
Oscar Nierstrasz

12. Architectural Styles for Concurrency

Roadmap

2

> What is Software Architecture?

> Three-layered application architecture

> Flow architectures

—Active Prime Sieve

> Blackboard architectures

—Fibonacci with Linda

3

Sources

> M. Shaw and D. Garlan, Software Architecture:
Perspectives on an Emerging Discipline, Prentice-Hall,
1996.

> F. Buschmann, et al., Pattern-Oriented Software
Architecture — A System of Patterns, John Wiley, 1996.

> D. Lea, Concurrent Programming in Java — Design
principles and Patterns, The Java Series, Addison-
Wesley, 1996.

> N. Carriero and D. Gelernter, How to Write Parallel
Programs: a First Course, MIT Press, Cambridge, 1990.

The classic book by Shaw and Garlan introduces the notion of an
“architectural style” being described in terms of "components”
and "connectors". Buschmann's book describes a number of
classical architectural design patterns. We have been following
Lea’s book on concurrent design patterns in the course. Carriero
and Gelernter describe how to design concurrent solutions using a
“blackboard” architecture.

http://zoo.cs.yale.edu/classes/cs424/howto.pdf

http://scgresources.unibe.ch/Literature/CP/Carr89aSurvey.pdf

Roadmap

4

> What is Software Architecture?

> Three-layered application architecture

> Flow architectures

—Active Prime Sieve

> Blackboard architectures

—Fibonacci with Linda

5

Software Architecture

A Software Architecture defines a system in terms of
computational components and interactions amongst
those components.

An Architectural Style defines a family of systems in
terms of a pattern of structural organization.

— cf. Shaw & Garlan, Software Architecture, pp. 3, 19

Software architecture defines the coarse-level design of a
software system in terms of large-scale “components” and how
these components interact. E.g., a “fat client” architecture splits a
system into a “fat” client that is responsible for as much user
processing as possible, and a server that handles the actual
requests. “Fat client” is an architectural style that applies to many
systems.

6

Architectural style

Architectural styles typically entail four kinds of properties:
> A vocabulary of design elements

—e.g., “pipes”, “filters”, “sources”, and “sinks”

> A set of configuration rules that constrain compositions

—e.g., pipes and filters must alternate in a linear sequence

> A semantic interpretation

—e.g., each filter reads bytes from its input stream and writes bytes
to its output stream

> A set of analyses that can be performed

—e.g., if filters are “well-behaved”, no deadlock can occur, and all

filters can progress in tandem

A style introduces names for the kinds of components (eg “fat
client”and “server”) and connectors, and constrains how they are
composed and built. (E.g., the client and server have distinct
responsibilities, and the possible interactions between them are
limited.)

“Analyses” also include certain desirable properties that are
guaranteed. With fat clients, users are guaranteed high response,
since many requests are handled locally by the fat client.

Roadmap

7

> What is Software Architecture?

> Three-layered application architecture

> Flow architectures

—Active Prime Sieve

> Blackboard architectures

—Fibonacci with Linda

8

Communication Styles

Shared Variables
Processes communicate
indirectly.
Explicit synchronization
mechanisms are needed.

Message-Passing
Communication and
synchronization are combined.
Communication may be either
synchronous or asynchronous.

x zy

P1 P2 P3

P1

P2

P3

x y

z

Recall these two basic styles of concurrent programming. In the
first we require explicit synchronization of access to shared
variables within critical sections. In the other, synchronization
and communication are combined in the form of message passing.

Simulated Message-Passing

9

Unsynchronized
objects

Synchronized
queues

Most concurrency and communication styles can be
simulated by one another:

Message-passing can be modeled by associating
message queues to each process.

Message passing can be easily simulated by implementing
message queues as synchronized, shared variables.

10

Three-layered Application Architectures

This kind of architecture avoids nested monitor problems by
restricting concurrency control to a single layer.

Active objects

Synchronized objects

Unsynchronized
“owned” objects

In a classical three-layered architecture we distinguish between
“active objects” with their own threads of control, that
communicate with each other through synchronized objects that
themselves may contain further, unsynchronized objects. No
nested monitor problems can arise since the synchronized objects
never contain any monitors.

Note that message passing simulation follows this architectural
style, with the messages in the queues corresponding to the third
layer.

Roadmap

11

> What is Software Architecture?

> Three-layered application architecture

> Flow architectures

—Active Prime Sieve

> Blackboard architectures

—Fibonacci with Linda

12

Flow Architectures

Many synchronization problems can be avoided by
arranging things so that information only flows in one
direction from sources to filters to sinks.

Unix “pipes and filters”:
> Processes are connected in a linear sequence.

Control systems:
> events are picked up by sensors, processed, and

generate new events.

Workflow systems:
> Electronic documents flow through workflow procedures.

Unix Pipes

13

cat file					 # send file contents to output stream
| tr -c ’a-zA-Z’ ’\012’ # put each word on one line
| sort						 # sort the words
| uniq -c					 # count occurrences of each word
| sort -rn				 # sort in reverse numerical order
| more						 # and display the result

Unix pipes are bounded buffers that connect producer
and consumer processes (sources, sinks and filters):

This script counts the words in a text file using a pipeline of Unix
commands. The command “cat” just concatenates the argument
files and sends them to its output stream. This stream is read by
the “tr” command, which performs simple translations. Here it
translates non-alphabetic characters to a newline character,
effectively putting each word on a separate line in the output. The
remaining commands sort the list of words, count their
occurrences, and sort them again from most to least common.

14

Unix Pipes

Processes should read from standard input and write to
standard output streams:

—Misbehaving processes give rise to “broken pipes”!

Process creation and scheduling are handled by the O/S.

Synchronization is handled implicitly by the I/O system

(through buffering).

A Unix command must obey the “pipeline contract” for it to be
used in a pipes and filters pipeline. A “source” produces output
only and must be the first command in the pipeline. A “pipe”
reads the standard input stream and writes to standard output. It
must read all its input, and not terminate prematurely. By default
the last pipe sends its output to the terminal, but a “sink” can
otherwise consume it, e.g., by producing an output file.

The operating system connects pipes with bounded buffers. A
slow pipe will cause its neighbours to block as its input buffer is
filled up and its output buffer becomes empty.

15

Flow Stages

Every flow stage is a producer or consumer or both:
> Splitters (Multiplexers) have multiple successors

—Multicasters clone results to multiple consumers

—Routers distribute results amongst consumers

> Mergers (Demultiplexers) have multiple predecessors
—Collectors interleave inputs to a single consumer

—Combiners process multiple input to produce a single result

> Conduits have both multiple predecessors and consumers

16

Flow Policies

Flow can be pull-based, push-based, or a mixture:

> Pull-based flow: Consumers take results from Producers

> Push-based flow: Producers put results to Consumers

> Buffers:

—Put-only buffers (relays) connect push-based stages
—Take-only buffers (pre-fetch buffers) connect pull-based stages
—Put-Take buffers connect (adapt) push-based stages to pull-based

stages

BufferProducer Consumer
put

take

17

Limiting Flow

Unbounded buffers:
> If producers are faster than consumers, buffers may exhaust available

memory
Unbounded threads:
> Having too many threads can exhaust system resources more quickly

than unbounded buffers
Bounded buffers:
> Tend to be either always full or always empty, depending on relative

speed of producers and consumers
Bounded thread pools:
> Harder to manage than bounded buffers

Roadmap

18

> What is Software Architecture?

> Three-layered application architecture

> Flow architectures

—Active Prime Sieve

> Blackboard architectures

—Fibonacci with Linda

Example: a Pull-based Prime Sieve

19

Primes are agents that reject non-primes, pass on
candidates, or instantiate new prime agents:

TestForPrime

get()

ActivePrime(2)

ActivePrime(3)

ActivePrime(5)

3

4

5

6

7

8

new
get()

5

ActivePrime(7)
7

new

get()
new

get()

In this example, we dynamically build up a pipeline of
ActivePrime objects, each of which holds a prime number,
and tests an input stream of prime candidates for divisibility by
the prime it holds. The TestForPrime source at the head of
the pipeline produces a stream of integers. The pipeline is
initialized only with ActivePrime(2). When an
ActivePrime finds candidate that passes its test, and is also
smaller than the square of the prime, then it recognizes the
candidate as a prime, and adds a new ActivePrime object to
the end of the queue.

ActivePrime(2) thus promotes 3 to an ActivePrime,
which in turn promotes 5 and 7 to ActivePrimes. (3 < 4, 5 < 9
and 7 < 9)

20

Using Put-Take Buffers

Each ActivePrime uses a one-slot buffer to feed values to the next
ActivePrime.

The first ActivePrime holds the seed value 2, gets values
from a TestForPrime, and creates new ActivePrime
instances whenever it detects a prime value.

… 10 9 8 2 7 3 5

TestForPrime ActivePrime

The PrimeSieve

21

public class PrimeSieve {
public static void main(String args[]) {

genPrimes(1000);
}
public static void genPrimes(int n) {

try {
ActivePrime firstPrime =

new ActivePrime(2, new TestForPrime(n));
} catch (Exception e) { }

}
} ActivePrimes

The main PrimeSieve class creates the initial configuration

Pull-based integer sources

22

public interface Source<Value> { Value get(); }
class TestForPrime implements Source<Integer> {

private int nextValue;
private int maxValue;
public TestForPrime(int max) {

this.nextValue = 3;
this.maxValue = max;

}
public Integer get() {

if (nextValue < maxValue) { return nextValue++; }
else { return 0; }

}
}

Active primes get values to test from a Source<Integer>:

The ActivePrime Class

23

class ActivePrime extends Thread implements Source<Integer> {
private static Source<Integer> lastPrime;	 // shared
private int value;					 // value of this prime
private int square;					 // square of this prime
private Source<Integer> intSrc;	 // source of ints to test
private OneSlotBuffer<Integer> slot;	 // pass on test value
public ActivePrime(int value, Source<Integer> intSrc)

throws ActivePrimeFailure
{

this.value = value;
...
slot = new OneSlotBuffer<Integer>();
lastPrime = this;			 // NB: set class variable
this.start();

}

ActivePrimes themselves implement IntSource

The only synchronization is hidden within the Slot class.

Note that lastPrime is a shared variable updated by the
ActivePrime constructor.

Why is it not necessary to synchronize access to this variable?

It is impossible for primes to be discovered out of order! Can you
prove this?

public int value() { return this.value; }
public void run() {

int testValue = intSrc.get();	 // may block
while (testValue != 0) {

if (testValue < this.square) {
try {

new ActivePrime(testValue, lastPrime);
} catch (Exception e) {

testValue = 0; // stop the thread
}

} else if ((testValue % this.value) > 0) {
this.put(testValue);

}
testValue = intSrc.get();	 // may block

}
put(0); // stop condition

}
private void put(Integer val) { slot.put(val); }
public Integer get() { return slot.get(); }

}

24

Roadmap

25

> What is Software Architecture?

> Three-layered application architecture

> Flow architectures

—Active Prime Sieve

> Blackboard architectures

—Fibonacci with Linda

Blackboard Architectures

26

Blackboard architectures put all synchronization in a
“coordination medium” where agents can exchange messages.

?

Agents do not exchange messages directly, but post messages to the
blackboard, and retrieve messages either by reading from a specific
location (i.e., a channel), or by posing a query (i.e., a pattern to match).

Result Parallelism

27

Workers may be
arranged hierarchically ...

Result parallelism is a blackboard architectural style in
which workers produce parts of a more complex whole.

Agenda Parallelism

28

Agenda parallelism is a blackboard style in which
workers retrieve tasks to perform from a blackboard,
and may generate new tasks to perform.

Workers repeatedly retrieve tasks until everything is done.
Workers are typically able to perform arbitrary tasks.

Specialist Parallelism

29

Specialist designs are equivalent to message-passing, and
are often organized as flow architectures, with each specialist
producing results for the next specialist to consume.

Specialist parallelism is a style in which each
worker is specialized to perform a particular task.

30

Linda

Linda is a coordination medium, with associated primitives
for coordinating concurrent processes, that can be added
to an existing programming language.

The coordination medium is a tuple-space, which can
contain:

—data tuples — tuples of primitives vales (numbers, strings ...)

—active tuples — expressions which are evaluated and eventually

turn into data tuples

In addition to the article and book by Carriero and Gelernter, see
also:

https://en.wikipedia.org/wiki/Linda_(coordination_language)

31

Linda primitives

out(T)
output a tuple T to the medium (non-blocking)

e.g., out(“employee”, “pingu”, 35000)

in(S)
(destructively) input a tuple matching S (blocking)

e.g., in(“employee”, “pingu”, ?salary)

rd(S) (non-destructively) read a tuple (blocking)

inp(S)
try to input a tuple  
report success or failure (non-blocking)

rdp(S)
try to read a tuple  
report success or failure (non-blocking)

eval(E)
evaluate E in a new process 
leave the result in the tuple space

The output primitive out(T) always succeeds, adding a tuple to
the tuple space.

The input primitives in(S) and rd(S) are blocking, and only
succeed if a tuple is found that matches the query pattern S. A
query pattern is a tuple that contains both values and variables
(i.e., ?salary in the example). The primitives inp and rdp are
non-blocking, but of course could lead to a busy-waiting design if
used indiscriminately.

The eval primitive takes as an argument an expression that will
evaluate to a tuple.

Roadmap

32

> What is Software Architecture?

> Three-layered application architecture

> Flow architectures

—Active Prime Sieve

> Blackboard architectures

—Fibonacci with Linda

Example: Fibonacci with JavaSpaces

33

BigInteger fib(final int n) {

Tuple tuple;

tuple = rdp(new Tuple("Fib", n, null)); // non-blocking
if (tuple != null) {

return tuple.result;

}

if (n<2) {

out(new Tuple("Fib", n, BigInteger.ONE)); // non-blocking
return BigInteger.ONE;

}

eval("Fib", n, new Eval("fib(" + (n-1) + ")+fib(" + (n-2) + ")") {

public BigInteger expr() { return fib(n-1).add(fib(n-2)); }

});

tuple = rd(new Tuple("Fib", n, null)); // blocking

return tuple.result;

}	 // Post-condition: rdp("Fib",n,null) != null JavaSpaces

The postcondition of fib(n) is that the tuple space will hold tuples
of the form (“Fib”,k,fk), for all non-negative integer values of k
up to n, and fk is the kth Fibonacci number. For n=0 or 1, the
corresponding tuple is directly written, if it does not exist. For all
n≥2, a process is spawned to recursively establish the
postcondition for smaller values, and then compute and output the
new tuple.

Note that “null” in a rdp pattern acts as a wildcard.

We are using the fly implementation of tuple spaces:

https://github.com/fly-object-space

NB: Works with Java 1.5 only.

Accessing the tuple space

34

private Tuple rdp(Tuple template) {
return tupleSpace.read(template, ZeroWaitTime);

}
private Tuple rd(Tuple template) {

return tupleSpace.read(template, WaitTime);
}
private Tuple inp(Tuple template) {

return tupleSpace.take(template, ZeroWaitTime);
}
private void out(Tuple template) {

tupleSpace.write(template, LeaseTime);
}
private void eval(String fn, final Integer arg, final Eval eval) {

new Thread() {
public void run() { out(new Tuple("Fib", arg, eval.expr())); }

}.start();
}

public class Tuple {
public String functionName;
public Integer argument;
public BigInteger result;
...

}

We wrap a JavaSpaces implementation
to resemble Linda more closely.

NB: Print statements have been removed from this version.

Computing fib(5)
rdp(Tuple("Fib", 5, null)) = null
eval("Fib", 5, fib(4)+fib(3))
rd(Tuple("Fib", 5, null)) [blocks]
rdp(Tuple("Fib", 4, null)) = null
eval("Fib", 4, fib(3)+fib(2))
rd(Tuple("Fib", 4, null)) [blocks]
rdp(Tuple("Fib", 3, null)) = null
eval("Fib", 3, fib(2)+fib(1))
rd(Tuple("Fib", 3, null)) [blocks]
rdp(Tuple("Fib", 2, null)) = null
eval("Fib", 2, fib(1)+fib(0))
rd(Tuple("Fib", 2, null)) [blocks]
rdp(Tuple("Fib", 1, null)) = null
out(Tuple("Fib", 1, 1))
rdp(Tuple("Fib", 0, null)) = null
out(Tuple("Fib", 0, 1))
out(Tuple("Fib", 2, 2))
rd(Tuple("Fib", 2, 2)) [returns]
rdp(Tuple("Fib", 1, null)) = Tuple("Fib", 1, 1)
out(Tuple("Fib", 3, 3))
rd(Tuple("Fib", 3, 3)) [returns]
rdp(Tuple("Fib", 2, null)) = Tuple("Fib", 2, 2)
out(Tuple("Fib", 4, 5))
rd(Tuple("Fib", 4, 5)) [returns]
rdp(Tuple("Fib", 3, null)) = Tuple("Fib", 3, 3)
out(Tuple("Fib", 5, 8))
rd(Tuple("Fib", 5, 8)) [returns]
DONE: fib(5) = 8

Run this twice. The second time will be faster since all tuples
have been cached. (Comment out the line to empty tuple space.)

See how very large fibonacci values can be computed.

36

What you should know!

> What is a Software Architecture?
> What are advantages and disadvantages of Layered

Architectures?
> What is a Flow Architecture? What are the options and

tradeoffs?
> What are Blackboard Architectures? What are the options

and tradeoffs?
> How does result parallelism differ from agenda

parallelism?
> How does Linda support coordination of concurrent

agents?

37

Can you answer these questions?

> How would you model message-passing agents in Java?
> How would you classify Client/Server architectures?
> Are there other useful styles we haven’t yet discussed?
> How can we prove that the Active Prime Sieve is correct?

Are you sure that new Active Primes will join the chain in
the correct order?

> Which Blackboard styles are better when we have
multiple processors?

> Which are better when we just have threads on a
monoprocessor?

> What will happen if you start two concurrent Fibonacci
computations?

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:

Share — copy and redistribute the material in any medium or format

Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/

