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Sources

> The Unified Modeling Language Reference Manual,
James Rumbaugh, lvar Jacobson and Grady Booch,
Addison Wesley, 1999.

> UML Distilled, Martin Fowler, Kendall Scott, Addison-
Wesley, Second Edition, 2000.
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UML

What is UML?

> uniform notation: Booch + OMT + Use Cases (+ state charts)
— UML is not a method or process
— ... The Unified Development Process is

Why a Graphical Modeling Language?

> Software projects are carried out in team

> Team members need to communicate
— ... sometimes even with the end users

> “One picture conveys a thousand words”

— the question is only which words
— Need for different views on the same software artifact



Why UML?

Why UML?
> Reduces risks by documenting assumptions

— domain models, requirements, architecture, design, implementation ...

> Represents industry standard

— more tool support, more people understand your diagrams, less
education

> |s reasonably well-defined
— ... although there are interpretations and dialects

> Is open
— stereotypes, tags and constraints to extend basic constructs
— has a meta-meta-model for advanced extensions



UML History

> 1994: Grady Booch (Booch method) + James Rumbaugh
(OMT) at Rational

> 1994: Ilvar Jacobson (OOSE, use cases) joined Rational
—“The three amigos”

> 1996: Rational formed a consortium to support UML
> 1997: UML1.0 submitted to OMG by consortium

> 1997: UML 1.1 accepted as OMG standard
—However, OMG names it UML1.0

> 1998-...: Revisions UML1.2 - 1.5
> 2005: Major revision to UML2.0, includes OCL
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Class Diagrams

“Class diagrams show generic
descriptions of possible
systems, and object diagrams
show particular instantiations
of systems and their
behaviour.”

Attributes and operations are
also collectively called
features.

Danger: class diagrams risk
turning into data models.
Be sure to focus on behaviour

class

Customer

phone: String

name: String .

attributes

add (name,phone) =

class-scope operation

1| owner
association rolenames
¥ | purchased
Reservation
date: Date
Show
generalization name: String
I 1 show
Individual

Subscription
Series

series: Integer

Reservation

multiplicities

0.1

constraint 0.1
{xor}
__________ 1.% | performances
i . Performance
Ticket date: Date
available:Boolean M time: TimeOfDay

sell (c:Customer)

qualifier

exchange () -~

| operations

Figure 3-1. Class diagram



Visibility and Scope of Features

Stereotype

(what “kind” of class is it?)

underlined
attributes have
class scope

+ = “public”
# = “protected”
- = “private”

Window J
{ abstract }

+size: Area = (100, 100)
#visibility: Boolean = false
+default-size: Rectangle
#maximume-size: Rectangle
-xptr: XWindow™

+display (')

+hide () <
+create ()
-attachXWindow (xwin: Xwindow™)

User-defined properties

\ (e.q., r7adonly, owner = “Pingu”)
«user interface»

Don’t worry
about visibility
too early!

italic attributes
are abstract

An ellipsis signals that further entries are not shown



Attributes and Operations

Attributes are specified as:

name: type = initialValue { property string }

Operations are specified as:

name (param: type = defaultValue, ...) : resultType
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UML Lines and Arrows

——————— Constraint Association
(usually annotated) e.g., «usesy
————— iz Dependency = Navigable
e.g., «requiresy, association
«importsy ... e.g., part-of
_____ > Realization > “Generdlization”
e.g., class/template, i.e., specialization (!)
class/interface e.g., class/superclass,

concrete/abstract class

< Aggregation x “Composition”
i.e.,““consists of” i.e., containment
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Parameterized Classes

Parameterized (aka “template” or “generic”) classes are depicted with their
parameters shown in a dashed box.

r—— - —- — — — "

,  template parameters

. Tkinteger
FArray "~~~ ~ ~ - =7 Thastype Classifier
by default.

The parameters are used k.k

in the template body. T

In this template, the \

multiplicity of the array s e

: \ o explicit binding

s fixed by the binding. N\ «bind» (Address,24)

S

Implicit bindins. This class has
This class has an FArray<Point,3> AddressList its own name.
anonymaous name.

Figure 13-180. Template notation with use of parameter as a reference



Interfaces

Interfaces, equivalent to abstract classes with no attributes, are represented as
classes with the stereotype «interface» or, alternatively, with the “Lollipop-
Notation”:

«interface» «call» explicit
______ 'D' Iname |=< - -- -] style
«call» implicit
Oé ________ style
Iname
supplier realization interface usage client

Figure B-5. Realization of an interface



Utilities

A utility is a grouping of global attributes and operations. It is
represented as a class with the stereotype «utility». Utilities may be

parameterized.

«utility»
MathPack

randomSeed : long = 0 , ,

pi : long = 3.14158265358979 return sin (angle + pi/2.0); \
sin (angle : double) : double | __---
cos (angle : double) : double ~
random () : double

NB: A utility’s attributes are already interpreted as being in class scope,
So it is redundant to underline them.

A “note” is a text comment associated with a view, and represented as
box with the top right corner folded over.
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Objects

Objects are shown as rectangles with their name and type underlined in
one compartment, and attribute values, optionally, in a second
compartment.

triangle: Polygon _
triangle

center =(0,0)

vertices = ((0,0),(4,0),(4,3))

borderColor = black

fillColor = white
:Polygon

triangle: Polygon O

scheduler

Figure 13-134. Object notation

At least one of the name or the type must be present.



Associations

association name
Priority

Associations represent next | 0.1 <— selfassociation
structural relationships 0.1

. Subscription -
between objects previous

rolename — = source 0.1 <=——— multiplicity

— Usua”y binary (but may <—— binary association
be ternary etc.)

— optional name and
direction Reservation | participating class

— (unique) role names
and multiplicities at
end'pOintS Figure 4-2. Association notation

tickets




Multiplicity

> The multiplicity of an association constrains how many
entities one may be associated with

— Examples:
0..1 Zero or one entity
1 Exactly one entity
* Any number of entities
1.* One or more entities
1..n One to n entities
Andsoon ...




Associations and Attributes

> Associations may be implemented as attributes

— But need not be ...

Person
+parent

Person

Q parent




Aggregation and Composition

Aggregation is denoted by a diamond and indicates a part-whole

dependency:.

A hollow diamond indicates a reference; a solid diamond an

implementation (i.e., ownership).

aggregate in

both associations

visibility
aggregation ‘L /

Polygon

composition ———== T 1

Aggregation: parts may
be shared.
Composition: one part
belongs to one whole.

4

&

1

(public)

+sides
Contains» 3

rolename

{ordered}

Side

ordering

-bundle

GraphicsBundle

a

color
texture
density

navigability
direction

Figure 13-29. Various adornments on association ends

multiplicity




Association Classes

An association may be an instance of an association class:

participating class

Organization . ' Person
I
I

DonationlLevel o
=— association class (all one element)

yearAmount: Money o _
lifeAmount: Money =<T1—— association attributes

Figure 4-3. Association class

In many cases the association class only stores attributes, and its name
can be left out.



Qualified Associations

A qualified association uses a special qualifier value to identify the
object at the other end of the association.

NB: Qualifiers are part of the association, not the class

participating class . qualified association
qualifier
, sale
Show performance: Date Ticket
seat: SeatNumber | 1 Sales 0.1
7 /[\
qualifier attributes qualified multiplicity

Figure 4-4. Qualified association
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Generalization

A subclass specializes its superclass:

Order

superclass (parent)

date: Date

confirm() = abstract operation

/ \anerazaton

MailOrder BoxOfficeOrder
dateFilled: Date hold: Boolean subclass (child)
confirm() confirm()

Figure 4-7. Generalization notation



What is Inheritance For?

> New software often builds on old software by imitation,
refinement or combination.

> Similarly, classes may be extensions, specializations or
combinations of existing classes.



Generalization expresses ...

Conceptual hierarchy:

> conceptually related classes can be organized into a specialization
hierarchy

— people, employees, managers
— geometric objects ...
Polymorphism:

> objects of distinct, but related classes may be uniformly treated by
clients

— array of geometric objects

Software reuse:

> related classes may share interfaces, data structures or behaviour
— geometric objects ...



The different faces of inheritance

Rectangle

2\

Square

Figure

AN

Square

Is-a

Rectangle

Square

/\

Polymorphism

Rectangle

Reuse
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Design Patterns as Collaborations

The CallQueue class plays
the subject role in the
collaboration.

The SlidingBarlcon class plays
the handler role.

CallQueue subject | SlidingBarlcon
N handler .
queue: List of Call \ s _
source: Object - reading: Real
waitAlarm: Alarm h y o color: Color
capacity: Integer ST T T range: Interval
e
\ Observer )
~ _ P
; binding of the
I Observer pattern
]
{ handler.reading = length (subject.queue) some constraints

range = (0 .. capacity) }

on the pattern

Figure 13-144. Binding of a pattern to make a collaboration



Constraints

Constraints are restrictions on values attached to classes or

associations.

» Member-of,

Person | {subset}

Committee

1 Chair-of *

constraint between associations

worker x employee  amployer

Represents
an incorporated entity.

| constraint on single class

constraint as note

*
Person

Company

|
| 0.1
|
]

constraint on path

Person.boss.employer}

{Person.employer = ﬁ note

Figure 4-12. Constraints



OCL — Object Constraint Language

> Used to express queries and constraints over UML
diagrams
— Navigate associations:
—  Person.boss.employer
— Select subsets:
—  Company.employee->select(title="Manager”)
— Boolean and arithmetic operators:
— Person.salary < Person.boss.salary

WWW.omg.org



Design by Contract in UML

Combine constraints with stereotypes:
NB: «invariant», «precondition», and «postcondition» are predefined in UML.

Matrix

product (m1): Matrix.|_

«precondition»

{ number of rows of self = number of columns of m1}

Figure 13-147. Precondition

Array

sort ()

-~
-~

~ «postcondition»

~ {a'.size = asize;
any value in a appears the same number of timesin a and a’;
for each successive values xandyina’, x<y}

Figure 13-145. Postcondition



Using the Notation

During Analysis: ' _
— Capture classes visible to users The gfapflzlcﬂ :Otatloln is only
- . e one part of the analysis or
Docu.ment attr_/bL_/tes and respons:b/.l/t/es design document. For example,
— ldentify associations and collaborations a data dictionary cataloguing
— ldentify conceptual hierarchies and describing all names of
— Capture all visible features classes, roles, associations, elc.
must be maintained throughout
. . the project.
During Design: Prey 7

— Specify contracts and operations
— Decompose complex objects
— Factor out common interfaces and functionalities



What you should know!

> How do you represent classes, objects and
associations?

> How do you specify the visibility of attributes and
operations to clients?

How is a utility different from a class? How is it similar?
Why do we need both named associations and roles?
Why is inheritance useful in analysis? In design?

How are constraints specified?

vV V V V



Can you answer the following questions?

> Why would you want a feature to have class scope?

> Why don’t you need to show operations when depicting
an object?

> Why aren’t associations drawn with arrowheads?

> How is aggregation different from any other kind of
association?

> How are associations realized in an implementation
language?



License

> http://creativecommons.org/licenses/by-sa/3.0/
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