
Prof. O. Nierstrasz

Einführung in die Informatik 

Computational Thinking



Computational Thinking

Schedule 2021

2

23.09.2021 Computational thinking Oscar Nierstrasz

30.09.2021 Programming languages Oscar Nierstrasz

07.10.2021 Endliche Automaten Thomas Studer

14.10.2021 Berechenbarkeit und Komplexität Lukas Zenger

21.10.2021 Datenbanken Thomas Studer

28.10.2021 Digitale Nachhaltigkeit Matthias Stürmer

4.11.2021 Data handling and visualization Athina Tzovara

11.11.2021 Randomisierte Algorithmen Christian Cachin

18.11.2021 Kryptographie Christian Cachin

25.11.2021 Discrete Representations Paolo Favaro

2.12.2021 Discrete Optimization Methods Paolo Favaro

09.12.2021 Modellierung und Simulation 1 David Bommes

16.12.2021 Modellierung und Simulation 2 David Bommes

23.12.2021 Q&A



Computational Thinking

Course Material

> ILIAS
—Schedule
—Slides
—Videos
—Zoom links
—Exercises

3



This is a note (a hidden slide). You will find some of these 
scattered around the PDF versions of the slides.



Roadmap

5

> Computational Thinking
> The Thinking Tools
> Tool Zoom In: Recursion
> Tool Zoom In: Modeling
> Outlook



Computational Thinking

Computational Thinking

6

“... is a way of solving 
problems, designing 
systems, and 
understanding human 
behavior that draws on 
concepts fundamental to 
computer science”

— Jeannette M. Wing, 
CACM 2006

Seymour Papert



In German: “Rechenbetontes Denken” 
The term was coined by Seymour Papert in his paper from 1996 
and popularized by Jeannette Wing. Consider it to mean “thinking 
like a computer scientist”.  

http://www.papert.org/articles/AnExplorationintheSpaceofMathematicsEducations.html 

Papert was a student of Piaget, the Swiss developmental 
psychologist. Papert was a proponent of educating children with 
the help of computing and argued for an experience-based 
learning. He argued that the tools of the computer scientist are 
useful in general for the developing child.  
The article of Wing is a slalom through the many tools of the 
computer scientist, of which this lecture presents several. 

http://cacm.acm.org/magazines/2006/3/5977-computational-thinking/fulltext



Computational Thinking

7

Übersicht

Informatik

Theorie
(Automaten und formale 

Sprachen, Berechenbarkeit, 
Komplexität, Logik, 

Algorithmen)

Praxis
(Programmiersprachen, 

Betriebssysteme, Netzwerke 
&Verteilte Systeme, Software 
Engineering, Datenbanken, 

Rechnerarchitektur)

Schnittstellen zur Aussenwelt
(Mensch-Maschine Schnittstelle, Computer-

vision, Computergrafik, Sensornetze, 
Künstliche Intelligenz, Computerlinguistik)

Wirtschaftsinformatik

Anwendungs-
software

Wissenschaftliche 
Anwendungen 

(Modellierung und Simulation, 
Biologie, Physik, Chemie, 

Sozialwissenschaften, etc.) 

Informatikstudium Andere Studiengänge

Mathematik



Informatik = Computer Science 

Computer Science requires many different kinds of skills: 
abstraction, communication, reading, mathemathics, modeling, 
planning … 
If you are a practitioner, you also have to have strong 
communication skills. A software engineer as an architect has to 
talk to customers, explain them what is possible and what is not, 
to convince them of her solution.



Computational Thinking

Software Engineering

8

Software Engineering consists of
• processes and techniques
• to develop software products
• within a given budget and deadline and
• satisfying functional and quality requirements

€



Engineering is about best practices in building physical products. 
Software engineering is about building software products (i.e., 
virtual products).  
Many of the concerns are the same (planning, quality control, 
process control), but many are very different due to the non-
physical nature of software (production, manufacturing, 
constraints).



Computational Thinking

How Software Engineering bridges domains

9

capture and model 
requirements

architecture, design, 
implementation

quality assurance and testing

Real-world domain Technology domain



A large part of the job of software engineering is gathering and 
understanding the requirements. It is not purely a technical issue. 
Another large part has to do with managing the development 
process. (Teamwork, planning, budgeting, politics etc etc) 
Many different kinds of models are needed to bridge these 
worlds.



Roadmap

10

> Computational Thinking
> The Thinking Tools
> Tool Zoom In: Recursion
> Tool Zoom In: Modeling
> Outlook



Computational Thinking

Abstraction

11

Abstractions strip 
away details to 
help us cope with 
complexity



Abstractions allow us to deal with complexity by stripping away 
needless detail. 
They also provide us with some nice properties, for example, 
queues ensure fairness. 
Any organization that we deal with (like a bank) provides us with 
a simple interface and a much more complex implementation. 

Abstractions only really exist in our heads. A queue, or even a 
bank, does not exist in reality, only by convention. What exists is 
only a physical manifestation (a bunch of people in a line, a 
building) but that is not the abstraction. 

All software projects make heavy use of abstraction to cope with 
complexity. 



Computational Thinking

Decomposition & Separation of concerns

12

We decompose 
complex tasks 
by separating 
concerns



Printing a book entails a large number of complex activities. By 
breaking them down and specializing skills, the entire process can 
be handled efficiently. 
Contrast this with the laborious and inefficient way books were 
copied before the invention of the printing press. 
Software systems and software development projects exploit 
decomposition and separation of concerns at all levels.



Computational Thinking

Parallel algorithms

13

By distributing 
tasks to many 
workers, we 
get more done 
in the same 
amount of time



We see this in any organization. We can add more factory workers 
to increase production. 
This works only if the tasks are truly independent. Adding more 
members to a team may actually slow down work! 
Computer servers work this way – a farm of servers can be scaled 
up to handle more queries.



Computational Thinking

Redundancy

Replicating critical 
elements of a 
system increases 
its resilience



A restaurant employs many waiters, each of which can take over 
duties of the others. 
Redundancy in computing is the replication of critical elements of 
a system to increase the reliability of the system. This is the case 
in distributed systems, and in hardware.  
When information is transmitted along the line, often an extra 
parity bit is appended to the actual data for verification purposes.  
RAID Disk drives are arrays of hard disks which use redundant 
units to ensure continuing function even in the presence of 
individual disk failures.



Computational Thinking

Prefetching and cacheing

15

Prefetching = get what you 
need before you need it

Cacheing = keep handy 
whatever you will need again



Many problems can be solved more effectively by preparing in 
advance materials that you need: preparing luggage for travel 
(instead of buying stuff when you arrive); buying ingredients for 
a meal; preparing for a meeting. 

To-do lists are useful for correctly selecting the items to prefetch, 
but simulation is an even better tool. (Step through the actions 
you will perform, and check if you have everything you will 
need.) 

Prefetching and cacheing are used especially in modern 
microprocessor architectures to speed up execution.



Computational Thinking

Planning and optimization

16

Planning may 
require sophisticated 
analysis of multiple 
scenarios



Which queue should you chose at the supermarket? You can 
consider: the length of the queue, how many items per customer, 
how awake the clerk looks … 
Traffic is blocked in town – what is the fastest route home? 
Queuing theory is used in computers to analyse potential 
performance bottlenecks.



Computational Thinking

Pipelining

17

Pipelining makes efficient use of expensive resources



Pipelining is used in factories, administrations, kitchens —  
anywhere that tasks can be specialized to workers with special 
skills. 
Pipelining in computers is used in hardware and software, 
especially when data needs to be processed in several different 
ways. 
Problems can occur with pipelining if some stages are faster or 
slower than others, causing work to pile up, or resources to go 
idle. 



Computational Thinking

Concurrency control

18

Contention for shared resources can lead to 
both safety problems and liveness problems.



Concurrency problems can basically be divided into safety 
problems (nothing bad should happen) and liveness (something 
good should happen. Traffic accidents are bad. Progress is good. 
(Traffic jams are safe but not live.) 
Traffic lights and roundabouts, together with proper rules and 
scheduling, can yield good solutions to managing concurrent 
traffic. Bad designs can create traffic jams or even accidents. 
Safety and liveness problems arise because of need for access to 
shared resources (roads, intersections …). 
Software solutions include scheduling algorithms (in the OS or 
VM) and programming techniques (similar to traffic lights). 
In some cases, applying the techniques of concurrent program 
analysis to real world hospital protocols has detected possible 
“deadlocks”. 



Computational Thinking

Simulation

19

Expensive experiments 
can be replaced by 
inexpensive simulations



Simulation is a technique that abstracts from some real thing by 
capturing the interesting properties so we can try them out. 
Simulation is a form of modeling that usually focuses on some 
physical properties that are hard or expensive to test in real life. 
We often simulate with paper or blackboard models, but 
nowadays we often use computers to simulate physical properties. 
The figure shows a model of the International Space Station (ISS) 
and the regions which are most at risk of impact with an asteroid.



Roadmap

20

> Computational Thinking
> The Thinking Tools
> Tool Zoom In: Recursion
> Tool Zoom In: Modeling
> Outlook



Computational Thinking

Recursion

21

re•cur•sion |riˈkər ZH ən|
noun Mathematics & Linguistics

See RECURSION.



Recursion is when one operation is defined in terms of itself. For 
example: 

Phrase = Phrase + conjunction + sentence. 

Infinite recursion is to be avoided in computer science.



Computational Thinking

Avoiding infinite recursion

22

re•cur•sion |riˈkər ZH ən|
noun Mathematics & Linguistics

If you still don’t get it, see RECURSION.

To prove termination, you must show that 
recursion will reach a base case.



Unless you are very slow, eventually you will “get it”, and break 
out of the recursion. 

Phrase = Phrase + conjunction + sentence. 
Phrase = Sentence 

Proper recursion in Computer Science requires there to be a base 
case that is not recursive. Furthermore, you must ensure that the 
recursive cases always reach a base case.



Computational Thinking

Example: factorial

23

fact(n) = n × fact(n-1)
fact(0) = 1

fact(5) = 5 × fact(4)
= 5 × 4 × fact(3)
= 5 × 4 × 3 × fact(2)
= 5 × 4 × 3 × 2 × fact(1)
= 5 × 4 × 3 × 2 × 1 × fact(0)
= 120

5! = 5*4*3*2*1



Factorial terminates assuming n is non-negative: since every 
recursive step reduces the argument by 1, eventually we reach the 
base case (n=0). 

Caveat: For negative n, this does not hold.



Computational Thinking

Example: greatest common divisor

24

gcd(a,0) = a
gcd(a,b) = gcd(b, a mod b)

gcd(63, 91) = gcd(91, 63)
= gcd(63, 28)
= gcd(28, 7)
= gcd(7, 0)
= 7How do we know that 

gcd(a,b) always terminates 
for positive integers a and b?



GCD = Größter gemeinsamer Teiler. 

This is Euclid’s algorithm: Since a mod b is always less than a, 
the arguments get smaller in each step and must eventually reach 
the base case.



Computational Thinking

Binary search

25

Many navigation 
problems can be 
effectively solved 
using recursion.



Recursion is used in many human tasks: searching for a word in a 
dictionary can be solved recursively using binary search. 
Passing down orders (or budget cuts) in a large organization can 
be done recursively (and in parallel). 
There is always a danger with non-termination. Think of Ponzi 
schemes, which collapse due to the impossibility of endless 
recursion: 

• https://en.wikipedia.org/wiki/Ponzi_scheme 
• https://en.wikipedia.org/wiki/Bernard_Madoff 

Recursion is heavily used in computer programs, especially to 
navigate tree-like structures, or to search for an answer in a tree-
like search space.



Computational Thinking

Depth-first-search with backtracking

26

Many search problems 
can be solved with the 
help of backtracking



Backtracking requires you to keep track of every decision you 
make in a search space: searching through a maze; looking for 
something you lost (keys, glasses); trying out winning strategies. 
If you discover you made an error, you backtrack to the last 
decision you make and change it. 
Essentially you are searching depth-first through a tree of 
possibilities. 
A Stack is a useful data structure for keeping track of progress: 
the last decision is always on top of the stack. 
(The stack is one of the most basic programming abstractions.) 

Depth-first search = Tiefensuche



Computational Thinking

Finding the shortest path from A to F

27

E
F

DC

B

A

14

9

2

11

6

9

7

10 15

∞

0

∞

∞

∞ ∞



Edsgar Dijkstra invented this famous algorithm to find the 
shortest path between two nodes in a network. The nodes of the 
graph represent locations and the edges are labeled with the 
distance (or “cost”) to travel between them. The task is to find the 
shortest distance. 
We start by labeling the start node (A) with 0, representing the 
total distance to travel from A, and we label all other nodes with 
∞. 
The algorithm proceeds breadth-first (rather than depth-first), 
incrementally updating each node with the shortest distance found 
thus far. 

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm 

Breadth-first search = Breitensuche



Computational Thinking

Finding the shortest path from A to F

28

E
F

DC

B

14

9

2

11

6

9

7

10 15

0

∞

∞

A

7

14

9



In the first step, we travel from A to all nodes not yet visited 
along a single edge. We reach nodes B, C and E, and we update 
the distances to the minimum of the current value and the 
distance traveled from A. (They are all less than ∞, so we update 
all of them.) 
We mark A as visited (yellow) so we do not visit it again.



Computational Thinking

Finding the shortest path from A to F

29

E
F

DC14

9

2

11

6

9

7

10 15

0

∞

A

7

14

229 < 7 + 10

B



We have already started from A, so we need not consider it again. 
Now we arbitrarily pick a node we have reached (B), and travel 
from there to C and D. (No need to go back to A; we have already 
been there.) 
The distance to C via B is 7+10, or 17, which is bigger than the 
current distance from A to C, so we do not update it. Hoever the 
distance to D (7+15=22) is an improvement, so we update it. 
We mark B as visited.



Computational Thinking

Finding the shortest path from A to F

30

E
F

D
14

9

2

11

6

9

7

10 15

0

∞

A

7B

C

14 > 9 + 2

22 > 9 + 119



Again we pick an arbitrary node we have reached to continue 
traveling. (We pick C, but could also continue from D or E.) 
From C we reach E and D. Both paths through C are shorter so 
we update the total distances to E and D. 
We mark C as visited.



Computational Thinking

Finding the shortest path from A to F

31

F

D
14

9

2

11

6

9

7

10 15

0 A

7B

C

9

E11

20

20



This time we start from E and discover that we can reach F in 
distance 20 via path ACEF. 
We mark E as visited.



Computational Thinking

Finding the shortest path from A to F

32

F

14

9

2

11

6

9

7

10 15

0 A

7B

C

9

E11

20

D

20 < 20 + 6



Finally we continue from D and find that the path ACDF is longer 
(26). All nodes have been visited so we conclude the shortest path 
is ACEF (20).



Computational Thinking

Breadth-first vs depth first

Breadth-first
> Exhaustive — finds all 

solutions
> Must keep track of all 

nodes in a level
> Will find shortest path 

first

Depth-first
> Finds first solution
> Only keep track of 

current path — can use 
a stack

> May be unlucky in 
searching

33



Roadmap

34

> Computational Thinking
> The Thinking Tools
> Tool Zoom In: Recursion
> Tool Zoom In: Modeling
> Outlook



Computational Thinking

Modeling

35

A model captures certain properties of interest of a subject



A model abstracts certain properties of a subject in order to 
specify it, to communicate it, or to reason about it. 
As with simulations, it is easier, cheaper or only feasible to work 
with the model than with the real thing. 
• A specification may serve to build the thing that is modeled. 
• A model as a form of communication avoids the cost of sending 

the thing itself. 
• As a reasoning tool, a model lets us reason about size, weight, 

strength, speed, cost etc. 
We may need multiple models of the same subject. 
Software systems are all about modeling (what we store in 
computers are models; computation consists in manipulating 
models or reasoning about them).



Computational Thinking

Computer graphics models capture visual 
aspects of real (or imagined) objects

36

Different models express different properties



The teapot is the archetypical example of a computer graphics 
model. 
Wire frame models capture geometry. Other aspects model light, 
perspective, texture, ambient characteristics, and so on.



Computational Thinking

Prototyping

37

A prototype is a primitive model of a system 
that allows it to be studied and evaluated.



In Computer Science, prototypes may be executable or not. Paper 
prototypes of user interfaces are often used to test out scenarios 
before designing or implementing the actual system. 

http://www.infoq.com/articles/agile-useability-churchville



Computational Thinking

Data modeling

38

A data model captures the persistent 
entities of an information system, their 
attributes and relationships



Here we are modeling only the persistent entities that the 
application must maintain over time. Typically they will be stored 
in a relational database. 

http://logisticsglobal.blogspot.ch/2012/07/what-is-entity-relationship-diagram-erd.html



Computational Thinking

Software models express architecture and design

39

The Unified Modeling 
Language (UML) 
offers various 
diagrams to describe 
software designs, 
architectures, and 
requirements models.



This is a class diagram describing a small part of the Eclipse 
development environment. 
The model here abstracts from the details of the source code. 
Unfortunately, reading the code will eventually be necessary. 
We can see which classes depend on which other classes, which 
components specialize other ones, and we can see some of the 
kinds of information that they manage.



Computational Thinking

Finite state models

40

Finite state models express states 
and transitions of a process



Finite state models are ideal for modeling closed systems. They 
can be exhaustively analyzed, and readily implemented. 
Finite state models occur in many branches of computer science, 
including string matching (regular expressions), concurrency 
control (model checking), and software modeling (UML). 

https://en.wikipedia.org/wiki/Finite-state_machine



Roadmap

41

> Computational Thinking
> The Thinking Tools
> Tool Zoom In: Recursion
> Tool Zoom In: Modeling
> Outlook



Computational Thinking

Computational thinking...

42

means: thinking like a computer scientist

is a skill that is useful for everybody

involves a broad range of mental tools

involves solving problems, designing 
systems, understanding human behavior



http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if 
changes were made. You may do so in any reasonable manner, but not in any way that 
suggests the licensor endorses you or your use. 

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your 
contributions under the same license as the original. 

No additional restrictions — You may not apply legal terms or technological measures that legally 
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

