
Software Architecture

Introduction to Software Engineering

Selected material by Mircea Lungu and Andrea Caracciolo

Sources

> Software Engineering. Ian Sommerville. Addison-Wesley,
10th edition, 2015

> Software Architecture in Practice. L. Bass, P. Clements,
and R. Kazman., Addison Wesley, 3rd edition, 2012

> Software Architecture: Perspectives on an Emerging
Discipline, M. Shaw, D. Garlan, Prentice-Hall, 1996

> Pattern-Oriented Software Architecture — A System of
Patterns, F. Buschmann, et al., John Wiley, 1996

2

Roadmap

> What is Software Architecture?

> Cohesion and Coupling

> Architectural styles

> UML diagrams for architectures

3

Roadmap

> What is Software Architecture?

> Cohesion and Coupling

> Architectural styles

> UML diagrams for architectures

4

Is this Software Architecture?

5

Usually if you ask what the architecture is of a given software
system, you will get a diagram something like this, showing a
high-level view of the systems components and their
relationships.

What makes this an “architecture”? What is it that a software
architecture is intended to express?

Diagram taken from this blog post:

https://blog.ndepend.com/visualizing-software-architecture/

What it is not …

6

A neat-looking drawing of some boxes, circles,
and lines, laid out nicely in Powerpoint or Word,
does not constitute an architecture.

— D’Souza & Wills

What then?

D’Souza and Wills (chapter 12) argue that such high-level
diagrams are not the essence of architecture. That does not mean
that these diagrams are useless, but that architecture is more than
just the diagram.

So, what exactly is it?

D’Souza and Wills. Objects, Components and Frameworks with UML: The
Catalysis Approach, Addison Wesley, 1999.

http://www.catalysis.org/books/ocf/index.htm

What is Software Architecture?

7

[Architecture is] the set of design decisions
about any system (or subsystem) that keeps
its implementors and maintainers from
exercising needless creativity.

— D’Souza & Wills

What kind of decisions?

This provocative definition cuts to the chase: Software
Architecture constrains design by fixing certain decisions.

But what kinds of decisions are important to fix in this way, and
how are those decisions made?

Why do we need Software Architecture?

8

Architectural decisions are those that permit a system to
meet its quality attributes and behavioral requirements.

Well, how are they specified?

Architectural decisions are all about design constraints intended
to guarantee certain global requirements. Typically these are
non-functional requirements having to do with performance,
scalability, maintenance, and so on.

See chapter 2 of Bass et al:

Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice, Addison Wesley, 3rd edition, 2012.

http://www.ece.ubc.ca/~matei/EECE417/BASS/index.html

What is Software Architecture?

9

The architecture of a system consists of:

1. the structure(s) of its parts

e.g. design-time, test-time, and run-time software and hardware parts

2. the externally visible properties of those parts

e.g. interfaces of modules, hardware units, objects

3. the relationships and constraints between them

 — Bass, Clements, Kazman

This definition of Software Architecture captures most of the key
points: it expresses the coarse structure of a software system in
terms of “components”. This structure captures externally visible
properties and interfaces of those components. Furthermore, and
most critically, the architecture expresses constraints over the
configuration of these components.

As we have seen, these constraints are intended to guarantee
essential quality attributes of the system as a whole.

There are numerous alternative definitions on the website of SEI:

http://www.sei.cmu.edu/architecture/start/glossary/community.cfm

Architecture is a shared mental model

X

The architecture is a mental model
shared by the stakeholders.

— Holt

Since there are multiple stakeholders of a software system, there
are necessarily multiple viewpoints of architecture.

Holt, Ric. “Software architecture as a shared mental model.” Proceedings
ASERC Workshop on Software Architecture, University of Alberta (2002).

http://plg.uwaterloo.ca/~holt/papers/sw-arch-mental-model-020314c-1.pdf

Architectural Viewpoints

10

Run-time How are responsibilities distributed amongst run-time
entities?

Process How do processes communicate and synchronize?

Dataflow How do data and tasks flow through the system?

Deployment How are components physically distributed?

Module How is the software partitioned into modules?

Build What dependencies exist between modules?

A physical building does not have a single architecture, but rather
many architectural viewpoints: physical structure, plumbing,
electricity, all view the architecture in different ways, according
to different quality concerns.

The same holds for software architecture. The run-time
architecture is concerned with what happens on a grand scale
when the system is running. The module architecture, on the
other hand, is concerned purely with the static distribution of
code into packages. The build architecture, although closely
related to the module architecture, is strictly concerned with how
the system is incrementally compiled and built from the source
code.

All of these different viewpoints form part of the software
architecture.

Example of Architectural Diagram for a Unix
Subsystem

X

Very often the diagrams that the programmers draw diverge from
the actual state of the system.

On the left we see the “ideal” architecture of the dependencies
between components of the Unix system, while at the right
analysis shows a slightly different picture.

How Architecture Is Usually Specified

X

“Use a 3-tier client-server architecture: all business
logic must be in the middle tier, presentation and
dialogue on the client, and data services on the
server; that way you can scale the application server
processing independently of persistent store.”

2002 Email of Jeff Bezos @ Amazon.com

11

All teams will henceforth expose their data and
functionality through service interfaces.
Teams must communicate exclusively through
these interfaces with each other.

It doesn’t matter what technology they use.

There will be no other form of inter-process
communication allowed: no direct linking, no
direct reads of another team’s data store, no
shared-memory model, no back-doors whatsoever.

Anyone who doesn’t do this will be fired.

Thank you; have a nice day!

Bezos imposed a service-oriented architecture on Amazon’s
developers by fiat. This had an enormous business impact on how
Amazon evolved over the following years, and also led to
Amazon's expansion into offering compute services from its
platform.

https://en.wikipedia.org/wiki/Service-oriented_architecture

For an interesting blog discussion, see this archived copy of
Stevey’s Google Platforms Rant:

https://gist.github.com/chitchcock/1281611

Roadmap

12

> What is Software Architecture?

> Cohesion and Coupling

> Architectural styles

> UML diagrams for architectures

13

Subsystems, Modules and Components

> A subsystem is a system in its own right whose operation
is independent of the services provided by other sub-
systems.

> A module is a system component that provides services to
other modules but would not normally be considered as a
separate system.

> A component is an independently deliverable unit of
software that encapsulates its design and implementation
and offers interfaces to the out-side, by which it may be
composed with other components to form a larger whole.

“Component” is a general term that can be applied to small or
large scale entities. Modules and subsystems can both be
considered “components”.

A subsystem can often be swapped out in its entirety, for
example, a graphics subsystem, a database subsystem, or a
communications subsystem may be replaced (at some cost) by a
different one.

A module is also often called a “package”.

https://en.wikipedia.org/wiki/Modular_programming

14

Cohesion

Cohesion is a measure of how well the parts of a
component “belong together”.

> Cohesion is weak if elements are bundled simply because
they perform similar or related functions (e.g.,
java.lang.Math).

> Cohesion is strong if all parts are needed for the
functioning of other parts (e.g. java.lang.String).

—Strong cohesion promotes maintainability and adaptability by

limiting the scope of changes to small numbers of components.

There are many definitions and interpretations of cohesion.
Most attempts to formally define it are inadequate!

Software architectures are designed to maximize cohesion and
minimize coupling.

“Cohesion” means that things that belong together are found
together. If cohesion is weak, then whenever you need to make a
change to the system, you will have to touch many parts of the
system. With strong cohesion, related functionality is all in one place.

Responsibility-driven design promotes strong coupling by organizing
design around responsibilities.

Although various software metrics have been defined to formalize
cohesion, for example in terms of operations that work with common
data, unfortunately there always exist counterexamples whose metric
values contradict their perceived cohesion.

(For example, java.lang.Math is conceptually cohesive, though
the static methods it defines mostly share no common data.)

15

Coupling

Coupling is a measure of the strength of the
interconnections between system components.

> Coupling is tight between components if they depend
heavily on one another, (e.g., there is a lot of
communication between them).

> Coupling is loose if there are few dependencies between
components.

—Loose coupling promotes maintainability and adaptability since

changes in one component are less likely to affect others.

—Loose coupling increases the chances of reusability.

Software architecture also seeks to minimize coupling.

A software system with strong coupling is fragile to change:
whenever you touch a component, you risk breaking the other
components it is coupled with. By minimizing coupling you
reduce the risk that a change will break something.

16

Tight Coupling

© Ian Sommerville 2000

Subsystem A Subsystem B

Subsystem C Subsystem D

Shared data
area

Here 4 subsystems are all coupled to a common shared data area.
Any change to the data representation risks to impact all of the
subsystems.

17

Loose Coupling

© Ian Sommerville 2000

Subsystem A

A’s data

Subsystem C

C’s data

Subsystem B

B’s data

Subsystem D

D’s data

In a more object-oriented design, each subsystem is responsible
for its own data. Subsystems talk to each other only through a
defined API. Changes to the data representation only affect a
single subsystem. Changes to a subsystem’s API affect only client
subsystems.

Roadmap

> What is Software Architecture?

> Cohesion and Coupling

> Architectural styles

—Layered

—Client-Server

—Repository, Event-driven, Dataflow, ...

> UML diagrams for architectures

18

Architectural Styles

19

Architectural Styles in Software

20

An architectural style defines a family of systems
in terms of a pattern of structural organization.
More specifically, an architectural style defines a
vocabulary of components and connector types,
and a set of constraints on how they can be
combined.

— Shaw and Garlan

In other words, an architectural style defines what kinds of
components exist in a software system, and how these
components interact.

The reason for the architecture is to guarantee some desirable
properties (e.g., low coupling, high cohesion) that will impact
some quality attributes of the system (e.g., maintainability,
scalability, performance, build time etc.)

Roadmap

> What is Software Architecture?

> Cohesion and Coupling

> Architectural styles

—Layered

—Client-Server

—Repository, Event-driven, Dataflow, ...

> UML diagrams for architectures

21

Layered Architectures

A layered architecture organises a system into a set of
layers each of which provide a set of services to the layer
“above”.

> Normally layers are constrained so elements only see

—other elements in the same layer, or

—elements of the layer below

> Callbacks may be used to communicate to higher layers

> Supports the incremental development of sub-systems in

different layers.

—When a layer interface changes, only the adjacent layer is affected

22

The components of this style are layers.

The constraint is that each layer only sees the layer immediately
below it.

The desirable property is that changes to the interface of a layer
will only impact the layer above.

One affected quality attribute is maintainability: it becomes
cheap to replace or reuse an entire layer. Changes to a layer have
limited impact. (What other quality attributes might be affected?
Scalability? performance? …)

X

OSI reference model

© Ian Sommerville 2000

Communications medium

Physical Physical Physical

Data link

Network

Transport

Session

Presentation

Application

Data link

Network

Transport

Session

Presentation

Application

Data link

Network

The most famous example is the TCP/IP protocol stack. Each
layer is implemented in terms of the layer below.

Importance of layers: imagine if you had to worry about the shape
of the signals that travel on the wire... or even about the error
correction... or even about routing to the desired router.

23

The Android Architecture

Unix and its derivatives owe their great success to a layered
architecture. A very small kernel is the only part of the O/S that
talks to hardware. To port the O/S to a new piece of hardware, in
principle only the kernel needs to be ported, i.e., the lowest level
device drivers. All layers above can be migrated “for free”.

Roadmap

> What is Software Architecture?

> Cohesion and Coupling

> Architectural styles

—Layered

—Client-Server

—Repository, Event-driven, Dataflow, ...

> UML diagrams for architectures

24

Client-Server Architectures

25

A client-server architecture distributes application
logic and services respectively to a number of client
and server sub-systems, each potentially running
on a different machine and communicating through
the network (e.g, by RPC).

The components here are the clients and the servers. The
constraints are that clients are responsible for interaction with
users, servers are responsible for services, and clients make
requests to servers to get obtain these services.

The nice properties are low coupling (between client and server)
and high cohesion (each has its own responsibilities). This is
good for maintenance, but can also impact scalability and
performance.

https://en.wikipedia.org/wiki/Client–server_model

26

Film and picture library

© Ian Sommerville 2000

Wide area network

Client 1 Client 2 Client 3 Client 4

Video
server

Music
server

Photo
server

Web
server

Client-Server Architectures

Advantages
> Distribution of data is straightforward
> Makes effective use of networked systems. May require

cheaper hardware
> Easy to add new servers or upgrade existing servers

Disadvantages
> No shared data model so sub-systems use different data

organisation. Data interchange may be inefficient
> Redundant management in each server
> May require a central registry of names and services — it

may be hard to find out what servers and services are
available

27

Fat client / thin client

> In a fat client architecture, the server only provides
computational services and the client takes care of the
rest (UI, input validation, presentation updates)

—good for responsiveness; places more constraints on users

> In a thin client architecture the client only acts as a
presentation engine, and the server does everything else

—good for low-cost clients; impacts latency

28

Early (Web 1.0) web applications are thin clients: the client is just
a web browser, and every single click requires the server to
generate a new web page.

Web 2.0 applications are essentially fat clients that make heavy
use of JavaScript to do much more work in the browser. As a
result many requests can be fulfilled without contacting the server
at all. This decreases the load on the server and gives the end-user
a more responsive experience. On the other hand, it places a
greater burden on the client, assuming the existence of a modern
web browser.

https://en.wikipedia.org/wiki/Fat_client

https://en.wikipedia.org/wiki/Thin_client

29

Multi-tier Architectures

© D'Souza, Wills, 1999

This is a well-established, generic architectural style for business
application.

A four-tier architecture distinguishes:

1.the client GUI (fat or thin)

2.the web service

3.business objects providing business logic

4.a mainframe legacy application or database system

https://en.wikipedia.org/wiki/Multitier_architecture

Service-Oriented Architectures (SOA)

> The extreme generalization of Client-Server

> Instead of monolithic systems one has many concise

services

> A Service is a “loosely coupled, reusable software

component, which can be distributed”

> Services use message-based communication

> Service discovery becomes a challenge

X

The latest trend in SOA is “Microservices”, fine-grained services
that maximize cohesion and minimize coupling to an extreme.

https://en.wikipedia.org/wiki/Service-oriented_architecture

https://en.wikipedia.org/wiki/Microservices

RESTful Architectures

> Inspired from the architecture of the largest distributed
application ever: the Web

— Stateless requests

— Every resource has an individual URI

— Uniform interface for all resources (GET, POST, PUT, DELETE)

> The structure of a response is not specified

X

By being stateless, REST improves performance, scalability,
portability and reliability:

https://en.wikipedia.org/wiki/Representational_state_transfer

Roadmap

> What is Software Architecture?

> Cohesion and Coupling

> Architectural styles

—Layered

—Client-Server

—Repository, Event-driven, Dataflow, ...

> UML diagrams for architectures

30

Repository Architectures

A repository architecture distributes application logic to a
number of independent sub-systems, but manages all data
in a single, shared repository.

31

This classical pattern is the grandfather of storing data in the
cloud. Your google docs is an instance of a repository
architecture. Your docs are always in the cloud.

32

IDE architecture

© Ian Sommerville 2000

Design
editor

Code
generator

Design
analyzer

Report
generator

Design
translator

Program
editorProject repository

When looking at the picture, think Eclipse. Notice that cohesion
is strong, as each subsystem has its own clear responsibilities.
However the repository is strongly coupled to all other
subsystems. Sharing of data is maximized, but the repository
format can only be changed at the risk of impacting all other
components.

Repository Architectures

Advantages
> Efficient way to share large amounts of data
> Sub-systems need not be concerned with how data is

produced, backed up etc.
> Sharing model is published as the repository schema

Disadvantages
> Sub-systems must agree on a repository data model
> Data evolution is difficult and expensive (unless NoSQL)

> Repository can become performance bottleneck

X

Sharding

X

> A method of storing data
across multiple
machines

— reduces processing needs

— reduces storage needs

> Queries must be routed
to the corresponding
shards

Event-driven Systems

In an event-driven architecture components perform
services in reaction to external events generated by
other components.

> In broadcast models an event is broadcast to all sub-systems.
Any sub-system which can handle the event may do so.

> In interrupt-driven models real-time interrupts are detected by an
interrupt handler and passed to some other component for
processing.

33

Such event-driven systems scale well due to extremely low
coupling between components.

This architectural style will become increasingly relevant with the
advent of multi-core machines due to asynchronous
communication (events are distributed without requiring a call
and response).

Broadcasting

© Ian Sommerville 2000

Event and message handler

Subsystem 1 Subsystem 2 Subsystem 3 Subsystem 4

34

Broadcast model

> Effective in integrating sub-systems on different computers in
a network

> Can be implemented using a publisher-subscriber pattern:
—Sub-systems register an interest in specific events
—When these occur, control is transferred to the subscribed sub-

systems
> However, sub-systems don’t know if or when an event will be

handled

X

Dataflow Models

In a dataflow architecture each component performs functional
transformations on its inputs to produce outputs.

> Highly effective for reducing latency in parallel or distributed
systems
—No call/reply overhead
—But, fast processes must wait for slower ones

> Not really suitable for interactive systems
—Dataflows should be free of cycles

35

X

Pipes and Filters

Domain Data source Filter Data sink
Unix tar cf - . gzip -9 rsh picasso dd

CGI HTML Form CGI Script generated HTML page

cat Notes.txt
| tr -c '[:alpha:]' '\012'
| sed '/^$/d’
| sort
| uniq –c
| sort –rn
| head -5

14 programming
14 languages
 9 of
 7 for
 5 the

Invoice Processing System

X© Ian Sommerville 2000

Invoices Read issued
invoices

Payments Identify
payments

RemindersReceipts

Issue receipts

Find
payments

due

Issue
payment
reminder

36

Compilers as Dataflow Architectures

© Ian Sommerville 2000

Symbol table

Lexical
analysis

Syntactic
analysis

Semantic
analysis

Code
generation

37

Compilers as Repository Architectures

© Ian Sommerville 2000

Lexical
analysis

Syntactic
analysis Semantic

analysis

Code
generation

Repository

Symbol table

Abstract
syntax tree

Output
definition

Grammar
definition

Pretty printer

Editor

Optimizer

Roadmap

> What is Software Architecture?

> Cohesion and Coupling

> Architectural styles

> UML diagrams for architectures

38

39

UML support: Package Diagram

Decompose
system into
packages
(containing any
other UML
element, incl.
packages)

40

UML support: Deployment Diagram

Physical layout of run-time components on hardware nodes.

What you should know!

> What is software architecture?

> How does software architecture constrain a system?

> How does choosing an architecture simplify design?

> What are architectural viewpoints and architectural

styles?

> What are coupling and cohesion?

> What are advantages and disadvantages of classical

architectural styles?

> Why shouldn’t elements in a software layer “see” the

layer above?

41

Can you answer the following questions?

> What is meant by a “fat client” or a “thin client” in a
multitier architecture?

> What kind of architectural styles are supported by the
Java AWT?

> How do callbacks reduce coupling between software
layers?

> How would you implement a dataflow architecture in
Java?

> What are the coupling and cohesion characteristics of
each architectural style?

42

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:

Share — copy and redistribute the material in any medium or format

Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

