b
UNIVERSITAT
BERN

Roadmap

UML Overview

Classes, attributes and operations

UML Lines and Arrows

Parameterized Classes, Interfaces and Ultilities
Obijects, Associations

Inheritance

Patterns, Constraints and Contracts

vV V VvV V V V V

Sources

> The Unified Modeling Language Reference Manual,
James Rumbaugh, lvar Jacobson and Grady Booch,
Addison Wesley, 1999.

> UML Distilled, Martin Fowler, Kendall Scott, Addison-
Wesley, Second Edition, 2000.

Roadmap

UML Overview

Classes, attributes and operations

UML Lines and Arrows

Parameterized Classes, Interfaces and Ultilities
Obijects, Associations

Inheritance

Patterns, Constraints and Contracts

vV V VvV V V V V

UML

What is UML?

> uniform notation: Booch + OMT + Use Cases (+ state charts)
— UML is not a method or process
— ... The Unified Development Process is

Why a Graphical Modeling Language?

> Software projects are carried out in team

> Team members need to communicate
— ... sometimes even with the end users

> “One picture conveys a thousand words”

— the question is only which words
— Need for different views on the same software artifact

Why UML?

Why UML?
> Reduces risks by documenting assumptions

— domain models, requirements, architecture, design, implementation ...

> Represents industry standard

— more tool support, more people understand your diagrams, less
education

> |s reasonably well-defined
— ... although there are interpretations and dialects

> Is open
— stereotypes, tags and constraints to extend basic constructs
— has a meta-meta-model for advanced extensions

UML History

> 1994: Grady Booch (Booch method) + James Rumbaugh
(OMT) at Rational

> 1994: Ilvar Jacobson (OOSE, use cases) joined Rational
—“The three amigos”

> 1996: Rational formed a consortium to support UML
> 1997: UML1.0 submitted to OMG by consortium

> 1997: UML 1.1 accepted as OMG standard
—However, OMG names it UML1.0

> 1998-...: Revisions UML1.2 - 1.5
> 2005: Major revision to UML2.0, includes OCL

Class

Class Name

Class Name

Class A

attribute:Type = initialValue

operation(arg list):return type

Generalization

Supertype

Z> discriminator

|

|

Subtype 1

Subtype 2

Constraint
{description of constraint}

Stereotype
«stereotype name»

Note

some useful text ‘__--""_

Object

object name: Class Name

i

0.1

m..n

Class

Class

F

Association
role B
Class B
role A
Multiplicities
exactly one
man
Class (zetg' or more)
optional
(zero or one)
numericall
specified
<> aggregation
composition

dered} *
W ordered role

Qualified Association

Clas

Navigability

role name

Target

|

Class A — — —

© 2000 Addison-Wesley

-]

Dependency

Class B

Class Diagram: Interfaces

Abstract «interface» .
Class Interface [< — — — 1 %llxent
{abstract} dependency ass
Z% : realization
Implementing| _ _ _ _ _ _ 4
Class
Interface Name .
Oé—“———"—’ Client
| dependency Class
Implementing
Class . .
Activity Diagram
Class Dl.agram: start .
Parameterized Class
template class
r T K Activity
L — -
Set fork
bound element [condition] [else] 3
Dynamic
Set<Integer> branch Concurrent
Activity
(Activity Activity)
merge
Association Class
Class Class join

Association
Class

y
i (@)

UML Distilled

Package Diagram

Package
Name
1
ackage Name| _ __ _ __ __ __
dependency =
Class 2
Sequence Diagram
an Object
T
] Deployment Diagram
create ol NEW Obiect ploy gr
T node
— message ! self-delegation
> Component 2
return
< — — -
" delete | Component 1
____>
B
Collaboration Diagram

‘ object name : glgggJ

l 1: simple message ()

1.1* iteration message ()
1.2: [condition] message ()

role name

__»

asynchronous message

‘ : class L l
role name|

object name J

© 2000 Addison-Wesley

Use Case Diagram

extension
points

Actor

«extend»
(extension points)

O

State Diagram ‘

«include

»
% Generalization

/ Superstate Name

/ State Name

entry/action
do/activity

event(arguments)[condition] / action|

exit/action
event/action (arguments)

N /

State Name

N

Concurrent States

/ Superstate Name \

UML Distilled

_J/

®

Roadmap

UML Overview

Classes, attributes and operations

UML Lines and Arrows

Parameterized Classes, Interfaces and Ultilities
Obijects, Associations

Inheritance

Patterns, Constraints and Contracts

vV V VvV V V V V

Class Diagrams

“Class diagrams show generic
descriptions of possible
systems, and object diagrams
show particular instantiations
of systems and their
behaviour.”

Attributes and operations are
also collectively called
features.

Danger: class diagrams risk
turning into data models.
Be sure to focus on behaviour

class

Customer

phone: String

name: String .

attributes

add (name,phone) =

class-scope operation

1| owner
association rolenames
¥ | purchased
Reservation
date: Date
Show
generalization name: String
I 1 show
Individual

Subscription
Series

series: Integer

Reservation

multiplicities

0.1

constraint 0.1
{xor}
__________ 1.% | performances
i . Performance
Ticket date: Date
available:Boolean M time: TimeOfDay

sell (c:Customer)

qualifier

exchange () -~

| operations

Figure 3-1. Class diagram

Visibility and Scope of Features

Stereotype

(what “kind” of class is it?)

underlined
attributes have
class scope

+ = “public”
= “protected”
- = “private”

Window J
{ abstract }

+size: Area = (100, 100)
#visibility: Boolean = false
+default-size: Rectangle
#maximume-size: Rectangle
-xptr: XWindow™

+display (')

+hide () <
+create ()
-attachXWindow (xwin: Xwindow™)

User-defined properties

\ (e.q., r7adonly, owner = “Pingu”)
«user interface»

Don’t worry
about visibility
too early!

italic attributes
are abstract

An ellipsis signals that further entries are not shown

Attributes and Operations

Attributes are specified as:

name: type = initialValue { property string }

Operations are specified as:

name (param: type = defaultValue, ...) : resultType

Roadmap

UML Overview

Classes, attributes and operations

UML Lines and Arrows

Parameterized Classes, Interfaces and Ultilities
Obijects, Associations

Inheritance

Patterns, Constraints and Contracts

vV V VvV V V V V

UML Lines and Arrows

——————— Constraint Association
(usually annotated) e.g., «usesy
————— iz Dependency = Navigable
e.g., «requiresy, association
«importsy ... e.g., part-of
_____ > Realization > “Generdlization”
e.g., class/template, i.e., specialization (!)
class/interface e.g., class/superclass,

concrete/abstract class

< Aggregation x “Composition”
i.e.,““consists of” i.e., containment

Roadmap

UML Overview

Classes, attributes and operations

UML Lines and Arrows

Parameterized Classes, Interfaces and Utilities
Obijects, Associations

Inheritance

Patterns, Constraints and Contracts

vV V VvV V V V V

Parameterized Classes

Parameterized (aka “template” or “generic”) classes are depicted with their
parameters shown in a dashed box.

r—— - —- — — — "

, template parameters

. Tkinteger
FArray "~~~ ~ ~ - =7 Thastype Classifier
by default.

The parameters are used k.k

in the template body. T

In this template, the \

multiplicity of the array s e

: \ o explicit binding

s fixed by the binding. N\ «bind» (Address,24)

S

Implicit bindins. This class has
This class has an FArray<Point,3> AddressList its own name.
anonymaous name.

Figure 13-180. Template notation with use of parameter as a reference

Interfaces

Interfaces, equivalent to abstract classes with no attributes, are represented as
classes with the stereotype «interface» or, alternatively, with the “Lollipop-
Notation”:

«interface» «call» explicit
______ 'D' Iname |=< - -- -] style
«call» implicit
Oé ________ style
Iname
supplier realization interface usage client

Figure B-5. Realization of an interface

Utilities

A utility is a grouping of global attributes and operations. It is
represented as a class with the stereotype «utility». Utilities may be

parameterized.

«utility»
MathPack

randomSeed : long = 0 , ,

pi : long = 3.14158265358979 return sin (angle + pi/2.0); \
sin (angle : double) : double | __---
cos (angle : double) : double ~
random () : double

NB: A utility’s attributes are already interpreted as being in class scope,
So it is redundant to underline them.

A “note” is a text comment associated with a view, and represented as
box with the top right corner folded over.

Roadmap

UML Overview

Classes, attributes and operations

UML Lines and Arrows

Parameterized Classes, Interfaces and Ultilities
Objects, Associations

Inheritance

Patterns, Constraints and Contracts

vV V VvV V V V V

Objects

Objects are shown as rectangles with their name and type underlined in
one compartment, and attribute values, optionally, in a second
compartment.

triangle: Polygon _
triangle

center =(0,0)

vertices = ((0,0),(4,0),(4,3))

borderColor = black

fillColor = white
:Polygon

triangle: Polygon O

scheduler

Figure 13-134. Object notation

At least one of the name or the type must be present.

Associations

association name
Priority

Associations represent next | 0.1 <— selfassociation
structural relationships 0.1

. Subscription -
between objects previous

rolename — = source 0.1 <=——— multiplicity

— Usua”y binary (but may <—— binary association
be ternary etc.)

— optional name and
direction Reservation | participating class

— (unique) role names
and multiplicities at
end'pOintS Figure 4-2. Association notation

tickets

Multiplicity

> The multiplicity of an association constrains how many
entities one may be associated with

— Examples:
0..1 Zero or one entity
1 Exactly one entity
* Any number of entities
1.* One or more entities
1..n One to n entities
Andsoon ...

Associations and Attributes

> Associations may be implemented as attributes

— But need not be ...

Person
+parent

Person

Q parent

Aggregation and Composition

Aggregation is denoted by a diamond and indicates a part-whole

dependency:.

A hollow diamond indicates a reference; a solid diamond an

implementation (i.e., ownership).

aggregate in

both associations

visibility
aggregation ‘L /

Polygon

composition ———== T 1

Aggregation: parts may
be shared.
Composition: one part
belongs to one whole.

4

&

1

(public)

+sides
Contains» 3

rolename

{ordered}

Side

ordering

-bundle

GraphicsBundle

a

color
texture
density

navigability
direction

Figure 13-29. Various adornments on association ends

multiplicity

Association Classes

An association may be an instance of an association class:

participating class

Organization . ' Person
I
I

DonationlLevel o
=— association class (all one element)

yearAmount: Money o _
lifeAmount: Money =<T1—— association attributes

Figure 4-3. Association class

In many cases the association class only stores attributes, and its name
can be left out.

Qualified Associations

A qualified association uses a special qualifier value to identify the
object at the other end of the association.

NB: Qualifiers are part of the association, not the class

participating class . qualified association
qualifier
, sale
Show performance: Date Ticket
seat: SeatNumber | 1 Sales 0.1
7 /[\
qualifier attributes qualified multiplicity

Figure 4-4. Qualified association

Roadmap

UML Overview

Classes, attributes and operations

UML Lines and Arrows

Parameterized Classes, Interfaces and Ultilities
Obijects, Associations

Inheritance

Patterns, Constraints and Contracts

vV V VvV V V V V

Generalization

A subclass specializes its superclass:

Order

superclass (parent)

date: Date

confirm() = abstract operation

/ \anerazaton

MailOrder BoxOfficeOrder
dateFilled: Date hold: Boolean subclass (child)
confirm() confirm()

Figure 4-7. Generalization notation

What is Inheritance For?

> New software often builds on old software by imitation,
refinement or combination.

> Similarly, classes may be extensions, specializations or
combinations of existing classes.

Generalization expresses ...

Conceptual hierarchy:

> conceptually related classes can be organized into a specialization
hierarchy

— people, employees, managers
— geometric objects ...
Polymorphism:

> objects of distinct, but related classes may be uniformly treated by
clients

— array of geometric objects

Software reuse:

> related classes may share interfaces, data structures or behaviour
— geometric objects ...

The different faces of inheritance

Rectangle

2\

Square

Figure

AN

Square

Is-a

Rectangle

Square

/\

Polymorphism

Rectangle

Reuse

Roadmap

UML Overview

Classes, attributes and operations

UML Lines and Arrows

Parameterized Classes, Interfaces and Ultilities
Obijects, Associations

Inheritance

Patterns, Constraints and Contracts

vV V VvV V V V V

Design Patterns as Collaborations

The CallQueue class plays
the subject role in the
collaboration.

The SlidingBarlcon class plays
the handler role.

CallQueue subject | SlidingBarlcon
N handler .
queue: List of Call \ s _
source: Object - reading: Real
waitAlarm: Alarm h y o color: Color
capacity: Integer ST T T range: Interval
e
\ Observer)
~ _ P
; binding of the
I Observer pattern
]
{ handler.reading = length (subject.queue) some constraints

range = (0 .. capacity) }

on the pattern

Figure 13-144. Binding of a pattern to make a collaboration

Constraints

Constraints are restrictions on values attached to classes or

associations.

» Member-of,

Person | {subset}

Committee

1 Chair-of *

constraint between associations

worker x employee amployer

Represents
an incorporated entity.

| constraint on single class

constraint as note

*
Person

Company

|
| 0.1
|
]

constraint on path

Person.boss.employer}

{Person.employer = ﬁ note

Figure 4-12. Constraints

OCL — Object Constraint Language

> Used to express queries and constraints over UML
diagrams
— Navigate associations:
— Person.boss.employer
— Select subsets:
— Company.employee->select(title="Manager”)
— Boolean and arithmetic operators:
— Person.salary < Person.boss.salary

WWW.omg.org

Design by Contract in UML

Combine constraints with stereotypes:
NB: «invariant», «precondition», and «postcondition» are predefined in UML.

Matrix

product (m1): Matrix.|_

«precondition»

{ number of rows of self = number of columns of m1}

Figure 13-147. Precondition

Array

sort ()

-~
-~

~ «postcondition»

~ {a'.size = asize;
any value in a appears the same number of timesin a and a’;
for each successive values xandyina’, x<y}

Figure 13-145. Postcondition

Using the Notation

During Analysis: ' _
— Capture classes visible to users The gfapflzlcﬂ :Otatloln is only
- . e one part of the analysis or
Docu.ment attr_/bL_/tes and respons:b/.l/t/es design document. For example,
— ldentify associations and collaborations a data dictionary cataloguing
— ldentify conceptual hierarchies and describing all names of
— Capture all visible features classes, roles, associations, elc.
must be maintained throughout
. . the project.
During Design: Prey 7

— Specify contracts and operations
— Decompose complex objects
— Factor out common interfaces and functionalities

What you should know!

> How do you represent classes, objects and
associations?

> How do you specify the visibility of attributes and
operations to clients?

How is a utility different from a class? How is it similar?
Why do we need both named associations and roles?
Why is inheritance useful in analysis? In design?

How are constraints specified?

vV V V V

Can you answer the following questions?

> Why would you want a feature to have class scope?

> Why don’t you need to show operations when depicting
an object?

> Why aren’t associations drawn with arrowheads?

> How is aggregation different from any other kind of
association?

> How are associations realized in an implementation
language?

License

> http://creativecommons.org/licenses/by-sa/3.0/

@creative
commons

C OMMONS DEED

Attribution-ShareAlike 3.0 Unported
You are free:
to Share — to copy, distribute and transmit the work
to Remix — to adapt the work

Under the following conditions:
Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).
Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this work. The

best way to do this is with a link to this web page.
Any of the above conditions can be waived if you get permission from the copyright holder.
Nothing in this license impairs or restricts the author's moral rights.

