
ESE 
Einführung in Software Engineering  

6. Modeling Objects and Classes!

Prof. O. Nierstrasz!

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.2	

Roadmap"

>  UML Overview!
>  Classes, attributes and operations!
>  UML Lines and Arrows!
>  Parameterized Classes, Interfaces and Utilities!
>  Objects, Associations!
>  Inheritance!
>  Patterns, Constraints and Contracts!

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.3	

Sources"

>  The Unified Modeling Language Reference Manual,
James Rumbaugh, Ivar Jacobson and Grady Booch,
Addison Wesley, 1999. !

>  UML Distilled, Martin Fowler, Kendall Scott, Addison-
Wesley, Second Edition, 2000.!

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.4	

Roadmap"

>  UML Overview"
>  Classes, attributes and operations!
>  UML Lines and Arrows!
>  Parameterized Classes, Interfaces and Utilities!
>  Objects, Associations!
>  Inheritance!
>  Patterns, Constraints and Contracts!

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.5	

UML"

What is UML?!
>  uniform notation: Booch + OMT + Use Cases (+ state charts)!

—  UML is not a method or process!
—  … The Unified Development Process is!

Why a Graphical Modeling Language?!
>  Software projects are carried out in team!
>  Team members need to communicate!

—  ... sometimes even with the end users!
>  “One picture conveys a thousand words”!

—  the question is only which words!
—  Need for different views on the same software artifact!

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.6	

Why UML?"

Why UML?!
>  Reduces risks by documenting assumptions!

— domain models, requirements, architecture, design, implementation …!
>  Represents industry standard!

— more tool support, more people understand your diagrams, less
education!

>  Is reasonably well-defined!
—  ... although there are interpretations and dialects!

>  Is open!
— stereotypes, tags and constraints to extend basic constructs!
— has a meta-meta-model for advanced extensions!

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.7	

UML History"

>  1994: Grady Booch (Booch method) + James Rumbaugh
(OMT) at Rational!

>  1994: Ivar Jacobson (OOSE, use cases) joined Rational!
— “The three amigos”!

>  1996: Rational formed a consortium to support UML!
>  1997: UML1.0 submitted to OMG by consortium!
>  1997: UML 1.1 accepted as OMG standard!

— However, OMG names it UML1.0!
>  1998-…: Revisions UML1.2 - 1.5!
>  2005: Major revision to UML2.0, includes OCL!

UML Distilled!© 2000 Addison-Wesley

© 2000 Addison-Wesley
 UML Distilled!

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.10	

Roadmap"

>  UML Overview!
>  Classes, attributes and operations"
>  UML Lines and Arrows!
>  Parameterized Classes, Interfaces and Utilities!
>  Objects, Associations!
>  Inheritance!
>  Patterns, Constraints and Contracts!

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.11	

Class Diagrams"

“Class diagrams show generic
descriptions of possible
systems, and object diagrams
show particular instantiations
of systems and their
behaviour.”!

Attributes and operations are
also collectively called
features.!

Danger: class diagrams risk
turning into data models. !
Be sure to focus on behaviour!

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.12	

Visibility and Scope of Features"

Donʼt worry
about visibility
too early!!

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.13	

Attributes and Operations"

Attributes are specified as:!

name: type = initialValue { property string }!

Operations are specified as:!

name (param: type = defaultValue, ...) : resultType!

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.14	

Roadmap"

>  UML Overview!
>  Classes, attributes and operations!
>  UML Lines and Arrows"
>  Parameterized Classes, Interfaces and Utilities!
>  Objects, Associations!
>  Inheritance!
>  Patterns, Constraints and Contracts!

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.15	

UML Lines and Arrows"

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.16	

Roadmap"

>  UML Overview!
>  Classes, attributes and operations!
>  UML Lines and Arrows!
>  Parameterized Classes, Interfaces and Utilities"
>  Objects, Associations!
>  Inheritance!
>  Patterns, Constraints and Contracts!

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.17	

Parameterized Classes"

Parameterized (aka “template” or “generic”) classes are depicted with their
parameters shown in a dashed box. !

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.18	

Interfaces"

Interfaces, equivalent to abstract classes with no attributes, are represented as
classes with the stereotype «interface» or, alternatively, with the “Lollipop-
Notation”:!

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.19	

Utilities"

A utility is a grouping of global attributes and operations. It is
represented as a class with the stereotype «utility». Utilities may be
parameterized.!

NB: A utilityʼs attributes are already interpreted as being in class scope,
so it is redundant to underline them.!
A “note” is a text comment associated with a view, and represented as
box with the top right corner folded over.!

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.20	

Roadmap"

>  UML Overview!
>  Classes, attributes and operations!
>  UML Lines and Arrows!
>  Parameterized Classes, Interfaces and Utilities!
>  Objects, Associations"
>  Inheritance!
>  Patterns, Constraints and Contracts!

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.21	

Objects"

Objects are shown as rectangles with their name and type underlined in
one compartment, and attribute values, optionally, in a second
compartment.!

At least one of the name or the type must be present.!

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.22	

Associations"

Associations represent
structural relationships
between objects!

— usually binary (but may
be ternary etc.)!

— optional name and
direction!

—  (unique) role names
and multiplicities at
end-points!

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.23	

Multiplicity"

>  The multiplicity of an association constrains how many
entities one may be associated with!
—  Examples:!

0..1! Zero or one entity!

1! Exactly one entity!

*! Any number of entities!

1..*! One or more entities!

1..n! One to n entities!

And so on …!

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.24	

Associations and Attributes"

>  Associations may be implemented as attributes!
—  But need not be …!

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.25	

Aggregation and Composition"

Aggregation is denoted by a diamond and indicates a part-whole
dependency:!
A hollow diamond indicates a reference; a solid diamond an
implementation (i.e., ownership).!

Aggregation: parts may
be shared.!
Composition: one part
belongs to one whole.!

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.26	

Association Classes"

An association may be an instance of an association class:!

In many cases the association class only stores attributes, and its name
can be left out.!

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.27	

Qualified Associations"

A qualified association uses a special qualifier value to identify the
object at the other end of the association.!
NB: Qualifiers are part of the association, not the class!

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.28	

Roadmap"

>  UML Overview!
>  Classes, attributes and operations!
>  UML Lines and Arrows!
>  Parameterized Classes, Interfaces and Utilities!
>  Objects, Associations!
>  Inheritance!
>  Patterns, Constraints and Contracts!

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.29	

Generalization"

A subclass specializes its superclass:!

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.30	

What is Inheritance For?"

>  New software often builds on old software by imitation,
refinement or combination.!

>  Similarly, classes may be extensions, specializations or
combinations of existing classes.!

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.31	

Generalization expresses ..."

Conceptual hierarchy:!
>  conceptually related classes can be organized into a specialization

hierarchy !
— people, employees, managers!
— geometric objects ...!

Polymorphism: !
>  objects of distinct, but related classes may be uniformly treated by

clients!
— array of geometric objects!

Software reuse: !
>  related classes may share interfaces, data structures or behaviour!

— geometric objects ...!

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.32	

The different faces of inheritance"

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.33	

Roadmap"

>  UML Overview!
>  Classes, attributes and operations!
>  UML Lines and Arrows!
>  Parameterized Classes, Interfaces and Utilities!
>  Objects, Associations!
>  Inheritance!
>  Patterns, Constraints and Contracts"

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.34	

Design Patterns as Collaborations"

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.35	

Constraints"

Constraints are restrictions on values attached to classes or
associations.!

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.36	

OCL — Object Constraint Language"

>  Used to express queries and constraints over UML
diagrams!
—  Navigate associations:!

–  Person.boss.employer!
—  Select subsets:!

–  Company.employee->select(title=“Manager”)!
—  Boolean and arithmetic operators:!

–  Person.salary < Person.boss.salary!

www.omg.org!

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.37	

Design by Contract in UML"

Combine constraints with stereotypes:!
NB: «invariant», «precondition», and «postcondition» are predefined in UML.!

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.38	

Using the Notation"

During Analysis:!
—  Capture classes visible to users!
—  Document attributes and responsibilities!
—  Identify associations and collaborations!
—  Identify conceptual hierarchies!
—  Capture all visible features!

During Design:!
—  Specify contracts and operations!
—  Decompose complex objects!
—  Factor out common interfaces and functionalities!

The graphical notation is only
one part of the analysis or

design document. For example,
a data dictionary cataloguing
and describing all names of

classes, roles, associations, etc.
must be maintained throughout

the project.!

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.39	

What you should know!"

>  How do you represent classes, objects and
associations?!

>  How do you specify the visibility of attributes and
operations to clients?!

>  How is a utility different from a class? How is it similar?!
>  Why do we need both named associations and roles?!
>  Why is inheritance useful in analysis? In design?!
>  How are constraints specified?!

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.40	

Can you answer the following questions?"

>  Why would you want a feature to have class scope?!
>  Why donʼt you need to show operations when depicting

an object?!
>  Why arenʼt associations drawn with arrowheads?!
>  How is aggregation different from any other kind of

association?!
>  How are associations realized in an implementation

language?!

© Oscar Nierstrasz!

ESE — Modeling Objects and Classes!

ESE 6.41	

Attribution-ShareAlike 3.0 Unported"
You are free:!

to Share — to copy, distribute and transmit the work!
to Remix — to adapt the work!

Under the following conditions:!
Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).!
Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.!

For any reuse or distribution, you must make clear to others the license terms of this work. The
best way to do this is with a link to this web page.!

Any of the above conditions can be waived if you get permission from the copyright holder.!
Nothing in this license impairs or restricts the author's moral rights.!

License"

>  http://creativecommons.org/licenses/by-sa/3.0/!

