
acquireRead -> RW[readers+1][writing]

| releaseRead -> RW[readers-1][writing]
| when (readers==0 && !writing)

acquireWrite -> RW[readers][True]
| releaseWrite -> RW[readers][False]
).

This simple mutual exclusion protocol does not impose any
priority. Multiple readers are allowed. Readers lock out writers;
writers lock out readers and writers. Note that some actions don’t
make sense in certain states (e.g., release in start state).

Safety properties

14

property SAFE_RW =
(acquireRead -> READING[1]
| acquireWrite -> WRITING

),

READING[i:1..Nread] =
(acquireRead 						 -> READING[i+1]
| when(i>1) releaseRead -> READING[i-1]
| when(i==1) releaseRead 		 -> SAFE_RW
),

WRITING = (releaseWrite -> SAFE_RW).

We specify the safe interactions:

We specify here that multiple read locks may be acquired, but
only one write lock.

The system may be in one of three states: ready for a reader or
writer to get in; reading (any number); writing (one writer). this
also specifies that we must acquire before releasing.

Safety properties ...

15

||READWRITELOCK = (RW_LOCK || SAFE_RW).

0 1

And compose them with RW_LOCK:

Here we see that RW_LOCK permits several unsafe traces.
Actual Readers and Writers may be badly behaved and violate the
safety property, for example, by acquiring a read lock and then
releasing a write lock.

Composing the Readers and Writers

16

||READERS_WRITERS	 =
 			 (reader[1..Nread]:READER

||	 writer[1..Nwrite]:WRITER
||	 {reader[1..Nread], writer[1..Nwrite]}::READWRITELOCK).

No deadlocks/errors

0 1

We compose the READERS and WRITERS with the protocol
and check for safety violations:

Each READER/WRITER is forced to sync with the lock.

We see that READER and WRITER are well-behaved with
respect to the specified safety property.

Progress properties

17

progress WRITE[i:1..Nwrite] = writer[i].acquireWrite
progress READ[i:1..Nwrite] = reader[i].acquireRead

Progress Check...
No progress violations detected.

0 1

We similarly specify liveness properties:

Assuming fair
choice, we have no
liveness problems

Our liveness properties simply state that both readers and writers
are all guaranteed to eventually acquire the resource. Under fair
choice, there are no progress violations.

Priority

18

||RW_PROGRESS =
READERS_WRITERS

>>{reader[1..Nread].releaseRead,
writer[1..Nread].releaseWrite}.

Progress violation: WRITE.1 WRITE.2
Trace to terminal set of states:

reader.1.acquireRead tau
Actions in terminal set:

reader[1..2].{acquireRead, releaseRead}

0 1

If we give priority to acquiring locks, we may starve out writers!

If we give priority to acquiring over releasing
(READERS_WRITERS >>{…}), then the writer may be starved
out. (In P>>B, the actions in B have lowest priority; in P<<B they
have highest priority.)

The LTSA model checker shows us that two readers can overlap
in acquiring and releasing the read locks, thus starving out any
writers.

19

Starvation

0 1NB: minimize to eliminate tau actions

In this scenario, there is always some reader holding the read
lock, so writers are starved out.

Roadmap

20

> Concurrently available methods

—Priority, Fairness and Interception

> Readers and Writers

—Readers and Writers policies

> Optimistic methods

21

Readers and Writers Policies

Individual policies must address:

> Can new Readers join already active Readers even if a Writer is
waiting?
—if yes, Writers may starve
—if not, the throughput of Readers decreases

> If both Readers and Writers are waiting for a Writer to finish, which
should you let in first?
—Readers? A Writer? FCFS? Random? Alternate?
—Similar choices exist after Readers finish.

> Can Readers upgrade to Writers without having to give up access?

Policies ...

22

> A typical set of choices:
—Block incoming Readers if there are waiting Writers.

—“Randomly” choose among incoming threads 

(i.e., let the scheduler choose).

—No upgrade mechanisms.

Before/after methods are the
simplest way to implement
Readers and Writers policies.

Readers and Writers example

23

public abstract class ReadersWritersStateTracking {
protected int activeReaders = 0;			 // zero or more
protected int activeWriters = 0;			 // always zero or one
protected int waitingReaders = 0;
protected int waitingWriters = 0;
protected abstract void doRead();		 // defined by subclass
protected abstract void doWrite();

... ReadersWriters

Implement state tracking variables

Readers and Writers example

24

...
public void read() {			 // unsynchronized

beforeRead();				 // obtain access
doRead();
afterRead();				 // release access

}
public void write() {

beforeWrite();
doWrite();
afterWrite();

}
...

Public methods call protected before/after methods

Readers and Writers example

25

...
protected synchronized void beforeRead() {

++waitingReaders;				 // available to subclasses
while (!allowReader()) {

try { wait(); }
catch (InterruptedException ex) {}

}
--waitingReaders;
++activeReaders;

}
protected synchronized void afterRead() {

--activeReaders;
notifyAll();

}
...

Synchronized before/after methods maintain state variables

Readers and Writers example

26

...
protected boolean allowReader() {			 // default policy

return waitingWriters == 0 && activeWriters == 0;
}

...

Different policies can use the same state variables …

Can you define
suitable before/after
methods for Writers?

Notice how this design allows us to implement a variety of
policies in the helper methods, especially allowReader() and
allowWriter().

Exercise: What (simple) policy might you define to ensure that
neither readers nor writers can be starved out?

Readers and Writers demo

27

class ReadWriteDemo extends ReadersWritersStateTracking {
...

public void doit() {
new Reader(this).start();
...

}
...

protected void doRead() {
System.out.print("(");
Thread.yield();
System.out.print(")");

}
protected void doWrite() {

System.out.print("[");
...

}
}

(()())[][][][][][][]
[][][][](()()()()() ()
()()()()()())[][] [][]
[][][][][][][] (()()()
()())

Roadmap

28

> Concurrently available methods

—Priority, Fairness and Interception

> Readers and Writers

—Readers and Writers policies

> Optimistic methods

29

Pattern: Optimistic Methods

Intent: Optimistic methods attempt actions, but rollback state in case of
interference. After rollback, they either throw failure exceptions or
retry the actions.

Applicability
> Clients can tolerate either failure or retries.

—If not, consider using guarded methods .
> You can avoid or cope with livelock.
> You can undo actions performed before failure checks

—Rollback/Recovery: undo effects of each performed action. If messages are
sent to other objects, they must be undone with “anti-messages”

—Provisional action: “pretend” to act, delaying commitment until interference is
ruled out.

Note that if the likelihood of failure is high, this will lead to busy-
waiting of clients repeatedly attempting to complete their actions.

See also:

https://en.wikipedia.org/wiki/Optimistic_concurrency_control

30

Optimistic Methods — design steps

Collect and encapsulate all mutable state so that it can be tracked as a
unit:

> Define an immutable helper class holding values of all instance
variables.

> Define a representation class, but make it mutable (allow instance
variables to change), and additionally include a version number (or
transaction identifier) field or even a sufficiently precise time stamp.

> Embed all instance variables, plus a version number, in the host class,
but define commit to take as arguments all assumed values and all
new values of these variables.

> Maintain a serialized copy of object state.
> Various combinations of the above ...

All of these approaches offer a way to update the state, but then to
delay the decision to either commit that state or roll back to the
previous state.

“Maintain a serialized copy of object state.” — e.g., a backup
copy of the state that is updated as an atomic action.

Detect failure ...

31

class Optimistic {							 // code sketch
private State currentState; 			 // immutable values
synchronized boolean commit(State assumed, State next)
{

boolean success = (currentState.equals(assumed)) ;
if (success)

currentState = next;
return success;

}
}

Provide an operation that simultaneously detects version
conflicts and performs updates via a method of the form:

32

An Optimistic Bounded Counter

public class BoundedCounterOptimistic
extends BoundedCounterAbstract {

protected synchronized boolean commit(Long oldc, Long newc) {
boolean success = (count == oldc);
if (success) {

count = newc;
} else {

System.err.println("COMMIT FAILED -- RETRYING");
}
return success;

} Counter

The optimistic bounded counter checks that the state has not been
changed by another process. If it has, it aborts the transactions,
otherwise it updates the state.

Detect failure ...

33

State assumed = currentState() ;
State next = ... 							 // compute optimistically
if (!commit(assumed, next))

rollback();
else

otherActionsDependingOnNewStateButNotChangingIt();

Structure the main actions of each public method as follows:

34

An Optimistic Bounded Counter

...
public synchronized long value() {

return count;
}
public void inc() {

for (;;) {							 // thinly disguised busy-wait!
long prev = this.value();

long val = prev;

if (val < MAX && commit(prev, val+1)) {

break;

}

Thread.yield();				 // is there another thread?!

}

}
...

}

Here we can see that optimism may lead to busy-waiting if there
is a lot of contention. In the worst case, a process may be starved
out (livelock).

35

Handle conflicts ...

Choose and implement a policy for dealing with commit
failures:

> Throw an exception upon commit failure that tells a client
that it may retry.

> Internally retry the action until it succeeds.

> Retry some bounded number of times, or until a timeout

occurs, finally throwing an exception.

> Pessimistically synchronize selected methods which

should not fail.

36

Ensure progress ...

Ensure progress in case of internal retries

> Immediately retrying may be counterproductive!

> Yielding may only be effective if all threads have

reasonable priorities and the Java scheduler at least
approximates fair choice among waiting tasks (which it is
not guaranteed to do)!

> Limit retries to avoid livelock

37

What you should know!

> What criteria might you use to prioritize threads?
> What are different possible definitions of fairness?
> What are readers and writers problems?
> What difficulties do readers and writers pose?
> When should you consider using optimistic methods?
> How can an optimistic method fail? How do you detect

failure?

38

Can you answer these questions?

> When does it make sense to split locks? How does it
work?

> When should you provide a policy for upgrading readers
to writers?

> What are the dangers in letting the (Java) scheduler
choose which writer may enter a critical section?

> What are advantages and disadvantages of
encapsulating synchronization conditions as helper
methods?

> How can optimistic methods livelock?

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:

Share — copy and redistribute the material in any medium or format

Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/

